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Abstract

X-ray crystal structures propel biochemistry research like no other experimental method, since 

they answer many questions directly and inspire new hypotheses. Unfortunately, many users of 

crystallographic models mistake them for actual experimental data. Crystallographic models are 

interpretations, several steps removed from the experimental measurements, making it difficult for 

nonspecialists to assess the quality of the underlying data. Crystallographers mainly rely on 

“global” measures of data and model quality to build models. Robust validation procedures based 

on global measures now largely ensure that structures in the Protein Data Bank (PDB) are largely 

correct. However, global measures do not allow users of crystallographic models to judge the 

reliability of “local” features in a region of interest. Refinement of a model to fit into an electron 

density map requires interpretation of the data to produce a single “best” overall model. This 

process requires inclusion of most probable conformations in areas of poor density. Users who 

misunderstand this can be misled, especially in regions of the structure that are mobile, including 

active sites, surface residues, and especially ligands. This article aims to equip users of 

macromolecular models with tools to critically assess local model quality. Structure users should 

always check the agreement of the electron density map and the derived model in all areas of 

interest, even if the global statistics are good. We provide illustrated examples of interpreted 

electron density as a guide for those unaccustomed to viewing electron density.
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1. Introduction

Advances in crystallization, data collection, and computers have made macromolecular 

crystal structures commonplace. Biochemists, medicinal chemists, chemical biologists and 
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many others have come to rely on macromolecular structural data as never before, and it has 

become routine to read, write, and review manuscripts that contain crystal structures. 

Furthermore, advances in the field have made it possible for scientists with limited training 

in crystallography to determine protein structures. Thus, even scientists with no formal 

background in crystallography need to know how to critically evaluate these complex 

experiments. While it has been noted recently that poorly determined structures have a 

negative impact on the drug design community [2], the focus here is on how to avoid the 

improper use of well-determined structural models. The first step is to understand how 

crystallographic models are made.

Every atom in the repeating unit of a crystal (the unit cell) contributes to the intensity of 

every reflection in the diffraction pattern. The measured intensity for each diffraction spot is 

the result of scattering from the entire model. Particular data points cannot be associated 

with specific parts of a model. For example, there is no “metal spot” in data collected from a 

metalloprotein crystal; the metal contributes to the intensity of every reflection (see Box A 

for a description of the crystallographic experiment). While crystallographic statistics 

reported in structure papers provide numerical indications of the overall quality of the 

diffraction data (for an excellent review, see [3]), these do not report on how well-

determined individual parts of a model are. The Protein Data Bank (PDB)1 has recently 

adopted a new structure report format that gives a graphical representation of how a given 

model compares with others in the PDB in terms of five statistical measures of model quality 

[4–7]. These reports are based on the excellent work of numerous leaders in the field of X-

ray structure determination [6]. As good as these reports are, they are focused on the global 

quality of the structure.

Even in the best cases, there are areas of the electron density map that are poorly defined 

(Fig. 1). Thus, even a crystal structure that is based on high quality diffraction data and was 

carefully and competently built and refined will have local areas of the model that are less 

reliable than the rest. Very often, these regions are on the surface of a protein, and for most 

users, will not be important in drawing conclusions about molecular structure and function. 

Of course, if one is interested in protein–protein interactions, these regions are relevant. 

One’s interests determine which parts of the electron density map to inspect.

Regions of the electron density map that are poorly defined due to mobile, disordered 

sections of the polypeptide frequently have important functions. For example, an enzyme 

may adopt multiple conformations associated with substrate entry, catalysis, and product 

egress. In addition, no protein model is produced entirely objectively, since human judgment 

always plays a role. Recognizing where uncertainty and bias may intrude is an important 

skill for a structure user who wishes to extract meaningful biological or chemical 

conclusions from a structure model. To assess which parts of a model are strongly supported 

by the data and which are less so, one cannot rely on statistical indicators, but should instead 

examine the electron density maps in regions of functional interest. Fortunately, most 

journals now require authors to deposit structure factors (the processed experimental data 

1The current Protein Data Bank is a cooperation of three different organizations, RCSB PDB, PDBe, and PDBj which all contribute 
entries to the wwPDB (wwpdb.org) [1].
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with associated phase estimates) along with the atomic coordinates in the PDB, making it 

easy to generate maps. The only way for users of macromolecular structures to evaluate the 

quality of the electron density maps used to build a model is to actually look at them. To 

avoid basing important experiments on weak structural data, users of macromolecular 

models must judge which parts of a model are relevant and trustworthy. The information 

content of the model might not support every idea the structure user has about the molecule.

