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Abstract

Social contact networks and the way people interact with each other are the key factors that impact 

on epidemics spreading. However, it is challenging to model the behavior of epidemics based on 

social contact networks due to their high dynamics. Traditional models such as susceptible-

infected-recovered (SIR) model ignore the crowding or protection effect and thus has some 

unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a 

novel model called improved SIR model. Then, we use both deterministic and stochastic models to 

characterize the dynamics of epidemics on social contact networks. The results from both 

simulations and real data set conclude that the epidemics are more likely to outbreak on social 

contact networks with higher average degree. We also present some potential immunization 

strategies, such as random set immunization, dominating set immunization, and high degree set 

immunization to further prove the conclusion.
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I. INTRODUCTION

Social networks are a social structure made up a set of social actors, such as individuals or 

organizations, and the “ties” between them [1]. The ties can be either online interactions or 

face-to-face interactions. Social contact networks are the social networks made up of 

individuals and the interpersonal contact between them. In this paper, we study the 

stochastic epidemic models on social contact networks, in which the links between persons 

are fact-to-face interactions which may cause infections.

The modeling of the epidemics on social contact networks has been studied in recent years. 

The standard Susceptible-Infected-Recovered (SIR) model is widely used for its 

simplification and usability. In SIR, individuals in the network are labeled with three 
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compartments: Susceptible (S), Infected (I) and Recovered (R) [2]. Each individual belongs 

to one of the three compartments and can transit from S to I or from I to R.

Studying the epidemic models helps people to know the dynamics of epidemics on networks 

and help the decision makers to mitigate the diseases when epidemic outbreaks. The 

standard SIR model based on assumptions that the networks are homogenous which means 

all nodes have the same linkage and the probability that there is a link between any two 

nodes are equal. However, recent research works have shown that the social contact 

networks have community structure [3]–[5] in which nodes have different linkages and 

nodes have more links within a cluster than that of between communities. Thus, when there 

is a significant number of infected individuals in a community, the effected contacts (the 

contacts that transmit diseases) between susceptible and infected individuals do not grow 

quickly. This phenomenon is called “crowding” or “protection effect” [6]. Therefore, the 

linear force of infection used in the standard SIR model has limitation under the typical 

scenario.

To address this limitation, we proposed a novel ISIR model to capture the dynamics of 

epidemics. In ISIR, the infection rate (also called the transmission rate of diseases) modeled 

as a function of the infected individuals considering the “crowding” or “protection effect”. In 

our ISIR model, at the early stage of the epidemics when the number of infected individuals 

are small, the infection rate grows quickly with the increase of number of infected 

individuals. For the spread of diseases, the infection rate also grows slower than a linear 

increase.

Further, the above SIR model can be used to analyze the number of individuals in the three 

compartments. But, considering a real epidemic on a small community, it is reasonable to 

assume the uncertainty or randomness of the final number of infected individuals. For 

example, in a community with a single epidemic source, the epidemic may never outbreak to 

a significant number of individuals although the SIR model would predict a significant 

number of infected individuals. Therefore, we further proposed to use stochastic models to 

estimate epidemic parameters. With the stochastic models, we further examine the 

effectiveness of different immunization strategies.

In this work, we study the stochastic epidemic models on social contact networks. The real 

social contact networks exhibit heterogeneous properties [7]–[9] rather than the 

homogeneous properties on which the standard SIR model is based. In social contact 

networks, there are some nodes that have more links than the average. There nodes are often 

called “hubs”, and they are more likely to be infected quickly when an epidemic outbreaks. 

The social contact networks are considered to be scale-free networks [10], [11], whose 

degree distribution follows a power law, at least asymptotically. The Barabási-Albert (BA) 

model is usually used to generate artificial social contact networks [12]. We studied the 

propagation of the epidemic diseases in BA network and also evaluate some immunization 

strategies. It is observed that the high-degree set immunization outperforms random set 

immunization and dominating set immunization. This result indicate the “hubs” has more 

impact on the spread of epidemics.
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Our major contribution in the paper can be summarized as follow: 1) We proposed a novel 

ISIR deterministic epidemic model which using a nonlinear force of infection considering 

the “crowding” or “protection effect” to address the limitation of standard SIR model where 

the linear fixed force of infection used. Our model is able to present the fact that the actual 

infect rates increase slower than the rates increase linearly when there are a significant 

number of individuals in the community are infected;

2) Unlike many existing studies, we employ both deterministic and stochastic models to 

study the propagation of epidemics on social contact networks with heterogeneous 

properties. Our results show that the epidemics are more likely to outbreak on the networks 

with more links among nodes.

