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Abstract

Observational studies are increasingly being used to estimate the effect of treatments, interventions and

exposures on outcomes that can occur over time. Historically, the hazard ratio, which is a relative

measure of effect, has been reported. However, medical decision making is best informed when both

relative and absolute measures of effect are reported. When outcomes are time-to-event in nature, the

effect of treatment can also be quantified as the change in mean or median survival time due to treatment

and the absolute reduction in the probability of the occurrence of an event within a specified duration of

follow-up. We describe how three different propensity score methods, propensity score matching,

stratification on the propensity score and inverse probability of treatment weighting using the

propensity score, can be used to estimate absolute measures of treatment effect on survival

outcomes. These methods are all based on estimating marginal survival functions under treatment and

lack of treatment. We then conducted an extensive series of Monte Carlo simulations to compare the

relative performance of these methods for estimating the absolute effects of treatment on survival

outcomes. We found that stratification on the propensity score resulted in the greatest bias. Caliper

matching on the propensity score and a method based on earlier work by Cole and Hernán tended to

have the best performance for estimating absolute effects of treatment on survival outcomes. When the

prevalence of treatment was less extreme, then inverse probability of treatment weighting-based methods

tended to perform better than matching-based methods.
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1 Introduction

Health researchers are increasingly using observational studies to estimate the effects of treatments,
interventions and exposures on outcomes. In observational studies, due to the lack of random
treatment assignment, treated or exposed subjects frequently differ from untreated or unexposed
subjects. It is thus essential that statistical methods are used to remove or minimize the effects of
confounding due to differences in the distribution of observed or measured baseline covariates
between treatment groups when estimating the effects of treatments or exposures.

Propensity score methods are increasingly being used to reduce or minimize the confounding that
occurs frequently in observational studies of the effect of treatment on outcomes.1,2 The propensity
score is the probability of treatment assignment conditional on measured baseline covariates.3 There
are four ways of using the propensity score to reduce confounding: matching on the propensity
score, stratification on the propensity score, inverse probability of treatment weighting using the
propensity score and covariate adjustment using the propensity score.3–6

When outcomes are binary, the effect of treatment can be reported using relative measures of
effect (the odds ratio and the relative risk) and absolute measures of effect (the risk difference or the
absolute risk reduction), along with the number needed to treat (NNT) (the reciprocal of the
absolute risk reduction). Schechtman argued that both relative and absolute measures should
be reported,7 whereas Jaeschke et al. suggest that relative measures of effect provide
limited information.8 Cook and Sackett argue that for clinical decision making the NNT is
more meaningful than relative measures of effect.9 Finally, Sinclair and Bracken argue
that clinically important questions are best addressed using all four measures of effect.10 In the
face of these proposals, some medical journals require that the NNT be reported for any
randomized controlled trial with a dichotomous outcome.11 Substantial research has been
conducted on examining the performance of different propensity score methods when outcomes
are binary.3,12–15

In biomedical research, time-to-event outcomes occur frequently.16 When outcomes are time-
to-event in nature, both relative and absolute measures of effect can be reported. The hazard ratio
provides a relative measure of effect: the relative difference in the treatment-specific hazard rates
which mirror the event probabilities in an infinitesimal time interval [t, t þ �), given the condition
that an individual was event-free until time t. Absolute change in mean or median survival time is an
absolute measure of effect that can be used with time-to-event outcomes. Similarly, one can estimate
the absolute reduction in the probability of the occurrence of an event within a specified duration of
follow-up. This latter quantity allows one to estimate the NNT to avoid the occurrence of one
outcome within the specified duration of follow-up. Relative effect of treatment on survival
outcomes appear to be reported with much greater frequency than absolute measures of effect.
However, as stated in the previous paragraph, the consensus of clinical commentators suggests
that medical decision making is best informed by the reporting of both relative and absolute
measures of effect. Two recent papers have examined the performance of propensity score
methods for estimating hazard ratios.17,18 However, there is a paucity of research examining the
performance of different propensity score methods for estimating absolute effects of treatment on
survival outcomes.

Accordingly, the objective of this study was to examine the ability of different propensity score
methods to estimate absolute effects of treatment on survival outcomes. The article is structured as
follows: in Section 2, we describe different propensity score methods and how they can be used to
estimate absolute effects of treatment on survival outcomes. In Section 3, we describe the design of
an extensive series of Monte Carlo simulations to compare the performance of different propensity
score methods for estimating absolute effects of treatment on survival. In Section 4, we present the
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findings from our Monte Carlo simulations. Finally, in Section 5, we summarize our findings and
place them in the context of the existing literature.

