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Abstract

The traditional structure-function paradigm has provided significant insights for well-folded 

proteins in which structures can be easily and rapidly revealed by X-ray crystallography 

beamlines. However approximately one third of the human proteome are comprised of intrinsically 

disordered proteins and regions (IDPs/IDRs) that do not adopt a dominant well-folded structure, 

and therefore remain “unseen” by traditional structural biology methods. This Perspective article 

considers the challenges raised by the “Dark Proteome”, in which determining the diverse 

conformational substates of IDPs in their free states, in encounter complexes of bound states, and 

in complexes retaining significant disorder, requires an unprecedented level of integration of 

multiple and complementary solution-based experiments that are analyzed with state-of-the art 

molecular simulation, Bayesian probabilistic models, and high throughput computation. We 

envision how these diverse experimental and computational tools can work together through 

formation of a “computational beamline” that will allow key functional features to be identified in 

IDP structural ensembles.
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INTRODUCTION

Intrinsic protein disorder can refer to either local, disordered regions of a protein containing 

one or more folded domains (IDRs), or global protein disorder without any stable structure 

along the entire sequence (IDPs). IDPs/IDRs, which are estimated to make up approximately 

one-third of the human genome1–4, pose new challenges for the structure-function paradigm 

since they take advantage of their disordered state to interact with numerous partners for 

signaling, regulation and transcription5–8. At the same time disease-related proteins are 

highly enriched in IDRs, including those that are central to neurodegenerative disorders such 

as Parkinson’s disease, Huntington’s disease, prion diseases, and Alzheimer’s disease (AD), 

as well as cancer-associated proteins that have a primary function in regulatory protein 

interactions.9

The greater biological challenge posed by the IDP class of proteins relative to the singular 

folded counterpart is that the disorder in their free and bound complex states is integral to 

their function. In their monomeric or unbound forms, IDPs adopt neither a single nor a small 

number of stable folded conformations, and their energy landscape of the free IDP lacks a 

deep minimum, unlike that of a folded globular protein.10,11. Nonetheless, the structural 

characterization of an IDP in its free state is paramount to understanding the biology of the 

static or dynamic complexes that it forms with other ordered or disordered proteins. 

Depending on the dissociation constant, KD, there can be a significant population of the 

unbound form even in the crowded cell for some IDPs.12 A high degree of disorder and 

rapid interconversion between states is necessary for different IDRs to become accessible or 

inaccessible to binding and/or post-translational modifications important for regulation and 

signaling in the protein complex13. In describing the disorder-to-order transitions that can 

occur when disordered proteins fold upon binding to their targets, Arai and co-workers have 

found that the sub-populations of the unbound protein ensemble influence the mechanism of 

complex formation14, a conclusion that needs to be examined in the context of a range of 

different IDP systems. In regards the recent discovery of a small molecule drug that in 

cellular models of α–synuclein-mediated dysfunction points to a potential strategy for 

treating Parkinson’s disease15, the accurate determination of the conformational ensemble of 

the free protein might aid in a corresponding molecular interpretation of how such a drug 

works and therefore how best to target other disease-related IDPs.

The biological activities of IDPs are typically identified by the protein complexes that they 

form: an IDP can make both “static” (well-ordered) and/or “dynamic” (disordered) 

interactions with different sites on the target protein surface. Many intrinsically disordered 

proteins contain short amphipathic motifs, termed molecular recognition elements 

(MoRFs)16, which fold into regular secondary structures such as α-helix or β-strand or 

adopt irregular structures upon binding to their targets. An important feature of the 

recognition elements in many IDPs is that they exhibit conformational plasticity, i.e. they 

can fold into different structures on binding to different targets. Additional dynamic 

interactions involving adjacent regions to the MoRFs of the IDP frequently enhance the 

binding affinity, enabling them to interact with multiple targets and to create accessibility of 

sites for post-translational modification.
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IDPs can bind with high specificity but modest affinity6,7, an attribute that enables 

spontaneous dissociation or displacement after signaling is complete.6,7,17–19 This is 

supported by the fact that when comparing IDPs to folded proteins, their average affinity is 

indeed lower than for folded proteins20, and while the distribution of KD shows considerable 

overlap between IDPs and folded proteins20, the definition of high specificity needs to be put 

in perspective. In particular, in order for a folded protein to obtain the degree of specificity 

given by a disordered sequence, the latter which can wrap around a target and provide 

extremely large contact area, in a fully-folded protein the degree of specificity would have to 

be even larger. The dynamics within a complex with multiple exchanging interacting 

element that can also facilitate displacement, particularly for cases with higher affinity 

interactions. One such example is the low nM affinity complex of the eukaryotic translation 

initiation factor 4E and the disordered 4E-binding protein 2 (4E-BP2).21 This complex 

involves two adjacent elements of 4E-BP2, a canonical 4E-binding helical motif and a less 

regular C-terminal region, that appear to dynamically exchange on the millisecond-

microsecond timescale, facilitating phosphorylation at the interface required to break the 

complex22 and enable translation to proceed. Another functionally important dynamic 

complex involves the disordered Sic1 cyclin-dependent kinase inhibitor and the Cdc4 

subunit of an SCF ubiquitin ligase. Phosphorylation of ~6 or more of the 9 sites on Sic1 

enables low micromolar affinity binding. Dynamic exchange of each site on and off of Cdc4 

facilitates ultrasensitive binding leading to controlled degradation and a sharp cell-cycle 

switch, as well as efficient multi-site ubiquitination.23–25 A further illustration of the 

dynamic complexes that IDPs can form is found with the disordered regulatory (R) region of 

the cystic fibrosis transmembrane conductance regulator (CFTR), that acts as an interaction 

hub with both intramolecular and intermolecular partners to integrate input for controlling 

CFTR channel activity.26,27 One of these partners, 14-3-3β, involved in CFTR processing, 

has two binding sites within its dimer into which 9 phosphorylated segments of the CFTR R 

region dynamically exchange.28 Thus, structural characterization of IDPs/IDRs in both free 

and bound forms, with a range of dynamics and disorder, is paramount to understanding 

their biology, and expansion of the structure-function paradigm to a structural ensemble is a 

necessary consideration for this class of protein.