3) We examine our models using both simulation and real data set. Especially, we evaluated 

four immunization strategies on social contact networks. It is observed that the high-degree 

set and critical set immunization methods outperforms random immunization and 

dominating set immunization strategies.

The rest of the paper is organized as follows. Section II discusses related research works. 

Section III presents the deterministic epidemic model. Section IV introduces the stochastic 

epidemic models on social contact networks. The numerical results are discussed in section 

V. Section VI presents four immunization strategies, and we conclude the paper in Section 

VI.

II. RELATED WORK

The standard SIR model has been widely studied since it was proposed in 1927 [2]. Some 

similar models, i.e., SIS model, SIRS and SEIR, also have been studied. The SEIR model 

has an additional compartment which consists of exposed individuals in the latent period 

[13]. These models make the following assumptions: 1) susceptible individuals can get 

infected from infected individuals via contacts; and 2) an infected individual becomes 

immune after recovering from the disease. According to these models, if the basic 

reproduction number R0 is less than λc, an epidemic threshold, the epidemic would not 

outbreak on the network. Otherwise, a significant number of individuals in the network will 

be infected [14].

Due to the “crowding” or “protection effect”, the force of infection will not grow quickly 

with the increase of number of infected individuals. [15], [16] propose a force of infection 
model, which is βI2, in which β is contact rate and I is number of infected individuals. All 

symbols and notations used in the paper are listed in Table 1. The authors use this model to 

study the dynamic of epidemics. However, the model shows the force of infection grows 

faster when the fraction of infected individuals becomes big, which ignores the facts of 

“crowding” or “protection effect”. [6], [17] propose more general force of infection models 

which also consider the “intervation affect”. When the fraction of infected individuals is 

large, some intervention policies may be placed, such as closing restaurants and schools. In 

these models, the force of infection is set to be αI2/(b+ I2). However, it is difficult to 

estimate the effect of these kinds of interventions, especially when several intervention 
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strategies are combined to use. In this work, we proposed a nonlinear force of infection in 

format of βI/(1 + αI), to consider the “crowding” and “protection effect”, which are ignored 

in existing models.

The deterministic epidemic model can predict the overall infected individuals, but it is not 

able to provide the fluctuation of the total infected nodes [14]. Even when R0 > λc, the 

epidemic may disappear at the early stage of the spread of epidemics. In contrast, the 

stochastic epidemic models are able to capture the fluctuation of dynamics of epidemic on 

real networks [18]. [14] studies the dynamics of epidemic using a fixed probability of 

infection, but a node representing a person with more infected neighbors are more likely to 

be infected in reality. [19] uses a linear probability of infection. However, the infection of a 

node from its infected neighbors should be independent and identically distributed (i.i.d). 

Therefore, in this paper, a q-influence model is used to simulate the propagation of 

epidemics on social contact networks. The the fluctuations of the number of infected 

individuals is demonstrated using Monte Carlo (MC) simulations.

The social contact networks are considered to be scale-free networks [10], [11]. A social 

contact networks generator, named BA generator, is widely used to generate artificial social 

networks as the generated network satisfies the statistics of the real social contact networks. 

The random immunization of the network has been studied in [14]. A wide variety of 

epidemic control strategies have been proposed and evaluated by kinds of frameworks. An 

enhancing risk communication method has been proposed to increase the probability of 

successful control of diseases [20]. An optimized resource allocation algorithm is proposed 

in the control of epidemics under fixed budget is designed in [21]. The authors in [22] have 

designed a framework for modeling infectious diseases and optimizing control strategies. In 

[23], the authors proposed to optimize the stabilization of disease control efficiency. The 

authors in [24] proposed a framework to evaluate the effectiveness of random and targeted 

epidemic interventions for spatially separated patches in meta-population models. In [25], a 

convex framework is proposed to find cost-optimal distribution of vaccination resources 

when different levels of vaccination are allowed. However, these strategies are not cost-

effective.