2 Propensity score methods and estimating absolute effects
on survival outcomes

In this section, we briefly describe the different propensity score methods that were examined for
estimating absolute effects of treatment on survival outcomes. We use the following notation
throughout this section. Let Z be an indicator variable denoting treatment status (Z¼ 1 for
active treatment of interest vs. Z¼ 0 for the control treatment), while e denotes the estimated
propensity score. In the first three subsections, we describe how survival functions comparing
survival between treated and untreated subjects can be estimated that remove the effects of
confounding due to observed covariates. These survival functions are marginal survival
functions: they describe survival in a population of subjects in which all subjects are treated or
in which all subjects are untreated. In the fourth subsection, we describe how absolute effects of
treatment on survival can be estimated once these marginal survival functions have been
estimated.

2.1 Matching on the propensity score

Matching on the propensity score entails forming matched sets of treated and untreated subjects
who have a similar value of the propensity score.19 We used two different algorithms to form
matched pairs of treated and untreated subjects. First, we used greedy nearest neighbour
matching without replacement to match treated subjects to the untreated subject whose
propensity score was closest to that of the treated subject. Second, we used greedy nearest
neighbour caliper matching. We matched subjects on the logit of the propensity score,19 using
calipers of width equal to 0.2 of the standard deviation of the logit of the propensity score, as
this caliper width has been found to perform well in a wide variety of settings.20 We refer to
these two methods as nearest neighbour matching and caliper matching, respectively. Pair-
matching allows one to estimate the average treatment effect on the treated (ATT): the average
effect of treatment in those subjects who ultimately received the treatment.

Once a propensity score matched sample has been formed, one can estimate marginal survival
functions using the Kaplan–Meier estimator. Separate survival functions can be estimated in treated
and untreated subjects in the propensity score matched sample. The survival function estimated in
treated subjects represents the marginal survival function in the treated population had all subjects
been treated. The survival function estimated in untreated subjects represents the marginal survival
function in the treated population had all subjects been untreated.

2.2 Stratification on the propensity score

Stratification (or subclassification) on the propensity score stratifies the entire sample into mutually
exclusive subclasses based on the propensity score. A common approach is to define the subclasses
using specified quantiles of the propensity score. Using the quintiles of the estimated propensity
score to divide the sample into five, approximately equally sized, groups has been shown to eliminate
approximately 90% of the bias due to measured confounding variables when estimating a linear
treatment effect.3,4,21 We used stratification on the quintiles of the propensity score in this study
given its popularity in the applied literature.
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We used stratification on the propensity score to estimate marginal survival curves for each of
the two treatment groups as follows: first, in each of the propensity score strata, we estimated
Kaplan–Meier survival curves in treated and untreated subjects separately. Let S0j(t) and S1j(t)
denote the estimated survival curve in untreated and treated subjects, respectively, in the
jth stratum. Then, an estimate of the marginal survival curve in untreated subjects is
S0ðtÞ ¼

PK
j¼1 pjS0jðtÞ, where K denotes the number of strata, and pj denotes the stratum-

specific weights for pooling the stratum-specific marginal survival curves (such thatPK
j¼1 pj ¼ 1). When estimating the effect of treatment in the overall population (i.e. the average

treatment effect or the ATE), the strata would be weighted equally, and each pj¼ 1/K (since the
same proportion of subjects in the overall sample lie within each stratum). When estimating the
ATT, each stratum would be weighted proportionally to the number of treated subjects who lay
within that stratum. Essentially, one is pooling stratum-specific survival curves to obtain a
population-average survival curve. The marginal survival curve in treated subjects, S1(t), can be
estimated similarly.

2.3 Inverse probability of treatment weighting using the propensity score

The inverse probability of treatment weights (IPTWs) are defined as Z
e þ

1�Z
1�e .

22 Estimated
treatment effects are not confounded in the sample weighted using the IPTWs, if all
confounding baseline covariates are considered. Furthermore, in the weighted sample, the
distribution of baseline covariates in each treatment group will be the same as the
distribution of baseline covariates in the overall unweighted sample.23 Using these weights
allows one to estimate the ATE. Using weights equal to Zþ eð1�ZÞ

1�e allows one to estimate
the ATT.24 When using ATT weights, the distribution of baseline covariates in each
treatment group in the weighted sample will be the same as the distribution of baseline
covariates in treated subjects in the original, unweighted sample. We examined two different
methods with which IPTWs can be used to estimate survival functions, and therefore absolute
effects on survival outcomes.

2.3.1 Xie and Liu’s adjusted Kaplan–Meier estimator and weighted log-rank test

Xie and Liu proposed an adjusted Kaplan–Meier estimator of the survival function in treated and
untreated subjects that allows one to account for confounding by incorporating IPTWs.25

Furthermore, they used method of moment formulas to derive an adjusted log-rank test for use
with the weighted sample. Both the adjusted Kaplan–Meier estimate and the adjusted log-rank test
reduce to the conventional Kaplan–Meier estimate and the conventional log-rank test in the case
that the weights are all equal to one.