Structures of biomolecules have driven functional insight into molecular biology and 

biochemistry ever since Watson and Crick advanced the structural model of DNA, and 

computational models are integral to rendering structural and dynamical information 

relevant to structure and function. The idea of ensemble structure modeling is, of course, 

also relevant for folded proteins and their unfolded states, exemplified by studies starting 25 

years ago by Kuriyan et al.29 and continued more recently by the groups of Vendruscolo and 

Dobson30,31 and De Groot and Grubmuller 32. Starting with the seminal work of Nilges and 

co-workers33 which introduced Bayesian inference to derive a probability distribution for the 

folded structure using NMR, other research groups have made important theoretical 

contributions to the problem of ensemble structure determination using probabilistic 

frameworks.34–39 The quantitative challenge in understanding IDPs is how to build models 

of even more diverse structural ensembles that allow researchers to gain insight into their 

nature, to form hypotheses about their functional roles and to target them for small drug 

therapeutics. For folded proteins, the first structures determined by X-ray40, NMR41 and 
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cryoEM42 helped propel their continued development into robust techniques for providing a 

concrete, predictive and conceptually straightforward model for the structure-function 

relationship. For example, scientists at protein crystallography beamlines have defined an 

increasingly automated workflow of tasks needed to solve the 3D structures of folded 

globular and membrane proteins and complexes: determining crystallization conditions; X-

ray data collection from protein crystals; model building, refinement, and validation.43,44 

Computational methods have also advanced to become critical partners to experiment in 

providing further insight through study of protein dynamics, folding kinetics, lead 

optimization in drug design, and the transition state energetics for enzymatic mechanisms.

However, IDPs are not amenable to static structural determination methods such as X-ray 

and electron crystallography and microscopy40,42,45,46, necessitating an adjustment in the 

core methodology of protein structure determination for the so-called “dark proteome” that 

can capture their dynamics and disorder. Nuclear magnetic resonance (NMR) and Small 

Angle X-ray Scattering (SAXS) are the experimental tools of choice for characterizing the 

solution structure and dynamics of IDPs in an aqueous environment23,46,47. Even so, since 

IDPs typically interconvert between conformations on the ~ns-ms timescale, most solution 

based experimental observables are highly averaged and thus obscure the characterization of 

the conformational sub-states of an IDP that are tied to biological function. Structural 

descriptions of IDPs/IDRs are highly underdetermined, that is, their number of degrees of 

freedom will far exceed the number of experimental restraints. Since experiments alone will 

likely be unable to provide a detailed structural ensemble, it is important to build the 

connection between the averaged experimental observables over the IDP structural ensemble 

to the conformational sub-populations within the ensemble6,48–54 using state-of-the-art 

computational methods and models31,55.

In analogy to crystallographic beamlines and their role in streamlining protein 

crystallography, we propose that the IDP community could develop a “computational 

beamline” to build up the requisite experimental and computational tools to model structural 

ensembles for a broad class of IDPs and IDRs and their complexes. The computational 

beamline would serve in several roles including as a repository for information from the best 

experimental techniques such as NMR and SAXS, to examine whether other techniques 

such as circular dichroism (CD), electron paramagnetic resonance (EPR) and double 

electron-electron resonance (DEER), fluorescence resonance energy transfer (FRET), and 

mass spectrometry can add valuable information, and to combine relevant experimental data 

with the best theoretical tools such as de novo molecular dynamics54–58, Markov State 

models59,60, Monte Carlo methods to sample side chain ensembles61, Bayesian probabilistic 

analysis10,34,62, and quantum mechanical methods to predict NMR observables63. In this 

Perspective we examine the current state of experimental approaches and computational 

methods applied to the IDP problem, what future directions can be usefully advanced within 

each area, and finally, how the two approaches can be combined into a powerful new 

resource that would culminate in an “analysis end-station” that could develop and apply new 

correlative methods to yield quantitative insight into key structural aspects that define the 

free and complexed IDPs to their functionally relevant states.
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EXPERIMENTAL METHODS AND FUTURE INNOVATIONS

The current experimental solution methods for characterizing protein intrinsic disorder 

include infrared spectroscopy (IR), ultraviolet (UV) spectroscopy, circular dichroism (CD) 

spectroscopy, single molecule fluorescence spectroscopy, mass spectroscopy (MS), CD, 

Wide Angle X-ray scattering (WAXS), and the primary techniques of NMR and SAXS7,50. 

CD and IR spectroscopy report on the amount of secondary structure and hydrodynamic 

techniques such as SAXS, gel filtration, and dynamic light scattering report on the radius of 

gyration or hydrodynamic radius. Lack of a cooperative folding transition and proteolytic 

sensitivity are also attributes of IDPs and some of their complexes that are useful in forming 

a complete picture of a certain level of disorder.