2. Understanding macromolecular models

2.1. The coordinate file

Scientists who work with protein structures routinely download PDB coordinate files from 

the Protein Data Bank and view models in a graphics program such as COOT [8,9], PyMOL 

[10], Chimera [11], or JMOL [12]. The coordinate file is actually a simple text file that can 

be inspected with any text editor (Box B). Model users are encouraged to inspect the file in 

this way, because the header of the PDB file contains important information regarding the 

protein sample, the experimental setup, and ways to assess the final model. Every atom 

listed in a PDB file is associated with at least five parameters: x, y, and z coordinates and 

two highly correlated terms, the atomic displacement parameter (ADP) and occupancy (Q), 

that modulate the contribution of that atom to the overall diffraction pattern.

2.1.1. Atomic displacement parameters (B-factors)—ADPs are historically known 

and most often referred to in the literature as B-factors or temperature factors. These 

parameters describe the vibration of an atom around a mean position specified by the atomic 

coordinates. B-factors are typically low (5–20 Å2) for the well-ordered atoms of the 

backbone in well-defined secondary structures like an α-helix or a β-sheet. Loops tend to be 

more mobile than α-helices and β-sheets and thus have higher B-factors. Likewise, side 

chains can have considerably higher B-factors than main chain atoms. Atoms with high B-

factors are found in poorly defined electron density. In Fig. 2, notice the poorer fit to the 

electron density of the aliphatic chain, which has higher B-factors, than the fused ring 

system where the B-factors are lower. It is unlikely that this is due to an error in structure 

determination or model building. Consistent with chemical intuition, the aliphatic chain is 

not interacting with the protein and is neither rigid nor constrained by the protein, and so is 

more mobile than the fused ring system.

In high-resolution structures (better than 1.5 Å), anisotropic B-factors are used to describe 

the non-spherical atomic shapes that result from partially restricted motion. Lower-

resolution datasets do not contain enough observations to justify the addition of five extra 

parameters per atom: six values define an ellipsoid versus one for a sphere [13]. Anisotropic 

B-factor records are interdigitated in the coordinate section of a PDB file, and are only 

obvious by looking at the coordinate file in a text editor (see Box B).

An alternative way of describing atomic displacements, Translation, Libration, Screw (TLS), 

is based on the assumption that groups of atoms in a large molecule undergo correlated, 

rigid-body motions [14]. In TLS refinement, protein atoms are placed in several groups and 

the parameters defining the anisotropic motion of each group are refined. Since there are 

significantly fewer TLS groups than atoms, fewer additional parameters are required to fit 
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the data than with full anisotropic B-factor refinement. Whereas individual TLS motions can 

be visualized [15], they may or may not correspond to real macromolecular dynamics [16].

2.1.2. Occupancy—Occupancies (or Q-values) are comparable to mole fractions for 

different molecular configurations. They indicate if an atom is found in a single location in 

the model (occupancy of 1.0) or multiple locations (fractional occupancies). Occupancies 

can be refined, to a value that approximates the proportion of unit cells that contain the 

molecule in each conformation. For example, a crystal soaked with ligand at an insufficient 

concentration or for too short a time may not contain a ligand in every binding site and will 

therefore have a fractional occupancy. As another example, side chains can be present in two 

(sometimes three) different conformations. To be visible in the electron density map, and 

thus included in the model, an alternate conformation of a residue must be present in at least 

20% of the molecules in the crystal (fractional occupancy 0.2). Conformations with 

occupancies that refine to less than 0.2 are generally not included in a model (Fig. 3).

2.2. Electron density maps

Scientists who work with protein structures routinely download PDB coordinate files from 

the Protein Data Bank (http://www.wwpdb.org) and view models in a graphics program such 

as COOT [8,9], PyMOL [10], or Chimera [11]. It is just as easy to download the structure 

factors from the same PDB page, or pre-calculated electron density maps from the Electron 

Density Server (EDS; http://eds.bmc.uu.se/eds/) (Box C) [17]. The PDB entry even includes 

hyperlinks to the EDS to facilitate use of these electron density maps. The diffraction spots 

measured during a crystallographic experiment (see Box A) arise due to scattering of the X-

rays by the electrons associated with the protein atoms. The electron density map derived 

from the diffraction data is a three dimensional plot that shows wherein space electrons are 

concentrated within the repeating unit of the crystal. The areas of high electron density mark 

the positions of the protein atoms.

There are a number of ways to calculate electron density maps, and the map types most 

frequently mentioned in the literature are: Fo – Fc, 2Fo – Fc, the maximum likelihood-

weighted versions of these (mFo – DFc and 2mFo – DFc), and various flavors of “omit” 

maps. The maximum likelihood weights, ‘m’ and ‘D’, effectively reduce the contributions of 

poorly estimated structure factors to the electron density calculation. This has the effect of 

making the maps more interpretable by reducing model bias (see [18,19] for more detailed 

discussion). The EDS allows one to choose both the format (CCP4 [20] format is the most 

widely accepted by crystallographic software) and type of map (either 2mFo – DFc or mFo – 

DFc). Since the structure factor file that can be downloaded from the PDB cannot be directly 

displayed in molecular visualization software, we strongly suggest that users download the 

pre-calculated maps from the EDS. It is also worth noting that the EDS provides per-residue 

plots of the real space correlation coefficient (RSCC) [21], which provides a statistical 

measure of how well each residue fits within the electron density. The RSCC values can thus 

be used to guide visual inspection of the model.