2.3.2 Cole and Hernán’s adjusted survival curves with inverse probability weights

Cole and Hernán described a method to estimate adjusted survival curves using inverse
probability weights.23 They proposed that a null Cox proportional hazards regression model
be fit separately in treated and untreated subjects (alternatively, a null model is fit that
stratifies on treatment status). The model is fit in the sample weighted by the IPTWs. From
the fitted regression model, survival curves can be estimated for treated and untreated subjects
separately. They note that when the weights are non-parametrically estimated, the
described method is equivalent to direct standardization of the survival curves to the overall
study population.

Austin and Schuster 2217



2.4 Estimating absolute treatment effects using marginal survival functions

Once marginal survival functions had been estimated for treated and untreated subjects, we
estimated the effect of treatment on mean survival as follows: first, the mean survival time in
each of the two treatment groups was estimated by calculating the area under the estimated
survival curve in the respective treatment groups using trapezoidal integration.26 Second, the
effect of treatment on mean survival time was estimated as the difference between mean survival
in the treated subjects and mean survival in the untreated subjects. The effect of treatment on
changes in median survival time can be estimated similarly. Using each of the two marginal
survival curves, one can estimate median survival time under treatment and under lack of
treatment. The effect of treatment on median survival time can be estimated using the difference
in these two quantities.

We also estimated the effect of treatment on the absolute reduction in the probability of the
occurrence of the event within specific durations of follow-up time. Using the two marginal survival
curves, we estimated the probability of survival to a specified time t0. Let Sk(t0) denote the
probability of survival to time t0 in treatment group k (k¼ 0 (untreated) or k¼ 1 (treated)). Then,
the absolute reduction in probability of the occurrence of an event prior to time t0 was estimated
as S0(t0)�S1(t0).

3 Monte Carlo simulations – methods

We used a series of Monte Carlo simulations to examine the performance of different propensity
score methods to estimate the absolute effect of treatment on survival or time-to-event outcomes.
Our simulations used a design similar to that used in a recent study comparing the performance of
different propensity score methods for estimating marginal hazard ratios.17

3.1 Data-generating process

We simulated data for a setting in which there was 10 baseline covariates (X1 � X10). These
covariates were simulated from independent standard normal distributions. Of these 10
covariates, 7 affected treatment selection (X1�X7), while 7 affected the outcome (X4�X10). For
the ith subject, the probability of treatment selection was determined from the following logistic
model: logitð piÞ ¼ �0,treat þ �Wx1i þ �Mx2i þ �Sx3i þ �Wx4i þ �Mx5i þ �Sx6i þ �VSx7i. The intercept
of the treatment-selection model (�0,treat) was selected so that the proportion of subjects in the
simulated sample that were treated was fixed at a desired proportion. The regression coefficients
aW, aM, aS, aVS were set to log(1.25), log(1.5), log(1.75) and log(2), respectively. These were
intended to denote weak, moderate, strong and very strong treatment-assignment effects. For
each subject, treatment status was generated from a Bernoulli distribution with subject-specific
parameter pi: Zi�Be(pi).

We then generated an observed time-to-event outcome for each subject using a data-generating
process for time-to-event outcomes described by Bender et al.27 For each subject, the linear predictor
was defined as LPi ¼ �treatzi þ �Wx4i þ �Mx5i þ �Sx6i þ �VSx7i þ �Wx8i þ �Mx9i þ �Sx10i. For each
subject, we generated a random number from a standard Uniform distribution: u�U(0,1).
A survival or event time was generated for each subject as follows: � logðuÞ

�eLPið Þ
1=�. We set � and � to be

equal to 0.00002 and 2, respectively. The use of this data-generating process results in a conditional

treatment effect, with a conditional hazard ratio for treatment of exp(�treat). We used the values of

�treat used in our prior study that were selected to induce specified marginal hazard ratios.
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Descriptions of how to use a specific conditional effect to induce a desired marginal effect are
described in greater detail elsewhere.17,28,29

We allowed the following factors to vary in our Monte Carlo simulations: the percentage of
subjects that were treated (5%, 10% and 25%) and the true marginal hazard ratio (1, 1.10, 1.25,
1.50, 1.75 and 2). We thus examined 18 scenarios (3 treatment prevalences� 6 marginal hazard
ratios). In each scenario, we simulated 1000 datasets, each consisting of 10,000 subjects. In our
simulation studies, we did not consider censoring; therefore, the simulated true survival time of an
individual corresponds to its actual observation time in the study.

3.2 The true effect of treatment

Using the data-generating process described in Section 3.1, we first randomly generated a treatment
status for each subject that was conditional on the subject’s baseline covariates. We then used the
second data-generating process to randomly generate a survival time that was conditional on both
the actual treatment assigned and on the subject’s baseline covariates. We also generated two
potential outcomes for each subject: a survival time conditional on the subject having been
untreated and a survival time conditional on the subject having been treated. These two potential
outcomes were used to determine the true absolute treatment effects.