NMR observables that can be used to restrain the IDP structural ensemble include chemical 

shifts of backbone and side chain nuclei, which aid in structural assignments and probe 

conformational information through their surrounding environment, spin-spin couplings (J-

couplings) which independently report on dihedral angles, and residual dipolar couplings 

(RDCs) which have been used to describe the relative orientation of spatially separated 

regions of a disordered protein64–70. These types of measurements are highly useful in 

describing local and/or short-range interactions of the bound and free IDP state, while global 

descriptors of order/disorder are usefully defined through SAXS or SANS experiments for 

categorization of a free IDP into collapsed semi-ordered ensembles, collapsed disordered 

ensembles, or extended disordered ensembles1,2,4,50, based on the distribution of heavy atom 

distances. Additional NMR and ESR experiments such as through-space dipole-dipole 

interactions that give rise to the Nuclear Overhauser Effect (NOE), and paramagnetic 

relaxation enhancements (PRE) from an attached spin label71, as well as the more recent 

EPR72 and DEER73 experiments, are in principle information-rich since they report on both 

local and non-local tertiary structure contacts that would be valuable in restraining the IDP 

ensemble.

The joint application of SAXS and NMR to study the structural ensemble of IDPs has been 

pioneered based on a number of developments in North America and Europe. The SAXS 

program Ensemble Optimization Method (EOM) by Bernado, Svergun, Blackledge and 

collaborators was designed to work with NMR observables for IDPs74–76, and ENSEMBLE 

from the Forman-Kay group works with multiple different types of data including NMR and 

SAXS for IDPs77,78. The SIBYLS group in the U.S. has developed SAXS analysis for the 

characterization of large IDRs.79–81, including the analysis programs BilboMD and MES82, 

which have provided novel and disease relevant insights into IDRs. Data deposited into the 

SIBYLS based SAXS data repository83 bioisis.net was mined for the development of 

quantitative measures of flexibility84 and the extraction of mass81 even when flexibility is 

present.

However in all cases we are still faced with new challenges in applying these solution-based 

techniques to IDPs. For example, the data for optimal characterization of IDPs lie at the 

extremes of typical SAXS data for folded proteins since for their molecular weight, IDPs 

can be extremely extended, thereby requiring very low-Q data from SAXS for the 

characterization of maximum dimensions. For example while typical SAXS data collection 
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standards occur in the Q range of 0.01 to 0.32Å−1 with exposure times of 1 second, for IDPs 

SAXS data is taken down to a low Q value of 0.005 Å−1 and with exposure times rising to 

tens of seconds. IDPs can also benefit from WAXS since localized structural features 

generally occur over short length scalesin the high Q region.

For NMR the generally poor chemical shift dispersion (particularly in the 1H dimension) can 

be mitigated with optimized pulse sequences for IDPs85. The pronounced motional 

averaging of NOEs has limited the use of NOEs, and yet the information about intermediate 

range NOEs may be particularly important in defining conformational ensembles. For 

example, NOE data collected for the Aβ40 and Aβ42 peptides contained ~1100 and ~700 

crosspeaks, respectively, but only ~20% of these can be uniquely determined from 

experimental information alone, due to chemical shift ambiguity, and most of these are due 

to short-range intraresidue, sequential, and i to i+2 contacts57. With the addition of 13C/15N 

labeling for resolution in 3D or 4D experiments it becomes possible to assign many more 

NOE cross-peaks, adding new experimental constraints for ensemble generation; for 

example particular combinations of hydrophobic amino acids labeled with 13C for the 

unfolded state N-terminal SH3 domain of Drkproved to be valuable in these studies86–88.

Further progress can be made with techniques like PRE which has been valuable in detecting 

transient interactions, particularly intermolecular interactions89. The power of this approach 

comes from the fact that close proximity to an unpaired electron (on a metal or nitroxide 

group covalently bound to the protein) causes a large increase in relaxation rate that is 

dependent on the inverse sixth power of the distance from the spin label. By labeling one 

binding partner with the relaxation agent, and the other with isotopes such as 15N for 

selective NMR detection, characterization of even transient complexes is possible.90 This 

approach can also be applied to investigate short-lived intramolecular contacts in IDPs, since 

the transient folding leads to proximity of the electron and nuclei, and is again observed 

through changes in relaxation. But there are some caveats to this approach that requires 

careful calibration when applied to IDPs. First, because of the covalent attachment of the 

relaxation agent it can never get very far from the region of the peptide where it is attached, 

so there is always locally enhanced relaxation, although more interesting are the sites of 

enhanced relaxation that are far, in the sense of covalent structure, from the attachment site. 

The relaxation agents are invariably larger than an amino acid sidechain, and interactions of 

the agent with other amino acids may affect the transient folding of the IDP, requiring 

additional controls to assess whether this occurs using chemical shifts and NOE spectra of 

the modified peptide, or even better a diamagnetic version using a reduced spin label, or 

diamagnetic metal substituting for the paramagnetic one in a chelator, and comparing with 

the unmodified IDP. Nonetheless when carefully calibrated, a number of high quality PRE 

experiments have been successfully carried out on IDPs71,91, and thus these experimental 

methods are particularly promising – a conclusion which has been nicely reviewed 

elsewhere92.