2.2.1. Fo–Fc or mFo – DFc maps—To calculate an electron density map, the structure 

factor amplitudes are combined with corresponding phase estimates (see Box A) in a Fourier 
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series. The direct experimental map calculated from the observed structure factor amplitudes 

(Fo) is relatively difficult to interpret, especially for incomplete models. This is why 

crystallographers calculate difference maps. An Fo – Fc or mFo – DFc map is calculated by 

subtracting the observed structure factor amplitudes from those calculated from the current 

model (Fc). In areas where there is good agreement between the experimental data and the 

model, there is no density. In areas where the model is missing atoms, there will be a peak in 

the Fo – Fc map. Where the model contains atoms that should not be there, the Fo – Fc map 

will have a hole (i.e. a negative “peak”). Thus, the Fo – Fc map shows where the model and 

experimental data differ. It can aid interpretation of the 2Fo – Fc map (see below). Fo – Fc 

maps are contoured at (+) and (−) 3.0 σ to show areas for which the model does not 

adequately account for the electron density (positive) or where atoms are partially disordered 

or have been incorrectly placed (negative). Typically the peaks in the Fo – Fc map are 

colored green and the minima are colored red. The sigma level is an estimate of the noise in 

the map, and is analogous to setting a minimum elevation on a topographical map, such that 

only peaks above a certain threshold are drawn. Some graphics programs set the map 

contour in units of electrons per Å3, but the idea is the same: only regions with electron 

density above the threshold value are drawn.

2.2.2. 2Fo – Fc or 2mFo – DFc maps—The 2Fc – Fc or 2mFo – DFc map, where the 

model-derived structure factor amplitudes are subtracted from twice the observed structure 

factor amplitudes, can be thought of as a combination of the direct Fo map and the Fo – Fc 

difference map. The observed structure factor amplitudes are weighted more heavily, so that 

even areas where the model and data agree will be covered by the electron density. Atoms 

that should not be at their current positions in the model will have little to no electron 

density, while empty peaks mark positions where atoms must be added to the model to agree 

with the data. To inspect a completed structure, set the 2mFo – DFc map contour level 

between 1.0 and 1.5 σ. The 2mFo – DFc map should be fairly continuous (occasional breaks 

are normal, especially at lower resolutions) and should cover most of the atoms in the model. 

One expects less well-defined maps at low resolution, and thus more discontinuities in the 

main chain electron density and “naked” atoms than would be tolerated at higher resolution 

(see below).

2.2.3. Omit maps—Model bias is the result of how maps are calculated: because the phase 

estimates for the calculation come from the model, maps will tend to show electron density 

for an atom in the model whether it is truly there or not. A simple omit map is normally a 

difference (Fo – Fc) map calculated after omitting specific atoms from a model, like a ligand 

or a functionally important loop. While simple to do, the drawback to this approach is that 

leaving out a small percentage of the model does little to remove model bias. A more 

rigorous (and computation/time-intensive) approach is the composite omit map, where 

sections of a model (5–10%) are omitted in a series of map calculations, and the relevant 

regions of each calculation are stitched together to give an electron density map with much 

less bias, since the entire model has been omitted. For further bias removal, a round of 

simulated annealing refinement is done at each omit step during the composite omit 

calculation to give the simulated annealing composite omit map. This type of omit map has 

minimal model bias and is the gold standard for figures designed to confirm the electron 
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density of protein·ligand complex structures, especially if the 2mFo – DFc density is not 

solid for every atom of the ligand. If the published electron density images or 2Fo – Fc map 

from the EDS lead one to question the validity of a region in the model, calculating the 

simulated annealing composite omit map may be worth the small additional effort. 

Simulated annealing composite omit maps are not available directly for download from 

EDS, but can be calculated without too much effort by a friendly crystallographer from the 

deposited structure factor and coordinate files using PHENIX [22] or other software.

2.3. Resolution

High-resolution data add detail to electron density maps (Fig. 4). A 4 Å-resolution map 

shows the location of secondary structure elements, but not necessarily their orientation–

helices can go in either direction and the directionality of β-sheets is similarly hard to 

determine. A 3 Å-resolution map clearly shows secondary structure and some side chains. A 

2 Å-resolution map will show most side chains. At resolutions of 1 Å and better, the map 

shows individual atoms. At the highest resolutions (0.7 Å and better), it becomes possible to 

see electron density between covalently bonded atoms in stable regions of the molecule. 