A Kaplan–Meier estimate of the survival function for the overall population under no treatment
was estimated using the set of all potential outcomes under no treatment. Thus, using the potential
outcome under no treatment, we estimated the survival function in the overall population. Similarly,
a Kaplan–Meier estimate of the survival function for the overall population under treatment was
estimated using the set of all potential outcomes under treatment. Trapezoidal integration was used
to determine mean survival in the entire population under no treatment and under treatment. The
true ATE of the absolute effect of treatment on mean survival time is the difference between these
two quantities. Median survival times under treatment and under lack of treatment were estimated
using the respective marginal survival functions. The true ATE of the absolute effect of treatment on
median survival time is the difference between these two quantities. Similarly, for a given time t0, one
can determine the probability of the event occurring by time t0 in the entire population if all subjects
were treated and again if all subjects were untreated. The difference between these two survival
probabilities is the true ATE of the absolute reduction in the probability of the occurrence of the
event by time t0.

ATT values of these different measures of treatment effect can be obtained by restricting the
sample of potential outcomes used for estimating survival curves to those of subjects who ultimately
received the treatment (i.e. both potential outcomes were used for only those subjects who received
the treatment).

These population-average effects determined using both sets of potential outcomes will serve as
the gold standard to which each of the different propensity score-based estimates will be compared.

3.3 Statistical analyses in simulated datasets

Within each simulated dataset we estimated the propensity score using a logistic regression model to
regress treatment status on the seven baseline covariates that affected the outcome (X4�X10). This
approach to variable selection for the propensity score model was selected, as it has been shown to
result in better estimation compared to selecting only those variables that affect treatment
selection.30 In each of the 1000 simulated datasets for each scenario, we estimated the effect
of treatment on mean and median survival time using the methods described in Section 2.
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Similarly, we computed the true effect of treatment on mean survival (estimated from the sample
consisting of both potential outcomes for each subject). We then averaged these two quantities (the
estimated effect and the true effect) across the 1000 simulated datasets.

Within a simulated dataset, we estimated the 10th, 25th, 50th, 75th and 90th percentiles
of the observed survival time. We then estimated the absolute reduction in the probability of
the occurrence of the event of interest at each of these five quantiles of survival time. Using
the sample consisting of both potential outcomes, we determined the true absolute reduction
in the probability of the occurrence of the event of interest at each of these five quantiles of
survival time. We then used each of the propensity score methods to estimate the absolute
reduction in the probability of the occurrence of the event at each of the five quantiles of
survival time.

3.4 Statistical significance testing

We examined the performance of different statistical tests for assessing the statistical significance of
the effect of treatment on survival. To do so, we used the simulated datasets in which the true
marginal (and conditional) hazard ratio was 1, indicating that the marginal survival functions would
be identical between treated and untreated subjects.

In the propensity score matched sample, we considered four different methods for testing
statistical significance: (i) the conventional log-rank test in the propensity score matched sample;
(ii) the stratified log-rank test in the propensity score matched sample, in which we stratified on the
matched pairs; (iii) a Cox proportional hazards regression model was used to regress survival on
treatment status. Model-based standard errors were used to assess the significance of the estimated
log-hazard ratio of treatment on the outcome; (iv) an approach similar to the previous one, except
that the robust standard errors of Lin and Wei were used.31 Approaches (i) and (iii) are
asymptotically equivalent. However, we include both approaches for the same of completeness.
Approaches (ii) and (iv) were intended to account for the potential homogeneity of outcomes
within matched sets. Cummings et al. proposed the use of stratification on matched sets to
account for matched cohort designs with time-to-event outcomes.32

When using stratification on the propensity score, methods for comparing the equality of
marginal survival curves are less well developed. We considered two different methods: first, we
used a Cox proportional hazards regression model to regress survival time on an indicator variable
denoting treatment status. The model stratified on propensity score strata, allowing the baseline
hazard function to vary across the five propensity score strata. Second, we used the stratified log-
rank test in which we stratified on the five propensity score strata.

When using inverse probability of treatment weighting, we used two methods. First, we used Xie
and Liu’s adjusted log-rank test. Second, in accordance with the suggestion of Cole and Hernán, we
fit a univariate Cox proportional hazards regression model in which survival was regressed on
treatment status in the sample weighted by the IPTWs. The robust variance estimator of Lin and
Wei was used to estimate the statistical significance of the treatment effect.23,31

In each of the simulated datasets with a true null treatment effect (true hazard ratio¼ 1), we
determined whether we rejected the null hypothesis of no treatment effect (P< 0.05). We estimated
the empirical type I error rate as the proportion of simulated datasets in which we rejected the null
hypothesis of no difference in survival between treatment groups. Due to our use of 1000 simulated
datasets, an empirical type I error rate <0.0365 or >0.0635 would be statistically significantly
different from the advertised rate of 0.05 using a standard normal-theory test.
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4 Monte Carlo simulations – results

We describe the results of the Monte Carlo simulations in four subsections: effect of treatment on
mean survival time, effect of treatment on median survival time, effect of treatment on the absolute
reduction in the probability of the occurrence of event within a specified duration of follow-up and
empirical type I error rates. In a fifth subsection, we present some miscellaneous results describing
the weights used and the quality of matching.