DEER gives the distance distribution between two nitroxides93 or metal (Gd+3)94 labeled 

sites, complementing PRE data where it can be difficult to unambiguously separate spatial 

and temporal components of the distance distribution function. However, DEER 

measurements have challenges when applied to IDPs. For DEER measurements the electron 
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relaxation rates must be reduced by rapid freezing to form a glass at liquid N2 temperatures, 

and a concern is whether freezing as well as the addition of the two labels, which may also 

involve mutations to create the labeling sites, perturbs the distribution of conformers present 

in the unlabeled IDP in solution. A second challenge in analysis of DEER data on IDPs is 

extraction of distance from the dipolar echo modulation pattern, although existing analysis 

tools are available such as the DeerAnalysis2013 software95. Nevertheless, IDPs inherently 

will give rise to a broad distance distribution for the pairwise electron-electron interactions, 

so the number of parameters to be extracted from the data is inherently larger than for folded 

proteins, where in favorable cases a single, narrow distance distribution applies. A priori, it 

remains unclear how robust such an analysis will be when taking into account the limited 

signal-to-noise, and possible systematic sources of error resulting from finite pulse widths 

and orientational selection at high magnetic fields. Therefore, substantial experimental work 

is needed to fully explore the potential of DEER in the analysis of IDPs. We note the 

significant analogy of EPR DEER to optical FRET experiments using attached fluorescent 

dyes96–98 rather than nitroxides or metals to IDPs; thus FRET can also be useful for 

restraining the IDP ensemblesif the similar challenges described for the DE ER 

measurements can be overcome.

The integration of multiple solution-based experimental techniques on IDPs requires 

optimization from both a data acquisition and analysis perspective. For example, while each 

individual SAXS measurement does not contain as much information as a high resolution 

NMR measurement, NMR and EPR are “low” throughput techniques whereas SAXS and 

dynamic light scattering (DLS) data can be collected and analyzed much more quickly. To 

illustrate, ideal IDP concentrations for NMR can be rapidly identified through the analysis of 

high throughput solution results generated by SAXS for oligomerization and DLS to 

determine the maximum concentrations allowed before signals of aggregation are apparent. 

Part of the growing resurgence of SAXS as a technique is that many measurements allow for 

relative comparisons on how structure changes with sequence and conditions – typical of 

many IDP projects. These ideas have been advanced by Hura and co-workers through 

formulation of a general heatmap based method79 for comprehensively viewing several 

SAXS data sets and application to the human DNA mismatch repair protein MutSβ which 

contains 300 flexible amino-acids (Figure 1).

Although there have been many NMR studies on IDPs, and some have included other data 

such as SAXS, there have not been extensive and systematic evaluations of the value of 

different types and combinations of data in defining the IDP conformational ensemble. 

However a few approaches are starting to emerge that deal with this important issue. One is 

a study99 that performed ENSEMBLE calculations for three IDPs based on a variety of 

experimental inputs, including chemical shifts, RDCs, PREs, and SAXS. Comparison of 

ensembles calculated with subsets of the experimental data missing defined types were used 

to quantify which measurements most affected secondary structure, tertiary contacts and 

molecular size distribution, and hence are high priorities for data acquisition to restrain IDP 

structural ensembles. It was found that secondary structure was most strongly restrained 

using 13Cα chemical shifts and to some degree using 3JHNHα couplings, whereas the 

accuracy of calculated tertiary structure is dependent on the number of PRE distance 

restraints used.99 RDCs were found to provide a small but significant probe of short- to 
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medium-range tertiary structure whereas as SAXS was important for restraining the size 

distribution.99

At the same time, if the chemical shifts are not highly dispersed along the sequence of a 

particular IDP, such as is found for the amyloid-β peptides57, then the chemical shifts have 

more limited value as a experimental refinement input or as a validation measure.55 In 

addition, the optimization phase of methods such as ENSEMBLE77,78 and ASTEROIDS47 

rely on heuristic back-calculation methods such as SHIFTX2100 for chemical shifts, 

PALES101 for RDCs, and mere structural approximations to NMR observables such as 

NOEs, even though the dynamical origins of NOE intensities can be better used for 

determining the IDP ensemble55. Alternative approaches based on Bayesian probabilistic 

modeling can offer a more solid foundation for examining the usefulness of experimental 

data types10,62 as described in the n ext section.

COMPUTATIONAL METHODS AND FUTURE INNOVATIONS

An important area of IDP research is to build robust all-atom models of IDP ensembles that 

can successfully interface with experimental data to provide predictions of the structural 

ensembles of IDP monomers and their complexes. One approach is to identify sets of 

conformers that in aggregate agree with experimental data, to derive the IDP structural 

ensemble. Such “experimental data knowledge” methods are the foundation of NMR 

structure determination of folded proteins using experimentally derived constraints based on 

NOE data, RDCs, J-couplings and chemical shifts, embodied in software packages such as 

CANDID102, CYANA103, X-Plor-NIH104,105, and TALOS106. Most often, experimental data 

knowledge approaches for IDPs start with an extensive set of statistical coil conformations 

derived from software platforms such as Flexible-Meccano107 and TraDES108, which can 

generate both coil- an/or various structure-biased conformers. This basis set of structures is 

then culled for the subset of conformations and their populations that are in best agreement 

with experimental data to create the IDP ensemble. Examples are the energy-minima 

mapping and weighting method109,110, ENSEMBLE77,78, and ASTEROIDS47. 

ASTEROIDS uses a genetic search algorithm to select structures that together best match 

experimental chemical shifts, PREs, or RDCs47,68 while the ENSEMBLE method77,78,87,88 

selects structures from the starting pool using a Monte Carlo algorithm with an energy-

weighting scheme for each type of experimental input. These programs contain modules for 

several different experimental data types. For example, ENSEMBLE is able to accommodate 

data from a very wide range of sources including chemical shifts, RDCs, PREs, J-couplings, 

NOEs and relaxation rate-derived contact densities, as well as hydrodynamic radii (Rh) and 

SAXS77 and hydrodynamic radii (Rh) from NMR, size exclusion chromatograph or dynamic 

light scattering.