Diffraction data at almost any resolution can provide valuable information. After all, 

Rosalind Franklin’s fiber diffraction images contained enough information to construct a 

hugely influential model of DNA that was in no way a “solved” structure [23–25]. Likewise, 

Roderick MacKinnon’s 4 Å-resolution Rb+ or Cs+ soaked potassium channel crystals 

provided evidence for the selectivity filter [26]. The resolution of the data–the detail 

available in the electron density map–dictates the conclusions that can be drawn from a 

crystallographic model.

Higher resolution data provide more observations against which the parameters of the model 

(the x,y,z of atomic locations and B-factors and occupancies) can be refined. Model 

refinement is conceptually similar to non-linear least squares fitting, where the fit can be 

improved simply by increasing the complexity of the equation used to fit the data. When the 

number of parameters grows too large, a least-squares fit may look perfect but the model it 

represents has no basis in reality. While crystallographic models are more complex, 

refinement is similarly vulnerable to overfitting and over-parameterization. Parameters are 

added to a macromolecular model in the form of additional atoms (e.g. water molecules, 

ligands, residues in mobile loops), or by using more realistic models of atomic behavior (B-

factors, occupancies). The number of observations in the diffraction data set must be greater 

than the number of refined parameters to support a robust model refinement. Models can 

also be overfit by violating chemical (e.g. poor stereo-chemical restraints) or physical (e.g. 

steric clashes) principles.

At low resolution, the electron density is simply too ill-defined for the side chains, especially 

the longer ones, to be well-modeled, and the many waters that are part of the hydrogen bond 

network are not visible. As a rule of thumb, a model built using 3 Å-resolution diffraction 

data is usually sufficient for determining the overall fold of the protein (e.g. for comparison 

to proteins with similar structure and/or function). A model determined at 2 Å-resolution can 

support detailed arguments about the roles of enzyme active site residues, the binding mode 

of an inhibitor, or analysis of the solvent and hydrogen bond network. A model determined 
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at 1 Å-resolution allows visualization of individual non-hydrogen atoms and a detailed 

biophysical analysis.

3. All parts of a model are not of the same quality

3.1. The protein

Structural data consumers should remember that structural models are not as rigid as they 

might seem. The ability to “measure” interatomic distances in hundredths of Ångstroms 

from a model using a graphics program does not mean they are actually known to anywhere 

near that level of accuracy. A molecular dynamics movie of a protein in solution shows them 

to be incredibly dynamic, bouncing and vibrating crazily (and anisotropically). It is 

entropically “expensive” to immobilize a floppy molecule like a protein in a crystal, and the 

most flexible regions are the hardest to constrain.

Crystals are snap-cooled in cryoprotectant agents to minimize the formation of crystalline 

ice that can obscure protein diffraction data or destroy the protein crystal. Snap-cooling does 

not typically serve as a kinetic trap, since even at room temperature the crystalline lattice 

confines the protein to a relatively small ensemble of conformations. (Unstable chemical 

intermediates can sometimes be trapped by snapcooling crystals undergoing an enzymatic 

reaction.) If protein crystal structures represent a thermodynamic minimum, they should be 

reproducible. Independently determined high-resolution models for the same protein tend to 

agree [27]. At moderate resolution, different structure models may be equally plausible since 

the electron density may represent an ensemble of conformations [28]. A protein crystallized 

in multiple space groups may adopt different conformations [29–31]. In addition, minor 

conformational substates with disproportionate functional significance may be thermal 

“excited states” that are not populated at cryogenic X-ray data collection temperatures 

[32,33]. A single consensus structure is typically reported, not the ensemble it represents 

[34]. These motions may be studied using complementary experimental and computational 

approaches [35,36].

Low temperatures further limit conformational ensembles in the crystalline lattice. Proteins 

undergo a “glass transition” as the temperature drops below 160–200 K that restricts internal 

motions [37]. At cryogenic data collection temperatures (100 K), molecular motions are 

almost entirely “frozen out”; even methyl rotation is suppressed [38]. In relatively 

unconstrained regions of the crystal, multiple conformations that have similar energies can 

be trapped by snap-cooling. These often correspond to regions that are flexible in solution, 

like loops, and they are colloquially referred to as flexible in a crystal, even though they 

cannot “move” (interconvert) at cryogenic temperatures. Disordered regions give weaker 

electron density maps and higher B-values than other parts of the protein. In many cases, the 

density is so weak that there is no justification for including part of the protein in the final 

model (Fig. 1B).