4.1 Estimation of absolute changes in mean survival time

Estimates of the absolute effect of treatment on mean survival time are reported in Figure 1 (effects
in the overall population – ATE) and Figure 2 (effects in treated subjects – ATT). Each figure
consists of six panels, one for each of the true marginal hazard ratios. In each panel, we use dot
charts to represent the true effect of treatment and the estimates of treatment effect obtained using
the different propensity score methods. When estimating the effect of treatment in the overall
population, estimates using three methods (stratification, Xie and Liu and Cole and Hernán) are
compared with the true underlying effect of treatment (computed using both sets of potential
outcomes). When estimating the effect of treatment in the treated subjects, two additional
methods are added (nearest neighbour matching and caliper matching).

In Figure 1 (effect in entire population), several trends are apparent. First, IPTW using Cole and
Hernán’s approach resulted in estimates that were closest to the true absolute change in mean
survival due to treatment. The bias due to Xie and Liu’s adjusted Kaplan–Meier estimate was
modestly larger than that of Cole and Hernán’s approach. However, for a given marginal hazard
ratio, the differences between the two IPTW approaches diminished as the prevalence of treatment
increased. Second, stratification resulted in substantially greater bias than the two IPTW methods
across all 18 scenarios. Third, the magnitude of the bias diminished slightly when the true underlying
marginal hazard ratio was larger. Third, for a given value of the true underlying marginal hazard
ratio, the bias for each method decreased as the prevalence of treatment increased.

In examining Figure 2 (effect of treatment in those subjects who were ultimately treated), several
observations merit comment. First, as above, stratification resulted in greater bias than all of the
other methods across all 18 scenarios. Second, comparing the two IPTW approaches, Cole and
Hernán’s method resulted in less biased estimation compared with Xie and Liu’s adjusted Kaplan–
Meier estimate across all 18 scenarios. As above, for a given marginal hazard ratio, the differences
between these two approaches diminished as the prevalence of treatment increased. Third, nearest
neighbour matching and caliper matching had similar performance to one another when the
prevalence of treatment was either 5% or 10%. However, when 25% of subjects were treated,
bias due to nearest neighbour matching was greater than that due to caliper matching.
Furthermore, when 25% of subjects were treated, the differences between these two matching
algorithms tended to diminish as the true underlying marginal hazard ratio increased. Fourth,
when the prevalence of treatment was low (5% or 10%), then caliper matching tended to result
in decreased bias compared with the two IPTW approaches. However, when the prevalence of
treatment was 25% and there was a true non-null treatment effect, then caliper matching resulted
in greater bias compared with the two IPTW approaches.

4.2 Estimation of absolute changes in median survival time

Estimates of the absolute effect of treatment on median survival time are reported in Figure 3 (effects
in the overall population – ATE) and Figure 4 (effects in treated subjects – ATT). As would be
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expected when estimating changes in distributions that are positively skewed, changes in median
survival tended to be less than the changes in mean survival discussed above. As above, both of the
IPTWmethods performed better than stratification on the propensity score when estimating changes
in median survival time in the entire population. However, compared with estimating changes in
mean survival time, differences between the two IPTW approaches were attenuated. In fact,
differences between these two approaches tended to be minimal when estimating effects of
treatment on median survival time.

Similarly, when estimating changes in median survival time in the treated population, differences
between the two IPTW approaches were minimized. Furthermore, the two IPTW tended to have
superior performance compared to the two matching approaches. The differences between the
matching approaches and the two IPTW methods tended to be the greatest when 25% of subjects
were treated.

4.3 Estimation of the absolute reduction in the probability of the
occurrence of the event

Estimates of the absolute effect of treatment on the probability of the occurrence of an event within
a given duration of follow-up are reported in Figure 5 (10th percentile of survival times), Figure 6
(25th percentile of survival times), Figure 7 (50th percentile of survival times), Figure 8 (75th
percentile of survival times) and Figure 9 (90th percentile of survival times). Each figure has six
panels. In each figure, the three panels on the left denote treatment effects in the overall population,
whereas the three panels on the right denote treatment effects in the treated population. As noted in
Section 4.1, three methods were compared for estimating effects in the overall population, whereas
five methods were compared for estimating effects in the treated population.

When comparing the performance of the three methods for estimating effects in the
entire population, several observations warrant highlighting (see panels in the left column of
Figures 5–9). First, stratification resulted in estimates with greater bias compared with the two
IPTW-based methods. Second, for the first four quantiles of survival time (10th, 25th, 50th and
75th percentiles of survival time), the two IPTW approaches resulted in essentially identical
estimates of the change in the probability of the occurrence of an event within the given duration
of follow-up time. However, when examining estimation at the 90th percentile of survival time, Cole
and Hernán’s approach resulted in estimates with slightly less bias than did Xie and Liu’s approach
when 5% or 10% of subjects were treated. Third, the bias in the two IPTW approaches was
negligible at the four lower quantiles of survival time and was modest at the 90th percentile of
survival time.