To find a better immunization strategy, we study the dominating set immunization. However, 

it is NP-hard to find the minimal k-dominating set of a network when k ≥ 2 [26]. The way to 

find a small size of k-dominating set is presented in [27]. The high-degree nodes 

immunization is studied in [28] and [29]. In this work, we compare the performance of the 

four immunization strategies, and demonstrate that the high-degree immunization is the best 

one of the four immunization strategies, which also prove the fact that the high degree node 

usually has high impact on the epidemic spread.
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III. THE DETERMINISTIC MODELS OF EPIDEMIC ON SOCIAL CONTACT 

NETWORKS

A. THE STANDARD SIR MODEL

The SIR model is created by W.O. Kermack and A.G. McKendrick in 1927 [2]. In the SIR 

model, a fixed population is represented by only three compartments: Susceptible, S(t); 
Infected, I(t); and Recovered, R(t). S(t) denotes the number of individuals that are not yet 

infected but susceptible to the diseases at time t; I(t) is used to represent the number of 

individuals who have been infected with the diseases at time t. Those infected individuals 

are capable of spreading the diseases to the susceptible individuals. R(t) is the compartment 

used for people who have recovered from the disease by time t. The recovered people are not 

able to be infected again or spread the disease to others.

In the above SIR model, many of the details about the progression of infections are 

neglected, i.e., the differences in response between individuals. But it has been widely 

studied for its simplification and effectiveness. Fig. 1 shows the flow of the standard SIR 

model [2]. The standard SIR model can be presented mathematically by the following 

nonlinear Ordinary Differential Equations (ODE):

(1)

in which S(t) + I(t) + R(t) = N, N is the number of individuals in the community. β is the 

contact rate. γ represents the mean recovery rate. The following are the assumptions used to 

generate the ODEs:

1. It is assumed that the number of community is fixed. The births and deaths 

are therefore ignored.

2. It is assumed that the population are fully fixed, and each individual has a 

small but equal probability of contacting with any others.

3. Each individual in the population is considered to have equal probability 

of spreading the disease, β. Therefore, an infected individuals makes 

contact and transmit the disease with βN individuals per unit time.

4. The population leaving a susceptible set are considered as equal to the 

number of individuals entering an infected set, which means that an 

individual is not able to recover from the disease immediately after being 

infected with the disease.

The force of infection λ, is the rate of susceptible individuals getting infected, and the new 

infection is λI/N. According to the ODEs, an infected individual makes contact with βN 
others per unit time, and the fraction of contacts by an infected individual with a susceptible 

one is S/N. Therefore the new infected individual in unit time per infective is βN(S/N), then 

the rate of new infections is βN(S/N)I = βSI. Thus, the force of infection λ is I
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(2)

We can derive the following equations by dividing the first ODE by the third in equation (1), 

separating and integrating the variables:

(3)

and when t → ∞, we can get

(4)

in which R0 is denoted as a basic reproduction number and R0 = Nβ/γ.

For the standard SIR model, there is an epidemic threshold λc [30], [31]. If the basic 

reproduction ratio R0 is larger than 1/S(0), the disease will spread and infect a finite fraction 

of the population. On the other hand, if R0 ≤ 1/S(0), only a small fraction of population will 

be infected. Thus the threshold for the standard SIR model is

(5)

B. THE IMPROVED SIR MODEL

In the standard SIR model, the community is assumed to be fully fixed and each individual 

has the equal probability (i.e., homogeneous nature) to contact with any others. However, 

many studies show that the social contact networks are heterogeneous instead of 

homogeneous [18], [32]. In social contact networks, the contact numbers per unit time are 

reduced by the “crowding effect” or “protection measures”. This means that the force of 

infection should include the adaptation of individuals to the infection risk. In this work, we 

proposed an improved SIR model called ISIR, in which the infection rate is not a fixed 

value, but a function of number of infected individuals λ = β(I). Then we have the following 

nonlinear ODEs to describe the proposed ISIR model:

(6)

in which S(t) + I(t) + R(t) = N, N is the number of individuals in the community. The force 
of infection λ(I) can be represented as f(I)I, and
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(7)

where β is contact rate, α is a parameter describing the level of “crowding effect” or 

“protection measures”. Fig. 2 shows an example of the nonlinear force of infection with 

parameters α = β = 20. Fig. 3 shows an example of solution of ODEs in equation (6).