It is often possible to discern mobility in crystal structures, despite the stabilizing influences 

of the crystal lattice and cryogenic temperatures. As discussed above, the B-factors give an 

approximation of the degree of mobility of atoms in the model. In practice, it is difficult to 

tell if high B-factors are due to thermal motions, lattice displacements (slight misalignment 
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of the repeating units of the crystal), or the existence of a large number of possible 

conformations. In all three cases, the electron density blurs and eventually disappears for 

very mobile parts of the structure. Mobile side chains can be modeled with alternate 

conformations in structures of higher resolution (~2 Å resolution or better), when there is 

sufficient crystallographic evidence (density in the map) to warrant more than one 

orientation. In favorable cases, only two conformations of a residue or region contribute to 

the observed electron density and both conformations can be built into the model (Fig. 3B). 

Occupancy values for each contributor are optimized during refinement. In unfavorable 

cases, the flexible bits of the molecule adopt so many conformations that there is no 

information on where they are (no density).

Unfortunately, molecular visualization programs are not designed to alert the casual user to 

the use of alternate conformations or high B-factors. If a model contains two conformations 

of a side chain, both will be displayed by most graphics programs. Most of the time, the 

smaller partial occupancy should be at least 20% for inclusion in the model, since they are 

distracting and often do not add much to what can be gleaned from common sense and B-

factors. It is usually easy to color a model by relative B-factor to insure that a region of 

interest is not associated with weak electron density. Weak electron density is often 

associated with surface-exposed residues since they have no chemical reason to adopt a 

particular conformation (Fig. 1A).

Crystallographers disagree about how to handle disordered side chains. The first group omits 

atoms that have no electron density from the model. Their rationale is that if there is no 

evidence to place an atom at a specific point, then no atom should be placed there in the 

model. This approach, however, leads to confusion about residue identity (i.e. glutamate 

winds up looking exactly like alanine). The second group assumes that the visible portion of 

a residue constrains where the invisible (mobile) atoms can be. A somewhat-disordered 

residue can be placed intact in the most stereochemically plausible pose and the B-factors 

allowed to refine to high values. This avoids confusing residue truncations, but it obliges 

structure users to check B-factors and maps in any interesting region of the model [39]. The 

third group models a side chain that has no electron density in the most stable rotamer and 

sets the occupancy values to zero for atoms with no electron density. This obliges structure 

users to inspect occupancies closely. Unfortunately, most molecular viewers do not 

automatically alert the user to occupancies less than 1. Most of the ambiguity disappears 

when one looks at the maps. So, if one is interested in a particular active site residue or a 

surface patch that may be involved in a protein-protein interaction, one must look carefully 

at the electron density map to decide if there is sufficient density to support the modeled side 

chain orientation.

In addition to making decisions about what to do with surface side chains, there are several 

residues (Asn, Gln, and His) with side chain functional groups that have flat, symmetrical 

shapes in electron density maps. In the final rounds of refinement, crystallographers decide 

how to orient these side chains based on the surrounding hydrogen bonding network. 

Sometimes this is straightforward (Fig. 5), and sometimes it is not. This is a particular 

concern in enzyme active sites, where a His side chain, for example, might participate in 
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catalysis. Model users should always check the surrounding network of hydrogen bonding 

interactions to judge if it supports the modeled pose and the proposed function.

Molecular motions discerned by comparing crystal structures are only meaningful if the 

positional uncertainty (coordinate error) of each structure is known. However, coordinate 

error is seldom included in the information contained within the PDB header section. It is 

not un-usual to see small movements of, for example, a helixorloop when multiple structures 

of the same protein in different states (e.g. ligand bound vs unbound) are compared. 

Unfortunately, it is difficult to estimate the precision of atomic positions [40] and thereby to 

determine if an apparent motion is significant. An apparent movement of 0.4 Å that is based 

on a comparison between two structures with coordinate errors of 0.3 Å could be real but it 

is unlikely to be biochemically relevant. Recall that most deposited protein structures 

represent only the most stable state among the ensemble of states present in the crystal. 

Claims that tiny structural shifts have catalytic relevance should be treated with skepticism 

except when based on comparison of ultra-high resolution data sets. Ultimately, any 

assertion that a minor motion has functional significance requires additional biochemical or 

biophysical data.

3.2. Buffer components and solvent

Protein molecules are solvated and contain “ordered” water molecules that are integral to the 

structure. These ordered water molecules are modeled as single oxygens (hydrogens cannot 

be seen at the resolution of most structures), found on the exterior of the protein molecule or 

in any cavity, but must obey simple rules of hydrogen bonding. The number of water 

molecules in a crystallographic model depends on resolution, with few at 3 Å and as many 

as two per amino acid at high resolution. There is some danger in comparing water 

molecules between different protein structures unless the structures are determined to 

sufficient resolution and the water molecules have appropriate B-factors.