When comparing the performance of the five methods for estimating effects in the population
of treated subjects, several observations warrant highlighting (panels in the right column of
Figures 5–9). First, as above, stratification resulted in the greatest bias across all five methods
in all 18 scenarios and across all five quantiles of survival time. Second, for the first three
quantiles of survival time (10th, 25th and 50th) and when treatment prevalence was low (5% and
10%), then the two matching methods and the two IPTW methods resulted in essentially unbiased
estimates of the absolute change in the probability of the occurrence of an event. Third, for the first
three quantiles of survival time and when the prevalence of treatment was 25%, then nearest
neighbour matching tended to result in greater bias compared with caliper matching and the two
IPTW approaches. Fourth, for the 90th percentile of survival time, the two matching methods
tended to have negligibly better performance than the two IPTW methods when the prevalence of
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treatment was 5% or 10%. However, when the prevalence of treatment was 25%, caliper matching
had slightly worse performance than the IPTW methods.

4.4 Empirical type I error rates

Empirical estimates of the type I error rates are reported in Table 1. When comparing survival
between treated and untreated subjects in the overall population, stratification on the quintiles of
the propensity score had an empirical type I error rate that was substantially higher than the
advertised level of 0.05 (range: 0.439–0.629). Similarly, the adjusted log-rank test of Xie and
Liu resulted in an inflated empirical type I error rate (range: 0.350–0.722). The approach of
Cole and Hernán resulted in empirical type I error rates that were closer to the advertised level
(range: 0.051–0.072).

When comparing marginal survival curves in the population of treated subjects, both the IPTW
approaches resulted in artificially low type I error rates (empirical type I error rates <0.01). When
using caliper matching, the use of the stratified log-rank test resulted in empirical type I error rates
closest to the advertised level (range: 0.033–0.039). The use of the conventional log-rank test resulted
in artificially low empirical type I error rates (range: 0.006–0.013). When using nearest neighbour
matching, the stratified log-rank test resulted in an inflated type I error rate when the prevalence of
treatment was 25% (empirical type I error rate¼ 0.283).

Table 1. Empirical type I error rates of different propensity score methods for comparing survival functions

between treatment groups.

Statistical method

Prevalence of treatment

0.05 0.10 0.25

Effect in overall population of all subjects

Stratification (Cox regression stratifying on PS strata) 0.439 0.571 0.629

Stratification (stratified log-rank test) 0.439 0.572 0.629

IPTW (Cole and Hernán) 0.070 0.072 0.051

IPTW (Xie and Liu) 0.722 0.604 0.350

Effect in population of treated subjects

Caliper matching (naı̈ve Cox regression) 0.013 0.006 0.010

Caliper matching (Cox regression with robust standard errors) 0.034 0.030 0.029

Caliper matching (log-rank test) 0.013 0.006 0.010

Caliper matching (stratified log-rank test) 0.035 0.033 0.039

Nearest neighbour matching (naı̈ve Cox regression) 0.012 0.008 0.073

Nearest neighbour matching (Cox regression with robust standard errors) 0.033 0.030 0.144

Nearest neighbour matching (log-rank test) 0.012 0.008 0.073

Nearest neighbour matching (stratified log-rank test) 0.033 0.033 0.283

IPTW (Cole and Hernán) 0.009 0.006 0.006

IPTW (Xie and Liu) 0.000 0.000 0.000

Note: The cells contain empirical estimates of the type I error rate. These were the proportion of 1000 simulated datasets in which

the null hypothesis of no difference in survival functions was rejected at the P< 0.05 level.
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4.5 Miscellaneous results

