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Abstract

Metformin is a commonly prescribed diabetes medication whose mechanism of action is poorly 

understood. In this study we utilized EHR-linked biobank data to elucidate the impact of genomic 

variation on glycemic response to metformin. Our study found significant gene- and SNP-level 

associations within the beta-2 subunit of the heterotrimeric adenosine monophosphate-activated 

protein kinase complex. Using EHR phenotypes where were able to add additional clarity to 

ongoing metformin pharmacogenomic dialogue.
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Introduction

Metformin is recommended as a first-line therapy for type 2 diabetes mellitus (T2DM)[1] 

and is believed to be the most prescribed drug worldwide[2]. Metformin is primarily utilized 

to regain glycemic control in diabetic or pre-diabetic patients. While metformin is a 

relatively safe antidiabetic therapy, serious adverse reactions can occur. Evidence is also 

accumulating that highlights the potential repurposing of metformin for cancer prevention 

and treatment[3]. However, the details underlying the molecular mechanism of action for 

metformin are not fully understood[2]. While the pharmacokinetics (PK) of metformin, the 

transportation throughout the body, are moderately understood, the pharmacodynamics (PD) 

of metformin, the physiological and biochemical impact of metformin in the body, are not 

clearly understood[4]. Further, there is considerable variation in glycemic response to 

metformin[4], only part of which genetic factors currently explain[2].

Our study aims to add further clarity to metformin pharmacogenomics by using EHR-linked 

biobank data to understand the impact of common variants in metformin candidate genes 
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(n=16) on altered glycemic response in a clinical population. Candidate genes selected for 

inclusion in this study are suspected metformin PK or PD determinants as highlighted in 

systematic reviews of metformin pharmacogenomics[2,4,5]. A series of gene- and SNP-level 

analyses were performed in this study to elucidate the impact of pharmacogenomic 

variation.

1. Methods

All genomic data utilized in this study was a part of a local biobank with linked longitudinal 

electronic health record data[6]. Patients with existing GWAS data, T2DM, known 

metformin exposure, and longitudinal glycemic indicators were included in this study. 

Patients without known metformin exposure ≥ 6 months, without A1c measures ≥6 months 

apart prior to and concurrent with the metformin exposure, and without genomic data with 

≥95% call rate within candidate genes were excluded from this study. The study design 

(Figure 1) and description of cohort of Caucasian patients (n=258) with known metformin 

exposure, T2DM, longitudinal A1c measures, and genomic data with ≥ 95% call rate utilized 

in this study can be found in Table 1.

Clinical phenotypes were developed using EHR-based algorithms and data, which enabled 

us to study metformin pharmacogenomics in a naturally occurring population. Attribution of 

a T2DM phenotype was performed using modified methodology developed by eMERGE 

[7]. Metformin exposure was ascertained using a combination of validated structured[8] and 

semi-structured[9] EHR data collection methodologies. To compare the genetic modification 

of glycemic response to metformin, measures of A1c were compared prior to metformin 

exposure and during the period of metformin exposure following a 6-month period of delay. 

In this study, A1c was calculated as the difference between the average of A1c measures 

within 6 months prior to metformin exposure (t0) and the average of A1c measures between 

≥ 6 months after exposure to metformin and the end of metformin exposure(t1)(Figure 1). 

This approach minimizes the impact of any one A1c measure and biases change in A1c 

measures towards the null. Age, gender, and morbid obesity (BMI ≥ 35), a known modifier 

of T2DM state[1], were selected for inclusion as covariates in the model. Age and BMI 

measures were calculated at first recorded exposure to metformin.

1.1. Quality Control

For each candidate gene we selected SNPs 50 kb upstream and downstream of each gene 

using 1000 genomes project variants and NCBI build 37 as the reference genome. By this 

mapping rule, a total of 8440 SNPs were mapped to the 16 genes, but only 1065 SNPs were 

available in the genotype data. For the remaining SNPs, two main quality control filters were 

applied: (i) SNPs with unacceptable high rates of missing genotype calls (>10%); and (ii) 

monomorphic SNPs were excluded. The quality control of the genotype data was performed 

by PLINK v 1.07. The call rate was < 0.90 for 601 SNPs and 1 SNP was monomorphic, 

leaving 463 SNPs for the single SNP and gene-level analyses. From the total of 285 samples 

with available genotype, we excluded 27 samples with call rate < 0.95, leaving 258 samples 

available for analysis in the final cohort. Locus Zoom plots were based on the 1000 

Genomes European reference population from March 2012 release.
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1.2. Analysis

First, we analyzed the association of each gene with the change in A1c using Van der 

Waerden rank, or rank based inverse Gaussian, transformed change in A1c. Gene level tests 

were performed using principal component analysis (PCA). For each gene, principal 

components (PCs) were created using linear combinations of ordinally scaled SNPs (i.e., 0, 

1, 2 copies of minor allele). The smallest set of resulting principal components that 

explained at least 90% of the SNP variance was included in linear regression models that 

also controlled for gender, age, and obesity. Instead of including the entire set of SNPs for 

each gene, the PCA approach reduces the degrees of freedom, avoids model fitting issues 

due to multi-collinearity of the SNPs from linkage disequilibrium (LD) and potentially 

improves the statistical power. Finally, to assess overall significance of a gene, we computed 

the likelihood ratio test by comparing the null model containing only the covariates with the 

full model containing covariates and the set of resulting principal components. At the gene-

level, results of the 16 simultaneous hypothesis tests were utilized for filtering. Second, we 

tested the association between each SNP and Van der Waerden rank transformed change in 

A1c using a linear regression model, adjusting for age, gender and morbid obesity. 