For the standard SIR model, there is an epidemic threshold λc, as shown in equation (5). In 

order to see the threshold in the proposed ISIR model, first we derive the basis reproduction 

ration R0, which can be represented as f (0)N

(8)

By equation (7), we can get f (0) = β. Then we can prove that the epidemic threshold of 

proposed ISIR is the same as that of standard SIR model. Next, we will use different 

parameters to solve ODEs in equation (6) to see how they affect the spread of the epidemics. 

Fig. 4 and Fig. 5 show the total infected individuals as a function of β. In Fig. 4, γ is fixed to 

be 0.1, and in Fig. 5, α is fixed to be 0.0001.

From Fig. 4 and Fig. 5, we can observed that the epidemic spread to a significant number of 

individuals only when Nβ ≥ γ, which means that R0 = Nβ/γ ≥ S(0)−1 = 1. The results 

validate the epidemic threshold of the proposed ISIR model. Fig. 6 shows the total infected 

individuals as a function of γ when β is fixed to be 0.0003.

IV. THE STOCHASTIC MODELS OF EPIDEMICS ON SOCIAL CONTACT 

NETWORKS

A. SOCIAL CONTACT NETWORKS: SCALE-FREE NETWORKS

Many networks are considered to be scale-free networks, including World Wide Web links, 

biological networks, and social networks. The research [10], [11] has shown that the social 

contact networks are also scale-free networks.

A scale-free network is a network whose degree distribution follows a power law 

distribution, at least asymptotically. Therefore, in social contact networks, the fraction P(k) 

of nodes in the network having k connections to other nodes goes for large values of k as

(9)

where ν is a parameter whose value is typically in the range 2 < ν < 3, although 

occasionally it may lie outside these bounds.
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The above formula implies that the network has infinite size. However, the real social 

networks consist of finite individuals. For example, the size a social contact networks in a 

school or a city has a upper limit. The authors in [33] introduce power law with cut-off. 

Though real social contact networks are actually made up by a finite number of individuals 

which is far from the thermodynamic limit, their degree distribution can be modeled by a 

power-law with cut-off. This infinite population introduces a maximum connectivity kc, 

depending on N, which has the effect of restoring a bound in the connectivity fluctuations. In 

this work, we use the following equation to analyze the degree distribution of the social 

contact networks.

(10)

where the function f (x) decreases fast for x > 1. The cut-off kc is used to present the 

constraints limiting the addition of new links in an otherwise infinite networks.

The Barabási-Albert (BA) graph was proposed in [12] as a model of growing networks. 

Paper [31] also described and used the BA algorithm. In BA algorithm, the successively 

added nodes establish links with higher probability pointing to already highly connected 

nodes. Therefore, the generated social contact networks are constructed using the following 

algorithm:

1. The algorithm starts from a small number of m0 of nodes;

2. At each step when adding a new node, the algorithm adds m links 

connecting the new node to an old node i with a probability.

The probability the new node has a link to connect an old node i is

(11)

where ki is the degree of node i and the sum is over all pre-existing nodes j.

After iterating this algorithm for a sufficient number of times, we can add the amount of 

nodes N as we want to. Then social contact networks we simulated consists of N nodes with 

connectivity distribution P(k) ~ k−3 and average connectivity 〈k〉 = 2m. The average 

connectivity, defined by the average node degree, play a major role on these networks.