Most protein crystals form in solutions containing organic precipitants (e.g., polyethylene 

glycol) and/or Hofmeister “salting-out” ions (e.g., ammonium sulfate) that stabilize proteins 

and favor controlled crystal nucleation and growth. Even though the mother liquor contains 

high concentrations of these additives, they appear less often in electron density maps than 

might be supposed. Those that do appear often look very odd, as a consequence of local 

disorder: for instance, sulfate is a tetrahedral oxyanion that shows up bound to enzyme 

active sites where a phosphate group might normally bind. Sulfate can also appear on the 

surface of a protein as a smaller, spherical blob near a positively charged region, and is 

identified primarily on the basis of knowledge of which chemicals are present and a strong 

peak of electron density that is inadequately modeled as water. Alternatively, sulfate may be 

spotted first as a water molecule with an unrealistically low B-factor.

What about the ammonium ions provided by ammonium sulfate, which are twice as 

abundant as the sulfates? About a quarter of deposited X-ray crystal structures contain 

sulfate, which is almost two orders of magnitude more common than structures containing 

ammonium (NH4
+) or ammonia. Many water molecules adjacent to a negative charge may 

be ammonium ions. However, neither X-ray crystallography nor chemical plausibility can 
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support that assignment. One should nevertheless keep an open mind about whether a 

solvent molecule could be something other than water [41].

3.3. The ligands

Ligands, which we define as interesting buffer components, can be danger zones. Ligands 

are noncovalently associated with the protein (Fig. 6A) so are likely to be present with high 

B-factors or fractional occupancy. Flexible parts of the ligand are often incompletely 

immobilized in a macromolecular complex, to lessen the entropic cost of binding the parts of 

the molecule that make specific interactions with the protein. In favorable cases, flexible 

loops of an enzyme active site become ordered in the presence of a ligand. It can be difficult 

to saturate all of the binding sites in a protein crystal, even when the dissociation constant is 

small. In cases of fractional ligand occupancy, only a fraction of the protein molecules 

making up the crystal lattice bind to the ligand (simply, only some active sites have ligand 

bound) or only a fraction of ligands bind in the same orientation.

One of the few ways to distinguish fractional occupancies from high B-factors is to compare 

B-factors within a ligand. In general, only atoms that contact the protein directly have B-

factors comparable to surrounding protein atoms. If B-factors range from low to high (partly 

disordered) within a ligand molecule, the ligand is probably present at full occupancy but it 

is less ordered at one end. If B-factors are consistently high, the ligand is probably not 

present at full occupancy; occupancies may be refined as a group (e.g., all atoms in a 

ligand). In either case, we prefer to set all ligand atom occupancies to 1, to force B-factors 

higher and thereby to alert the structure user. A good example is found in the 1.6 Å structure 

of the yeast oxysterol binding protein Osh4 bound to cholesterol (PDB ID: 1ZHY) [42]. The 

ring system (Fig. 2) is rigid relative to the alkyl side chain, thanks to interactions with the 

protein and conformational constraints imposed by the fused rings. The increase in disorder 

correlates well with the expected decrease in rigidity. The chemical stability of cholesterol 

disfavors the alternate hypothesis, that side chain atoms are present at fractional occupancy 

due to breakdown of the ligand.

Overzealous interpretation of solvent components as ligands is particularly hazardous in 

structure-based drug design [10,43]. A serious problem arises when a buffer component or a 

decomposition product is mistaken for a ligand that was desired to be present [44]. Unless 

heavy atoms are part of the ligand, it can be hard to distinguish ligands from solvent or 

buffer components. There are a number of tools available to crystallographers and model 

users alike for validating the fit of a ligand to the electron density. Most of these rely wholly 

or in part on statistical measures of map-model agreement like the real space R value (RSR), 

the real space correlation coefficient, or a difference density Z score [7,45,46]. One tool, the 

Twilight script [21], flags ligands with low RSCC values and ranks ligand plausibility. 

Another piece of software, VHELIBS [47] allows even novice users to visually assess both 

the ligand and binding site.

Covalent adducts are physically linked to the protein (Fig. 6B) and the occupancy is of ten 

known from separate analysis. Small covalent adducts, such as an acetylated lysine residue, 

often have B-factors similar to unmodified residues. Large covalent adducts, like the sugar 
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moieties in glycoproteins, are often rather mobile and can be as difficult to model as ligands. 

Polysaccharide adducts are often represented by partial models with high B-factors.