In addition to the ENSEMBLE and ASTEROIDS approaches that use experimental data for 

conformational selection, a number of researchers have advanced the combination of 

applying knowledge from NMR to restrain the IDP ensemble generated during an MD 

trajectory30,111–114. For example, MD simulations have been combined with RDC restraint 

data for folded proteins, which then allows for the analysis of other features of the ensemble, 

such as conformational fluctuations. NMR restrained MD has also been applied to IDPs 
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such as α–synuclein by incorporating distance restraints derived from PRE experiments to 

guide the MD so that the radius of gyration distribution of the ensembleis in good agreement 

with the experimental value 111.

While conformer creation and selection methods such as TraDES108, ENSEMBLE77,78, 

Flexible-Meccano107 and ASTEROIDS47 have proven very useful to the IDP community, 

qualitative changes are required in the theoretical approach to IDP structure solvers. First, 

IDP ensemble construction has typically relied on low-complexity statistical coil 

descriptions that are not Boltzmann weighted and do not contain any important dynamical 

information55 that can be compared to NMR observables such as relaxation rates and NOEs. 

Second, our ability to back-calculate NMR or SAXS data from structures is actually very 

poor, thus losing an important discriminator for selecting an IDP structural ensemble that is 

most consistent with the abundant availability of chemical shift and scalar coupling 

experimental data.55,62 Third, characterizing both the free and bound IDP ensembles is 

important to understanding their biology, and the computational techniques must be able to 

accurately describe the range of environments from solvent-exposed disordered monomer 

ensembles through to protein-protein complexes where the IDP folds or remains partially or 

fully disordered. Thus we require higher accuracy in IDP ensemble generation using robust 

force fields and advanced sampling methods, including appropriate accounting of 

timescales, and increased sensitivity of back-calculations with high quality NMR spectral 

simulation tools. Finally, due to the under-determined nature of the IDP problem, we need to 

utilize statistical approaches, such as Bayesian analysis115,116, to rank alternate IDP 

conformational ensembles to determine the most probable one based on agreement with the 

experimental data.

To illustrate this confluence of issues, Brookes and Head-Gordon developed a Bayesian 

approach to determine the most probable IDP structural ensemble model that takes full 

advantage of experimental data, their known errors and variances, and the quality of the 

theoretical back-calculation from structure to experimental observables.62 The experimental 

inferential structure determination (EISD) method is formulated to determine the most 

probable structure (for folded proteins) or structural ensemble (for IDPs) by decomposing 

the posterior probability distribution p(X, ξ|D, I) using Bayes’ Theorem:

(1)

where P(D|X, ξ, I) is the conditional probability that relates , a structural 

ensemble containing N structures, to a set of M experimental data observations . 

The parameters of the Bayesian model are the set of so-called “nuisance” parameters, ξ, 

which are uncertain values that cannot be determined directly from the data, such as the 

uncertainties in the experimental measurements or back-calculation equations. I represents 

any prior information about the system, such as experimental information embodied in p(ξ|

I), or structural information via p(X|I) in which the latter is typically modeled as either a 

uniform (uninformative) prior or using Boltzmann weighting that requires a robust energy 

function.
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One of the primary advances of the EISD model is that we use all of the available 

information about the separate distributions of different experimental data types. We utilize 

the variable quality with which we can back-calculate these observables, o, from structure, 

 by optimizing within the experimental and back -calculation “nuisance” 

parameters that are treated as random variables with known Gaussian distributions, p(ξ(exp)i) 

and p(ξ(back)i), respectively. More specifically, the posterior probability can be modeled as 

follows

(2)

where

(3)

otherwise and < > denotes an average over the candidate IDP ensemble of structures used to 

back-calculate experimental observables, since all that is known for a given NMR 

measurement on an IDP is that it corresponds to an average of that measurement over every 

structure in the ensemble.

We applied the EISD Bayesian method to evaluate the relative probabilities of 7 qualitatively 

different structural ensembles for the Aβ42 IDP monomer: one random coil ensemble 

generated from TraDES108, one ensemble generated from a replica exchange simulation (de 
novo MD)55, one statistical coil ensemble that incorporates bioinformatics knowledge about 

independent local secondary structure at each residue (Pred-SS)55, and four ensembles 

generated by adding experimental restraints from NMR (RDCs, NOEs, scalar couplings, and 

chemical shifts) operating on the de novo MD and Pred-SS ensembles using ENSEMBLE 

(MD-ENS1, MD-ENS2, MD-ENS4, and Pred-SS-ENS)77,88,99. We used only two NMR 

data types: chemical shifts and J-couplings55,57,117,118, and an uninformative uniform 

structural prior was used to generate the results shown in Figure 2.

Figure 2 indicates that the rankings of the Aβ structural ensembles primarily depend on our 

ability to quantitatively back-calculate from structure to observable, in this case using 

SHIFTX2100 for chemical shifts and the Karplus equation for 3-bond couplings119

(4)

where ϕ represents a dihedral angle of interest, and A, B, C are typically parameterized on 

folded proteins120–122. A comparison of Figures 2a and 2b show that using chemical shifts 

and J-couplings on their own result in a large difference in the structural ensemble rank 
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order. When they are used together in Eq. (2), the relative rankings among ensembles are 

qualitatively unchanged from using J-couplings alone (Figure 2c). However, whether using 

J-couplings alone or together with chemical shifts in the Bayesian model, it still is not 

possible to differentiate between the extended RC ensemble, equivalent to a protein under 

high denaturant conditions, and the collapsed and structured MD ensembles that would be 

representative of low denaturant conditions.