B. EPIDEMIC PROPAGATION ON SCALE-FREE NETWORKS

Table 2 shows three infection models. In the first one, a node will be infected with a fixed 

probability q if it has at least one infected neighbor, which means that a node with one 

infected neighbor has the same probability to be infected with a node has n, n > 1 infected 

neighbors. To consider the hierarchical infection probability, we can use the second infection 

model, which shows a linear probability of infections. In the second model, a node with 
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more infected neighbors is more likely to be infected, and the infected probability is 

proportional to the number of infected neighbors. We use the q-influence model to show the 

fact that the infection probability increases faster than a linear infection. In q-influence 

model, the probability that a susceptible node will be infected by one of its infected 

neighbors is q, and the infections from all its infected neighbors are independent. So if a 

susceptible node has n infected nodes at time t, the probability that it will be infected at the 

next time by its n infected neighbors is

(12)

Fig. 7 shows an example of the q-influence model, in which the central node A has five 

neighbors and two out of them are infected nodes. According to equation (12), the 

probability that node A will be infected by its infected neighbors is p = 1 − (1 − q)2. When q 
= 0.5, then the probability that node A will be infected is equal to 0.75. In the following of 

this paper, the q-influence model is utilized to simulate the propagation of the epidemics on 

social contact networks.

V. NUMERICAL RESULTS

In this section, we will simulate epidemics on both artificial social contact networks and real 

social contact networks. The artificial social networks are generated by BA generator [12], 

and the data for real social contact networks are download from the SocioPatterns datasets 

[34].

A. EPIDEMICS ON BA NETWORKS

We simulate the spread of epidemics on artificial social contact networks generated using 

BA models with different parameters. We consider the BA network size N = 103, and thus 

the average degree of nodes in hte network with m = 1 and m = 6, are 〈k〉 = 2 and 〈k〉 = 6, 

respectively. Figure 8 shows the degree distribution of the two artificial social contact 

networks generate by BA models with m = 1 and m = 3.

We study the effects of q in the spreading of epidemics on BA networks. We set q = {0.09, 
0.1, 0.11} and γ = 0.1. We have run 1000 times of simulations for each pair of parameters to 

avoid the disappearance of epidemics at the early stage. The distributions of the epidemic 

size for each pair of (q, γ) on networks with m = 1 and m = 3 are shown in Figure 9 and 

Figure 10, respectively.

From figure 9 we can find when q is small, the epidemic size is small. With the increase of 

q, it is more likely that all the nodes in the network are infected or have been recovered from 

the disease. Figure 10 shows the same trend with the increase of q, but it should be noted 

that the epidemic size is larger when m = 3 than that of m = 1. That is because the epidemics 

are more likely to outbreak on networks with high average degree which means that 

individuals have more interactions with each other.
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B. EPIDEMICS ON REAL SOCIAL CONTACT NETWORKS

In the above, we study the spread of epidemics on artificial social contact networks. Next, 

we will investigate the spread of epidemics on real social contact networks. Here we use a 

social contact networks dataset named “Primary school-cumulative networks (PS)”. The 

dataset comprises two weighted networks of face-to-face proximity between students and 

teachers [35]. A daily contact network is provided with nodes representing individuals and 

edges representing the face-to-face interactions. There exists a edge between two individuals 

if at least one face-to-face interaction between them is recorded.

We select one day from the dataset, October 2nd, 2009, set q = {0.1, 0.11} and γ = 0.1, and 

then randomly select a node to be epidemic source to spread the epidemic disease on the PS 

network. We run 1000 times simulations and the results are shown in Fig. 11 and 12.

From Fig. 11 and Fig. 12, it is observed that the epidemic is more likely to spread to the 

whole PS network compared to that on BA network with the same parameters. This is 

because the average degree of the PS network is much higher than that of BA network 

generated above.

VI. IMMUNIZATION STRATEGIES

In this section, we use the proposed models to examine the immunization methods to control 

the epidemics on social contact networks. We study four epidemic control methods, random 

set (RS) immunization, dominating set (DS) immunization, high-degree set (HS) 

immunization, and critical node set immunization (CS). The performance of these strategies 

are also compared.

According to equation (7) and equation (8), for the network with a single epidemic source 

S(0) = 1, the threshold of the ISIR model is

(13)

The RS method means that nodes are randomly selected from the network and immunized. 

If ηN nodes are randomly selected from the network and are immunized, the effective 

contact rate β′ is β′ = (1 − η)β. It follows the reproduction number after a fraction of η has 

been immunized to be

(14)

Next, we introduce the DS immunization method. A dominating set for a network is a subset 

of nodes such that every other nodes in the network is adjacent to at least one node in it. For 

a k-Dominating Set (k-DS), each node in the network is either in the k-DS or can reach to 
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one node in k-DS via at most k hops. Here we study the performance of k-DS immunization 

method for epidemic control on social contact networks. The construction of algorithm k-DS 

used in this paper are presented in [27]. Here, k = 1, 2, 3 are used in the simulation. Then, 

we study the performance of epidemic control using HS immunization method. In HS 

method, we first sort all the nodes in the network according to their degrees, and then 

immunize a fraction of η nodes from the highest degree node to the lowest degree node.

