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The SLO, yet again

In recent years there have been a number of papers
demonstrating the versatility of the scanning laser oph-
thalmoscope (SLO), including its use for fluorescein
angiography,1 2 quantification of retinal blood flow,3 static
fundus controlled perimetry,4 and the measurement of
optic disc variables.5 6 To add to this list we now have the
imaging of fundus autofluorescence, described in this issue
in the paper by von Ruckmann and colleagues (p 407).
They take advantage of two of the major features of the
confocal SLO, the ability to image using monochromatic
light and the production of an image of a relatively thin
slice of tissue. Clearly, the SLO is an extremely versatile
instrument; to what extent does it offer the 'ultimate'
imaging experience for ophthalmologists?
The concept of using lasers to image the retina was first

proposed by Webb and colleagues in 19807; the instrument
was known initially as the flying spot TV ophthalmoscope,
the term 'scanning laser ophthalmoscope' being introduced
the following year. The conventional fundus camera illumi-
nates a majority of the fundus simultaneously and so
requires a large entrance aperture which, in turn, limits the
size of the exit aperture through which the reflected beam
can pass. The result is that the illuminating beam needs to
be ofhigh intensity. In contrast the SLO uses serial imaging;
a narrow beam of laser light is scanned in a raster fashion
across the fundus with an image of only one small point on
the fundus being made at any one time. This means that a
very small input beam of laser light can be used, freeing the
rest of the pupil area for the reflected light to exit through.
The immediate advantage of the system is that it allows
imaging to be carried out at low light levels, some 200 times
lower than with the fundus camera.8
The image is intrinsically a digitised one, although

commercial instruments usually record it as a video signal.
The main disadvantage of the instrument is its limited
spatial resolution; the optics of the eye restricting the size
of the laser spot on the retina to some 15 ,um in diameter.
Thus the SLO will lose some of the fine low contrast detail
of the fundus camera. It should be noted, however, that
providing the feature to be detected has sufficient contrast
then it will be visible, albeit blurred, even though its actual
size is much smaller than the spot size.

Apart from the convenience of being able to use low
intensity light, the SLO offers a number of interesting
features, several of whose potential has not yet been
explored fully. The contrast of retinal features can be
varied by changing the thickness of section over which

reflected light is received, the amount of scattered light
detected, and the wavelength of the illuminating beam.
The development of the confocal version of the SLO by
Webb in 19879 has led to tomographic imaging and a
reduction in the amount of scattered light in the image.
Unfortunately, imaging at depth will always depend upon
the amount of light penetrating through the overlying
layers of tissue and so it is inevitable that the quality of
images of the deeper fundal layers will be limited. Also the
thinner the section is, the lower will be the amount of light
available and, hence, the poorer the quality of the image.
There are two ways of addressing this problem; to increase
either the strength of the illuminating beam or the
exposure time. While the difference between the exposure
from the SLO and fundus camera might suggest that the
power of the irradiating laser, some 50 ,uW, may be safely
increased there is, in fact, little information on the effect on
retinal tissue of exposure to monochromatic laser light at
this level. This is an area in which more work on safe work-
ing exposure levels is required.
The solution proposed in von Riickmann et al 's paper

was to increase the effective exposure time, by summing
multiple images. However, this introduces the problem of
correcting for eye movement. Unfortunately, the registra-
tion of images requires not simply corrections for shift but
also image warping, and manual alignment of the images is
often not sufficient for this. Much effort has been expended
upon algorithms for movement correction of retinal
images,10 these are sophisticated but, as a result, often very
time consuming even on modern workstations. This may
prove to be the factor that limits the value of this technique.
A further problem is that there is little information as to

the size of tomographic sections produced by the SLO.
Although some workers have produced results measuring
slice thickness,111-3 the manufacturers of commercial
instruments often only identify the confocal aperture by
a number and do not provide information about slice
thickness. In practice, the slice thickness needed to
produce an image of reasonable quality appears to be
about 2500 pum,13 thinner slices being too noisy. This must
surely raise questions as to the value of the instrument for
measuring retinal topography. While there have been
published results showing the technique to be repro-
ducible,14 measurements made on humans have had
certain inconsistencies in the values produced6 which have
not been convincingly explained.

Perhaps the most interesting feature of the instrument is
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