While adding additional data types such as SAXS or PREs to the EISD model would 

certainly help to overcome this problem, the abundant availability of chemical shift and 

scalar coupling data would be better used if back-calculations were more robust. For 

example, although improvements realized by SHIFTX2100 over SHIFTX123 were significant 

for folded proteins with the introduction of structural homology information, the level of 

difference between the SHIFTX2 and SHIFTX calculators is negligible as we have shown 

for the Aβ42 example62, since structural homology plays no role for IDPs. Even for scalar 

couplings, Karplus anticipated that further refinements of Eq. (4) were necessary for 

quantitative prediction, such as the inclusion of electron orbital and dipolar electron spin 

terms, a more careful choice of underlying electronic structure methods, consideration of 

chemical substitutions when applied to other molecules, the number of bonds separating 

spins, and dependence on additional geometric features such as bond angles or other 

dihedral angles119. Although some studies have adopted some of these suggestions, there is 

still a primary focus on use of the original Karplus equation to predict J-couplings of folded 

and flexible peptides and proteins, where the constants A, B, and C must capture the large 

variations in dihedral fluctuations across many peptide and protein data sets122,124.

Accordingly, quantitative back-calculations of the NMR and SAXS observables are clearly a 

necessary objective to make better use of the experimental data in order to generate tighter 

spatial restraints for discriminating among alternative structural ensemble models. To be 

more specific, computational predictions of chemical shifts in proteins, such as ShiftX2100 

and Sparta125, rely on knowledge-based algorithms that employ sequence and/or structural 

information together with experimental NMR data for folded proteins. Their residual error is 

typically only about 3-fold smaller than the typical range of such shifts, and orders of 

magnitude larger than the experimental uncertainty in the measured chemical shift values. 

As such their applicability to partially or fully extended IDP conformations is clearly 

limited, and improvements are highly desirable and may well be absolutely necessary. As 

Case recently commented126: “Although quantum calculations of chemical shifts in proteins 

have not yet reached the level of accuracy obtained by empirical models, there are good 

reasons to push forward. Quantum models allow study of unusual conformations, including 

fibrils (and) partially disordered systems”.

Therefore a future challenge is to deploy (and further develop) high accuracy QM-based 

methods for scalar couplings, and environment-dependent 13C, 1H, and 15N NMR chemical 

shifts, accounting for more than intervening dihedral angles and backbone ϕ and ψ torsion 

angles, respectively, at tractable computational cost for characterizing the structural diversity 

of IDP ensembles. However, there are three distinct challenges to improving chemical shift 

and scalar coupling back-calculation accuracy. At the basic level, common-place density 

functional theory (DFT) suffers from inadequate accuracy127 for chemical shifts128 because 
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of fundamental limitations: rigororously, the functional must depend not just upon the 

density, but also on the paramagnetic current density129, or the field itself130, which is an 

unsolved challenge at present. Another way to push forwards is via wave function 

methods131, which are far superior to present-day DFT for chemical shift calculations (~10X 

higher accuracy132) while advances in QM treatment of spin-spin couplings63 would need to 

occur simultaneously.

To illustrate we have compared the chemical shift prediction capabilities of DFT (using the 

B3LYP functional) to that possible with second order Møller-Plesset perturbation theory 

(MP2) when benchmarked against a highly accurate CCSD(T) calculation (Table 1). Using a 

small blocked dipeptide whose conformational space is spanned by its backbone ϕ and ψ 
dihedral angles, the chemical shifts are computed for every atom of four diverse conformers 

(β sheet, extended, α helix, γ turn) using all three levels of theory with the cc-pVTZ basis 

set. The RMSD in the chemical shifts is calculated relative to small molecule primary 

references (CH4, NH3, H2O, and H2 for C, N, O, and H, respectively) and relative to a 

secondary reference which is the planar conformer.

Focusing on 13C NMR, the results in Table 1 show that MP2 yields RMS errors that are over 

7 times smaller than B3LYP. This gap is preserved when using the secondary reference, 

showing that MP2 yields greater fidelity to the reference for the biologically relevant shifts 

in each atom relative to its value in the reference planar environment. Therefore, given a 

bonding motif, the MP2 method does very well (less than 0.1 ppm relative RMSD for 13C) 

at predicting how the chemical shift will change due to changes in bond lengths, angles, and 

dihedral angles. Given databases of environment-dependent calculated NMR chemical shifts 

of this quality or better, there is clearly scope for building more accurate software tools for 

NMR chemical shift prediction from structure in the future. This will require incorporation 

of other environmental effects, including hydrogen bonding.

These theoretical and methodological advances all operate on a three-dimensional 

conformation, and thus they will be dependent on the generation of representative and 

complete IDP structural ensembles. While methods such as Flexible-Meccano107 and 

TraDES108 are valuable for generation of random coil conformers, molecular dynamics 

simulations are capable of generating a true Boltzmann weighted ensemble if the underlying 

energy surface is accurate and if sampling on this surface is complete. However, presently 

available energy functions that work well for folded proteins are imperfect when applied to 

IDPs. Because there are many degrees of freedom to sample over ns-ms timescales, MD 

simulations rely on computationally cheap fixed-charge force fields that allow for adequate 

sampling of the conformational space of an IDP. However, given the range of IDP 

environments including extreme solvent exposure in the monomer state through to buried 

residue interactions at the IDP-protein complex interface, a number of new protein and water 

fixed charge force fields offer better balance for the energetics of relative conformational 

energies and peptide-water interactions.133–138 Alternatively, polarizable force field offer the 

best future hope for more accuracy139,140 since they have the necessary physics to respond 

to a range of IDP environments experienced by the free as well as bound states of an IDP. 

However, polarizable models come with an increase in computational expense that in turn 

limits needed sampling. Nonetheless, recent efforts to reduce the computational expense of 
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polarizable models are starting to take hold141, and thus will be an important future direction 

in the simulation of robust IDP structural ensembles.