4. Conclusions

Coordinate files downloaded from the PDB contain three dimensional models that are built 

to approximate electron density maps derived from crystallographic data. All areas of the 

map are not equally well-drawn, so structure users must be careful not to base their 

hypothesis on areas of the map that ancient mapmakers would have labeled “Here Be 

Dragons.” Nevertheless, all areas of the model appear at first glance to be equally sound 

when looking at the coordinate file in a graphical viewer. In order to know where the 

dragons lurk, the savvy scientist must examine the map. Critical assessment of the data (in 

the form of electron density maps) will assure model users that their hypotheses and future 

experiments are supported by crystallographic evidence.
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Box A

From X-ray dataset to finished model

The figure below highlights the steps in X-ray data collection and refinement. A single 

oscillation image (panel A) is obtained by rotating the crystal through a small rotation 

angle while it is illuminated by X-rays. Hundreds of these images comprise a data set that 

completely samples the entire three-dimensional diffraction pattern. The resolution of the 

data increases from the center to the edge of the image. The highest resolution where the 

diffraction spots still have measurable intensity gives some idea of the resolution of the 

data set, about 1.7 Å in this example. The diffuse grey ring near 3.5 Å is background 

scattering from solvent surrounding the crystal in the sample holder.

In order to calculate an electron density map, a crystallographer requires both the 

amplitudes of the diffracted X-ray waves and their relative phase angles. The amplitudes 

are measured as the intensities of the diffraction spots in the experiment, but the phase 

information is lost. This is the crystallographic phase problem. The missing phase 

information can be obtained from using the structure of a homologous protein (molecular 

replacement) or by a number of experimental methods involving incorporation of heavy 

atoms (e.g. Hg, Se) into the ordered array of the crystal. There are a number of excellent 

introductory and advanced texts that provide excellent explanations of phasing methods2. 

However the initial estimates of the phases are obtained, they typically have large errors, 

and the resulting electron density maps are relatively noisy and ill-defined (Panel B). 

Once this imperfect electron density map is calculated, the process of building a 

crystallographic model begins. A macromolecular crystallographer working on a new 

structure begins with either a molecular replacement model that likely contains 

significant portions that need to be rebuilt, or an empty map into which they build the 

polypeptide chain from scratch or using an automated algorithm [48–50]. In either case, 

the initial model is never an optimal match to the electron density. The initial model is 

iteratively altered to improve its fit to the electron density by refining some or all atomic 

parameters (Panel C). When adjustments to the model no longer improve the phase 

estimates, refinement is stopped and the model is said to be finished.
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2 For readers interested in a more comprehensive explanation of diffraction physics and 

the X-ray crystallographic experiment, the authors recommend these outstanding texts, 

ranked in approximate order of difficulty:

1. Rhodes, Gale. Crystallography Made Crystal Clear. Academic Press, 

New York, 2000.

2. Blow, David. Outline of Crystallography for Biologists. Oxford 

University Press, New York, 2002.

3. Glusker, Jenny P. with Lewis, Mitchell and Rossi, Miriam. Crystal 
Structure Analysis for Chemists and Biologists. Wiley-VCH, New 

York, 1994.

4. Rupp, Bernhard. Biomolecular Crystallography. Garland Science, New 

York, 2010.
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Box B

A PDB coordinate file as seen in an editor

It is sobering to think that months, even years, of work can be distilled into something as 

humble as a simple text file, but that is precisely what a PDB-formatted structure file is. It 

can be viewed in any program capable of opening ASCII text files (such as your favorite 

word processing program), and it is good practice to scan the header, since this normally 

contains a wealth of information about the experiment and the model itself. The ATOM 

records below the header section are, collectively, the model (only one residue is shown 

for brevity). The atomic coordinates (green) give the position of the atom. The occupancy 

(blue) should be 1.0 for most of the atoms. The B-factors (red and orange) can be 

modeled in one of several ways, depending on the resolution of the data and the 

preference of the crystallographer. Without looking directly at the PDB file it is often 
impossible to know which type of B-factors were used in the refinement. In the simpler 

case of a model with isotropic B-factors, there are no ANISO lines, only the single B-

factor parameter (red). If full anisotropic treatment was used to refine B-factors, there 

would be ANISOU lines (orange).If TLS parameters were refined, ANISOU lines are 

also added (though their meaning is different) and a TLS record would appear in the 

header.
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Box C

Downloading and displaying electron density

The Electron Density Server hosted at Uppsala University (http://eds.bmc.uu.se/eds) 

allows users to generate and download the model and map files for any structure in the 

Protein Data Bank for which the structure factor data have been deposited. The 

downloaded map files can then be opened in a number of programs, including COOT 

[8,9], PyMol [51], Jmol [12], AstexViewer [52], Chimera [11], and MOE [53]. The 

authors prefer to examine electron density in COOT, since it is capable of automatically 

downloading and displaying the model, 2Fo – Fc map and Fo – Fc map with no input 

beyond the PDB accession code. Displaying electron density is a simple matter of 

choosing “ Get PDB & map using EDS…” from the file menu, entering the PDB 

accession code for the structure of interest, and pressing the “Get it” button. That is all 

there is to it. The contour level of the map can be changed using the scroll wheel on a 