Coefficient estimates were calculated per minor allele, that is, with each minor allele, the 

A1c level changes by ‘beta’. SNP-level results are not displayed as corrected for multiple 

testing.

2. Results

The candidate gene PRKAB2, a PD determinant, was identified as being significantly(P-

val=0.0194) associated with glycemic response(Table 2). While the estimates for male 

(Coef=0.04,P-val=0.737), age (Coef=−0.0009,P-val=0.881), morbid obesity (Coef=0.22,P-

val=0.083) were not significantly associated with glycemic response at alpha=0.05 

significance level for gene- and SNP-level analysis they were included to control for 

confounding by patient demographic characteristics.

AMPK is a heterotrimeric enzyme composed of alpha, beta, and gamma subunits, encoded 

by 5 genes, each of which uniquely determines protein stability and activity. AMPK acts as a 

metabolic master switch regulating several intracellular systems and plays an important role 

in cellular energy homeostasis, the maintenance of cellular ATP levels[10]. Metformin is a 

known AMPK activator, with genetic variations in AMPK suspected to impact the response 

to metformin[5]. PRKAB2, is the beta subunit 2 of the AMPK complex, represented by 5 

PCs of 35 SNPs was marginally significantly associated (p=0.0194) after adjustment for 

multiple testing with glycemic response (Table 2). The Locus Zoom plot for PRKAB2 

(Supplementary Figure 1) placed rs7541245, the most significant (p=0.0019) SNP, as 

outside the gene boundaries. 5 SNPs (rs6665580, rs6659191, rs6678588, rs7541245, 

rs10494243) in high LD within PRKAB2, were found to be significantly associated with a 

decrease in glycemic response after metformin exposure. Only the most significant SNP 

within each gene was displayed in the results (Table 2). In summary, variation in PRKAB2, 

the gene encoding the beta subunit 2 of adenosine monophosphate-activated protein kinase 

complex, appears to be associated with decreases in glycemic response after exposure to 

metformin, with rs7541245 having the strongest SNP association.
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3. Discussion

In this study, we leverage EHR-linked biobank data and EHR-based phenotyping methods to 

study variants associated with metformin PK and PD determinants. While our cohort is 

modestly powered (N=258), we posit that utilizing a clinical endpoint that is sensitive to PK 

and PD determinants strengthens our study. Due to the wide distribution and systemic 

impact of metformin the distinction between PK and PD determinants may not necessarily 

be distinct at the clinical level. It is important to note that our study did not replicate PK 

findings in similar studies[11,12]. However, this could be due to competing directional 

effects between PCs within candidate genes as several candidates contained SNPs that were 

significant before bonferoni correction.

While our study is strengthened by its use of robust and sensitive clinical indicators as 

outcome phenotypes paired with genomic data and ability to replicate findings in an existing 

clinical population, several limitations exist. The genetic contribution to variation in 

metformin renal clearance in the kidneys is estimated to be approximately 90%[13], 

bioavailability and concentration of metformin likely will very widely based on renal 

function, topics that will be addressed in our future work. Not all SNPs within candidate 

genes were available for analysis due to GWAS sequencing being originally performed for 

other studies. The secondary nature of the GWAS data had potential to bias findings either 

due to original patient selection criteria or sequencing criteria, but was eliminated as a 

potential effect in sensitivity analysis (not shown). Finally, while an agnostic training step 

(i.e. GWAS) was not utilized to identify candidate genes, our selection of candidate genes 

draws strength from the large body of literature and corresponding expertise on which it is 

based.

The primary purpose of this study was to add clarity to metformin pharmacogenomics by 

understanding the impact of common variants in metformin PK and PD candidate genes 

(n=16) on altered glycemic response in a clinical population derived from an EHR-linked 

biobank. By utilizing EHR phenotypes and biobank data we were able to add additional 

clarity to ongoing metformin pharmacogenomic dialogue by reinforcing the importance of 

PRKAB2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study Design
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Table 1

Cohort Demographics

n (%)

BMI < 30 64 (24.8)

BMI ≥ 30 to < 35 100 (38.8)

BMI ≥35 94 (36.4)

Median A1c > 7.0 101 (39.1)

Median Range

Change in A1c 0.0733 −6.45 3.51

Age 64 30 84
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