There is always tension between potential energy surface accuracy and adequate sampling of 

conformational space of an IDP due to its heterogeneous nature, as both increase 

computational cost. This requires that we develop sampling methods that converge faster to 

the Boltzmann weighted ensemble for an IDP. Generalized Ensemble (GE) Methods that use 

temperature, ionic strength, dielectric constant, and protonation states as the scaling 

variable142–153 will be important for IDPs. Markov State Model (MSM) approaches 

combined with adaptive sampling (AS) such as the MinCounts154 algorithm can be tailored 

to sample the heterogeneous states of IDPs, including those lacking preferential structure 

and those with partial folding59,154,155.

The MinCounts method is a means for pushing sampling to slow, orthogonal degrees of 

freedom – even those that haven’t been discovered yet. Mincounts looks at the counts of 

transitions seen in MD simulations that started in state i and ended up in state j after some 

lag time Δt, and runs more simulations at states with few counts. This has been shown to be 

the most effective scheme for adaptive sampling as shown in Figure 3.154, and has been 

applied to numerous systems, including simple models (where sampling can be tested 

exactly as a “gold standard” is known) as well as in MD simulations of protein folding, 

protein unfolded states, and protein conformational change. Using these sampling methods 

and the Folding@home distributed computing project, the Pande lab has simulated the 

conformational change of kinases156 and GPCRs156 on the submillisecond timescale.60

In addition to backbone degrees of freedom, the generation of side chain ensembles for 

folding upon binding intermediates and IDP complexes will be necessary. However 

theoretical approaches for sampling the low energy alternative side chain arrangements of a 

protein is a difficult problem, and while molecular dynamics (MD) simulations give a good 

description of side chain conformational change on the nanosecond to microsecond level157, 

the experimental estimates indicate that the timescales are much longer. Therefore to 

circumvent the sampling issues imposed by MD, many groups have resorted to advanced 

Monte Carlo (MC) schemes158–160 which are designed to more exhaustively sample the 

Boltzmann weighted populations of side chain repackings, especially in the interior of the 

protein that may undergo low-probability rotamer transitions61,159 and and have been shown 

to extend into the microsecond to millisecond time scale.161

We have recently introduced a new Monte Carlo Side Chain Ensemble (MC-SCE)61 

approach for calculating side chain ensembles, entropy, and mutual information that is more 

quantitative compared to past efforts, by using a better convergent Rosenbluth sampling 

scheme, an augmented Dunbrack library162,163, a robust physics-based energy function 

using an implicit solvent model, and side chain rotamer sampling on a ensemble of 

backbone structures using backrub sampling159. We have now used our MC-SCE algorithm 

to generate tens of thousands different side chain packings for hundreds of different protein 

backbones, including protein-protein complexes for 60 different protein systems. These 

include cryogenically cooled and room temperature X-ray crystallographic structures for 

CypA and H-Ras164,165 as well as NMR J-coupling data for CypA and Eglin-C, and DHFR 
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binary complexes of E:THF and E:FOL, in which we found overall excellent agreement 

across the full range of X-ray and NMR data 164,166,167. (see Figure 4). Although the 

MSM/AS and MC-SCE methods have been primarily validated and then used for prediction 

on folded proteins, their extension to IDPs is clearly the next frontier for generation of more 

complete structural ensembles.

CREATING A COMPUTATIONAL BEAMLINE FOR IDPS

The traditional structural biology approach of crystal structure visualization and analysis 

operations done on a single set of coordinates ultimately fails when applied to IDP 

ensembles. The goal of an IDP computational beamline is to better connect observed 

structural or dynamical motifs derived from the interplay of experiment and computation 

into functional relevance for free IDPs and their bound complexes. We envision a central 

resource that will integrate experimental and simulation data, simulation codes, and analysis 

tools across the IDP research community (Figure 5). The computational beamline will run 

workflows of software to create structural ensembles, store and index the variety of data 

types that help create, restrain, and/or validate ensembles, and collect analyses into an 

analysis end station that would formulate hypotheses about the relevance of structural 

ensembles to biological function.

To scale up the execution of software tools from a handful of manually managed runs to 

thousands of runs continuously executing on parallel computing resources, the 

computational beamline will use proven scientific workflow software. For example, The 

Materials Project has developed a high-throughput workflow software called FireWorks53 

that has run millions of materials science calculations on supercomputers at national 

laboratories and cloud resources such as in the NSF XSEDE project. Scientific workflow 

software like FireWorks automatically manages multi-step, branching, and iterative 

calculations, and can continuously launch and monitor new calculations from a queue 

spanning months of time and many millions of compute hours.

While more sophistication in workflow software will dramatically increase the capability to 

perform experiments and gather new data, this scale of computation will also introduce new 

challenges: re-creating and debugging runs is no longer within the capacity of a single 

person’s memory. In order to know exactly which code produced which result, there must be 

a disciplined curation of all the relevant software tools used and developed in the IDP 

community, including methodology such as ENSEMBLE, QM back-calculations, Bayesian 

analysis, and advanced methods to derive the detailed structural ensembles of IDPs and their 

complexes using new force fields and backbone and side chain sampling methods. We 

envision that workflow software like FireWorks could be used to take an IDP of interest and 

combine multiple methodologies into a single workflow, then run that workflow in parallel 

and for a large number of timesteps on a cluster or supercomputer, automatically collecting 

all the results generated during the run.