PC-style mouse. For more detailed instructions, see the COOT documentation at http://

www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot. COOT can be downloaded free of 

charge for Linux, Windows and Mac and is straightforward to install.
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Fig. 1. 
Examples of local disorder in a protein structure. The arginine residue in (A) is exposed on 

the surface of the protein MppR. The average B-factor for the main chain atoms is 18.0 Å2, 

while the average for the side chain atoms is 41.5 Å2. The values increase from 22.4 Å2 at 

the beta carbon to 57.1 Å2 for one of the guanidino nitrogen atoms. Notice how the electron 

density for Cβ is comparable to the main chain, while the entire guanidinium group has only 

a small scrap of electron density centered on Cζ. At the termini of protein chains (B), highly 

mobile sections of the polypetide chain often have little or no electron density. Residues 

with no electron density are omitted from the model, as shown here for residues 1 through 

32. If a terminus is thought to be important for a proteins’ function, model users should be 

careful to confirm that the density for that terminus is solid.
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Fig. 2. 
Correlation of map quality and B-factors in a protein-bound ligand. Cholesterol contains a 

rigid tetracyclic ring system and a more mobile alkyl side chain (top). Yeast Osh4p (PDB 

ID: 1ZHY) binds cholesterol in a nearly flat conformation. The magenta mesh is the 2mFo – 

DFc electron density map from the EDS contoured at 1.0σ with a 2Å carve radius (middle). 

Notice that the qualitative fit to the electron density is excellent for the fused ring system, 

but is ambiguous for the more mobile alkyl chain. The relationship between map-model 

agreement and B-factor is seen in the view with atoms colored and sized according to B-
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factor (bottom; ramp from blue [15 Å2] to red [35 Å2]). The atoms with weaker electron 

density have higher B-factors.
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Fig. 3. 
Alternate conformations of amino acid side chains. Two methionine side chains from MppR. 

One (A) shows evidence of multiple conformations in the Fo – Fcmap (green mesh at +3.0 σ 
and red at −3.0 σ), but only the slimmest hint in the 2Fo – Fc map (purple mesh at 1.5 σ) 

near the green Fo – Fc peak. It may be that in some portion of molecules in the crystal the 

terminal methyl group is rotated ~90°, but that population is too small to justify including 

that conformation in the model. In (B) the occupancies of the two conformations have been 

refined to 0.35 (left) and 0.65 (right).
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Fig. 4. 
The effect of increasing resolution on electron density maps. The panels show the active site 

of the Clostridium botulinum serotype A neurotoxin with various ligands bound at 4.3 Å 

(A), 2.4Å(B), 1.9 Å (C), 1.4 Å (D), and 1.2 Å (E). The 2mFo – DFc electron density maps 

are contoured at 1.0 σ (blue) and 3.0 σ(yellow) within a 2.0 Å radius around each atom. The 

catalytic Zn(II) ion is shown as a silver sphere. Notice the clear differences in the level of 

detail in moving from 4.3 to 2.4 Å (A and B), and from 2.4 to 1.9Å (B and C). Notice also 

that as the resolution increases, small differences in resolution give diminishing returns in 
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terms of map detail (e.g. compare 1.4 and 1.2 Å in D and E). The structures shown are PDB 

ID 3V0C, 2IMB, 2IMA, 3BOO, and 3BON [54–56].
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Fig. 5. 
Hydrogen bonding patterns should make chemical sense. An ultra-high resolution electron 

density map (0.75 Å) of the Streptomyces strain R61 D-alanyl-D-alanine carboxy-peptidase/

transpeptidase showing His37, on the protein surface, making hydrogen bonding interactions 

with a water molecule and an adjacent aspartate residue (unpublished data). The modeled 

conformation of the imidazole ring of His37 agrees with the surrounding network of 

hydrogen bonds and is further supported by the larger electron density peaks of the two N 

atoms (N has one more electron than C, and at very high resolutions this difference in visible 

for well-ordered atoms). The 2mFo - DFc electron density maps are contoured at 1.5 (blue) 

and 4.0 σ (yellow).
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Fig. 6. 
Noncovalently bound ligand vs covalent adduct. A molecule of TRIS buffer from the 

crystallization solution was found bound in the active site of MppR (A). The electron density 

does not completely cover the molecule and its average B-factor is closer to that of the 

solvent than the macromolecule. MppR will react with 2-oxo-5-guanidinovaleric acid to 

form an imine at Lys156 (B). The electron density is significantly clearer in B dueto the 

covalent attachment. Notice the small positive peak in the mFo – DFc difference map near 

the guanidinium group. It is likely that a small portion of molecules in the crystal either do 

not have the ligand bound and have a water in that position, or there is a small population 

with a different conformation of the ligand. This electron density is too weak to justify 

modeling either scenario.
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