Since IPTWanalyses can be sensitive to very largeweights (occurringwhen treated subjects have a very
low propensity score or untreated subjects have a very high propensity score), we conducted a series of
post hoc analyses to examine the distribution of the IPT weights in the simulated datasets. Since the
effect of treatment on the hazard of the outcome has no effect on the IPT weights, only the previously
described model for the treatment selection process was considered in the subsequent analyses (i.e. the
results should be independent of the treatment hazard ratio was used). In the first simulated dataset for
each treatment prevalence, we examined the distribution of ATE and ATT weights. We report the
following five quantiles for the distribution of theweights for each treatment prevalence and each set of
weights: 2.5th, 25th, 50th, 75th and 97.5th (note that we report the distribution of the actual ATT
weights. One can invert the summary statistics to examine the distribution on a scale similar to those of
theATEweights; i.e. so that theweights tend to be greater than one).When the prevalence of treatment
was 5%, the five-number summary for the ATE weights was 1.01, 1.02, 1.04, 1.08 and 13.06, whereas
the five-number summary for the ATTweights was 0.01, 0.02, 0.04, 0.08 and 1.When the prevalence of
treatmentwas 10%, the five-number summary for theATEweightswas 1.01, 1.04, 1.07, 1.16 and 11.80.
The corresponding five-number summary for the ATT weights was 0.01, 0.04, 0.07, 0.16 and 1. When
the prevalence of treatment was 25%, the five-number summary for the ATE weights was 1.05, 1.17,
1.34, 1.95 and 7.02. The corresponding five-number summary for theATTweights was 0.05, 0.17, 0.34,
1 and 1.11. One notes that as the prevalence of treatment moves away from 0.5, the upper tail of the
distribution of the ATE weights becomes larger (i.e. there is a larger proportion of more larger
weights). For the chosen data generation procedure, the amount of large IPT weights is a function
of the prevalence. This is due to the fact that the weights are a function of the inverse logit of the linear
predictor, and the linear predictors only differed in the intercept among the considered simulation
settings. Naturally, there will be a higher proportion of large weights the further away the prevalence
gets from 0.5. Therefore, the observed decrease in relative performance of the IPTW approaches with
larger amount of unstable weights (lower prevalence) is to be expected.

The mean percentage of treated subjects matched to an untreated subject when using caliper
matching was 99.7%, 99.4% and 94.0% when the prevalence of treatment was 5%, 10% and 25%,
respectively. Thus, caliper matching only resulted in the exclusion of a small proportion of treated
subjects from the matched sample. Therefore, it is likely that minimal bias was introduced due to
incomplete matching.19 The high proportion of treated subjects that were successfully matched to an
untreated subject indicates that there was good overlap in the distribution of the propensity score
between treatment groups.

5 Discussion

We used an extensive series of Monte Carlo simulations to examine the ability of different propensity
score methods to estimate the absolute effects of treatment on survival or time-to-event outcomes.
We considered estimating both the absolute effect of treatment on mean and median survival time
and the absolute reduction in the probability of the occurrence of the event within a specified
duration of follow-up time. We briefly summarize our findings and place them in the context of
the existing literature.

Of the different propensity score methods examined, stratification on the propensity score
resulted in the greatest bias when estimating the different absolute measures of treatment effect.
Coupled with the observation that empirical type I error rate of the stratified analysis was
substantially higher than the advertised rate, we would suggest that this method not be used for
estimating the absolute effect of treatment on survival outcomes. In prior research, it was shown that
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stratification on the propensity score resulted in biased estimation of both conditional and marginal
hazard ratios.12,17 These findings complement prior research by Lunceford and Davidian, in which it
was shown that stratification on the propensity score can result in biased estimation of linear
treatment effects.22 The findings of this study, taken with those of these prior studies, suggest that
the use of stratification on the propensity score should be discouraged with survival outcomes.

We examined two different IPTW approaches for estimating absolute effects of treatment on
survival outcomes. The first was an adjusted Kaplan–Meier estimate proposed by Xie and Liu,
whereas the second was based on the Cox model and was proposed by Cole and Hernán. When
estimating the effect of treatment on the absolute change in mean survival time, the latter approach
resulted in estimates with modestly less bias than the former method. When estimating the effect on
changes in median survival time, the two approaches had comparable performance. When
estimating the absolute reduction in the probability of the occurrence of event within a given
duration of follow-up (either in the entire population or in the population of treated subjects),
both methods had essentially identical performance for the four lower quantiles of survival time
(10th, 25th, 50th and 75th percentiles of survival time). When estimating effects at the 90th percentile
of survival time, the approach of Xie and Liu resulted in modestly greater bias, especially when the
prevalence of treatment was low. We hypothesize that the differences in estimating differences in
probabilities at the upper tail of the distribution of event times explains differences in estimating
changes in mean survival between these two IPTW approaches. However, it is unclear why these
differences in bias exist when estimating survival probabilities at the upper tail of the distribution.
When estimating effects in the overall population, the method of Cole and Hernán had an empirical
type I error rate that was close to the advertised rate, whereas the empirical type I error rate for the
adjusted log-rank test was substantially inflated.

We examined two different matching algorithms: nearest neighbour matching on the propensity
score and nearest neighbour matching on the logit of the propensity score within specified calipers.
When estimating changes in mean survival time, both approaches resulted in approximately equal
bias when the prevalence of treatment was 5% or 10%. However, when the prevalence of treatment
was 25%, the use of nearest neighbour matching resulted in substantially greater bias compared with
caliper matching (similar biases were seen when estimating the reduction in the probability of the
occurrence of an event when the prevalence of exposure was 25%). We suspect that this was due to
the inclusion of an increasing number of poor quality matches – matches that would have been
excluded when using caliper matching that places a restriction on the quality of the matches. As the
proportion of subjects who are treated increases, there are fewer untreated subjects to serve as
potential controls. Coupled with the aberrant empirical type I error rates associated with nearest
neighbour matching (particularly when the prevalence of exposure was 25%), we suggest that the use
of caliper matching be preferred over the use of nearest neighbour matching when estimating
absolute effects of treatments on survival outcomes.