The computational beamline workflows will enable automated and systematic collection of 

the results of the calculations into a central data repository, and a second type of “data-

intensive” workflow will perform the same function to continuously collect and normalize 
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the available experimental data. Consequently, the computational beamline data repository 

will integrate all available experimental data, all spectral simulations, and finally calculated 

ensemble data into an integrated data resource. The data repository would develop methods 

to ingest and organize a wide variety of experimental data (i.e. SAXS, NMR, FRET, DEER-

EPR, etc) and conformer ensembles, with data categorized and coded according to a 

common vocabulary. Use of industry-standard database technologies will provide powerful 

and flexible search capabilities. Data sharing to external databases such as BioIsis 

(bioisis.net)83, pE-DB168, and BMRB (www.bmrb.wisc.edu)169 could be performed from 

this repository and made accessible to the IDP community.

Just as in a cyclotron or synchrotron, the scientific impact of a computational beamline aso 

depends on the capabilities of the “analysis end-station”, where IDP researchers can derive 

knowledge from the integrated experimental and simulation data with new correlative 

methods that would enable collaborative and reproducible analyses via flexible interfaces 

and web-enabled analysis environments, such as the Jupyter170 notebook. The end-station 

could provide a set of transformations to extract selected result sets into the formats and 

parameters that are needed to feed into other existing or new analysis tools. The analysis 

end-station could first build upon existing analysis tools such as DSSP171, k-means 

clustering or Principal Components Analysis, and combine them with new analysis protocols 

such as hydrophobic and electrostatic clustering, identification of regions of compaction or 

extension, probabilistic contact maps to define short and long-range interactions.

We can also envision even more novel analysis tools for IDPs based on kinetic clustering 

from Markov State Models (MSMs)59,60,154. Kinetic clustering is a natural outcome of 

MSMs, and would bring to the IDP community a much more physical, natural, and 

biologically relevant means to conceptualize IDPs, by clustering not due to geometric 

similarity (which may or may not be relevant for function), but due to kinetic similarity, i.e. 

grouping structures together in a cluster if they rapidly interconvert kinetically, which is a 

natural and very physical definition for a “state”, versus structures that interconvert more 

slowly and thus can be classified as distinct sub-populations. Finally, data mining and 

machine learning methods will play a particularly important role in IDPs, especially in 

determining and understanding key structural or dynamical motifs that are difficult to 

identify just by visual inspection, including repeated transient structure and more 

sophisticated correlative motions.

SUMMARY

One of the central primary objectives of IDP research is to provide atomic level structural 

and dynamical information on the free IDP conformational ensembles and their relationships 

to the ensembles of IDP complexes exhibiting a broad range of order to disorder that is 

important for understanding their function. Given the fact that IDPs/IDRs are 

underdetermined systems, and thus a unique structural ensemble cannot be defined by 

experiment alone, three important areas for future progress have been identified. First is 

large-scale experimental data acquisition, including defining the most information-rich 

experimental techniques to provide for discriminatory information between competing 

ensemble definitions for IDPs. Second is improving the accuracy of IDP ensemble model 
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generation (free and bound forms) with (i) advanced molecular simulation approaches, (ii) 

new QM/MM spectral simulation tools that enhance the discriminatory power of the 

solution-based experimental techniques, and (iii) probabilistic models such as recent 

Bayesian formulations to provide measures of uncertainty quantification in the experimental 

and simulation data generated. Third is centralizing the experimental data and computational 

tasks into an automated workflow, including development of a comprehensive set of analysis 

tools that can connect observed structural or dynamical motifs with functional relevance to 

the biological questions being addressed in a wide range of IDP projects. The need for 

collaborative teamwork to create this infrastructure is obvious, as are the ultimate benefits to 

the IDP and general protein structural communities.
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Figure 1. Heatmap comparing pairs of profiles from multiple experimental techniques including 
SAXS, DLS and CD
Each cell is a pair wise comparison between a condition or construct. Similarity between 

SAXS curves is measured by the metric Vr, and displayed as a gradient color where red 

indicates similarity (low Vr score) and white indicates dissimilarity. The black square 

diagonals are self-comparisons.
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Figure 2. 
log p(X, ξ|D, I) evaluated for X equal to the following qualitatively different ensembles for 

the Aβ42 monomer: random coil (RC), statistical secondary structure (Pred-SS), de novo 
MD, and ENSEMBLE optimized ensembles (MD-ENS1, MD-ENS2, MD-ENS4, and Pred-

SS-ENS) using (a) chemical shift data only, (b) J-coupling data only, and (c) J-coupling and 

chemical shift data together. Adapted with permission from [62], copyright 2016 American 

Chemical Society.
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Figure 3. Convergence time for Fs (capped 21 alanine) peptide transition matrix generated with 
various hybrid sampling schemes
Time is measured in the number of eigenvalue-based trajectories needed to converge to an 

absolute error of 2.00 after 1000 initial trajectories are run from a chosen sampling method. 

Absolute error is defined as the sum of absolute deviations in transition matrix elements. 

Convergence times for each method were, averaged over 10 simulations, 1) 3913 for pure 

eigenvalue-based sampling, 2) 2669 for connectivity-based hybrid sampling, 3) 1107 for 

even sampling hybrid sampling, and 4) 286 for min count-based hybrid sampling. Reprinted 

with permission from [154]; copyright 2011 American Chemical Society.
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Figure 4. J-coupling constants (a) 3JCγN and (b) 3JCγCO for the DHFR binary product complex 
E:THF and (c) 3JCγN and (d) 3JCγCO for the DHFR binary product complex E:FOL
The red symbols are the experimental data from 167. The blue symbols are calculated from 

the MC-SCE ensemble using backbones from molecular dynamics and the Karplus 

parameterization from 167. Reprinted with permission from [61]; copyright 2015 Elsevier.

Bhowmick et al. Page 25

J Am Chem Soc. Author manuscript; available in PMC 2016 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Conceptualization of a Computational Beamline for the IDP community.
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