When comparing differences in marginal survival functions between treatment groups in the
population of subjects who were ultimately treated, the use of the stratified log-rank test in
the sample formed by caliper matching resulted in empirical type I error rates that were closest to
the advertised rate. Importantly, the use of the conventional log-rank test in the sample constructed
using caliper matching resulted in artificially low empirical type I error rates. This reinforces a
finding of several prior studies that analyses conducted in the propensity score matched sample
should account for the matched nature of the sample.17,18,33,34 The performance of the two IPTW-
based methods with the ATT weights suggests that the performance of these two methods needs to
be examined in greater detail when non-ATE weights are used. It was surprising that the choice of
weight had such a strong effect on the empirical type I error rate.
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The very high empirical type I error rate of the adjusted log-rank test was surprising, given that it
was shown to have an acceptable type I error rate in the study in which it was proposed.25 However,
in the original paper this was shown using Monte Carlo simulations in a setting in which there was a
single binary confounding variable. In a set of secondary analyses, we replicated the data-generating
process used in the original paper by Xie and Liu and observed an empirical type I error rate similar
to that reported in their paper. We speculate that the findings in this study are attributable to using a
more complex and realistic data-generating process in which there were 10 continuous variables
which had different effects on the occurrence of the outcome and on treatment selection. This
discrepancy suggests that further attention needs to be paid to the variance estimator for the
adjusted log-rank test.

When the study objective is to estimate the marginal effect of treatment in the overall population
(e.g. the average treatment effect or ATE), we suggest that the IPTW method of Cole and Hernán be
used. In some of the 18 scenarios that we examined it had slightly better performance than the
approach suggested by Xie and Liu. Furthermore, both IPTW methods performed better than
stratification, the only other approach that permits estimation of the ATE.

When the study objective is to estimate the marginal effect of treatment in the population of those
who were ultimately treated (e.g. the average treatment effect in the treated or the ATT), then our
suggestions are less straightforward and are dependent on the prevalence of treatment and on the
estimand of interest. When estimating the effect of treatment on change in median survival time,
both IPTW methods resulted in superior performance compared to matching (with the differences
between matching and weighting increasing as the prevalence of treatment increased). However,
when estimating the effect of treatment on change in mean survival time, we would suggest that
caliper matching be used when the prevalence of treatment is low (5% or 10%), while the Cole and
Hernán method be used when the prevalence of treatment is higher. When estimating the effect of
treatment on the absolute reduction in the probability of the occurrence of an event, then any
approach is acceptable if the quantile of survival time is not extreme and the prevalence of
treatment is low (5% or 10%). For extreme quantiles of survival time (90th percentile of survival
time), then we would recommend the use of caliper matching when the prevalence of treatment is
low (5% or 10%). However, when the prevalence of treatment is high (25%), then we would
recommend that IPTW methods be used.

There were several limitations to this study that deserve mention. First, when simulating time-to-
event outcomes, we did not induce censoring. In subsequent research, the effect of different degrees
of censoring on the performance of different methods merits further investigation. This was not
investigated in this study for two reasons. First, the simulations were already extensive, with 18
different scenarios. To have introduced a third factor, the degree of censoring, would have
substantially increased the amount of results that would need to be communicated. Second,
methods for estimating mean survival in the presence of censoring do not always perform well,
and a thorough comparison of different methods has not, to our knowledge, been conducted.
A second limitation is the reliance of a single set of distributions for the baseline covariates. In
subsequent research, it would be informative to examine the robustness of our findings to different
distributions of the baseline covariates. However, as with the first limitation, we were unable to
examine this in this study due to space and time constraints. A third limitation is that we limited our
examination of matching algorithms to two (nearest neighbour matching and nearest neighbour
caliper matching). We did not consider alternative algorithms such as optimal matching.35 However,
in prior research, it was demonstrated that optimal matching did not induce better balance on
measured baseline covariates than competing methods36 and did not result in improved
estimation compared to competing methods.37 Thus, we do not expect that optimal matching
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would have different performance from that of nearest neighbour matching in the context of
estimating the effects of treatment on survival outcomes.

Reporting both relative and absolute measures of effect in studies with survival or time-to-event
outcomes is essential for making decisions about the benefits, safety and efficacy of treatments and
interventions. Many observational studies with survival outcomes have focussed on estimation of
hazard ratios. The use of propensity score methods allows for estimation of both relative and
absolute measures of effect. In addition to reporting hazard ratios, we recommend that authors
report the effect of treatment on mean or median survival time and/or on the absolute reduction in
the probability of the occurrence of an event within a specified duration of follow-up. The use of
caliper matching on the propensity score and methods based on inverse probability of treatment
weighting permit accurate estimation of these quantities.
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