We also study the performance of critical node set (CS) immunization strategy on our ISIR 

model. A critical node set is identified from the network by unequal graph partitioning 

(UGP) [36]. The CS immunization works by immunizing the critical node set to prevent the 

spreading of the diseases on the networks when epidemic outbreaks. The basic idea of UGP 

is to identify a subset of nodes that can disconnect the network and decompose it to a set of 

sub-networks when these nodes are removed. Thus the number of infected individuals will 

be less than the size of the largest sub-network. The algorithm of the critical node 

identification in UGP is as follows: 1) Get the connected component G′ from the graph G, 

which represents a social contact network; 2) Randomly assign nodes in G′ to two clusters 

G1 and G2; 3) Move all nodes in G1 that connect to nodes in G2 and nodes in G2 that 

connect to nodes in G1 to cluster G3; 4) Randomly swap nodes in G3 with nodes in G1 or 

G2; a swap is accepted only if the size of G3 is reduced after the swapping and it does not 

bring in the connections between G1 and G2. Otherwise, the swap is dropped. 5) Repeat step 

4 until no further swap can reduce the size of G3. Then the set of G3 is called a critical node 

set. 6) Run the above steps iteratively on the sub-networks G1 and G2 until the sizes of all 

the sub-networks are smaller than a predefined value. The overall critical node set is the 

union of all critical node sets. Therefore, though this algorithm, the epidemics will be 

limited to spread in a sub-network if there is only one epidemic source and the number of 

infected individuals will be less that the size of the largest sub-network.

Finally, we compare the performance of the above four immunization strategies on both real 

and artificial social networks. We first use the BA algorithm to generate two social contact 

networks with N = 2000, m = 2, k = 2 and N = 2000, m = 4, k = 2, respectively. Then we 

apply each immunization method on these two networks. The results are shown in Fig. 13 

and Fig. 14 shows the performance of four immunization strategies. It is observed that HS 

method is an effective strategy that outperforms k-DS and DS although our CS 

immunization method [36] achieves the best performance. The effectiveness of the CS 

method benefits from grouping high degree nodes for the immunization. Both HS and CS 

demonstrate that a node with high degree has the significant impact on the spread of 

epidemic disease and the epidemics are more likely to outbreak on social contact networks 

with higher average degree.

We use real data set of the primary school-cumulative networks (PS), a real social networks, 

to evaluate the performance of these immunization strategies. As shown in Fig. 15, both the 

CS and HS immunization methods can achieve the better performance than DS and k-DS 

methods mentioned above. The results are consistent with our studies on the BA contact 

social network. They not only validate the accuracy of our proposed models, but also further 

prove the significance of the high degree nodes for the epidemic spreading.
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VII. CONCLUSION

In this paper, we proposed novel ISIR epidemic models with nonlinear forces of infection to 

characterize the epidemic spread on social contact networks with the consideration of the 

“crowding” or “protection effect”. We employed a stochastic model, q-influence model to 

simulate the propagation of epidemics on social contact networks. We examine the 

effectiveness of our models for epidemics spreading on both simulated and real social 

contact networks. The results on both networks are consistent with each other. In addition, 

four immunization strategies for epidemic control are evaluated using our proposed models, 

which demonstrate the fact that the epidemics are more likely to outbreak on social contact 

networks with higher average degree.

Our ISIR model can be used to analyze the epidemic dynamic, predict the spreading of 

epidemics, and optimize the control strategies on social contact networks, i.e., the Severe 

acute respiratory syndrome (SARS) in 2003 and the flu pandemic (H1N1) in 2009. It helps 

the decision makers to optimize the epidemic control strategies by estimating their 

performance in simulations.

Our work has built up a foundation for potentially effective epidemic control strategies based 

on real time collected social contact networks. Though this work is targeted at the spread of 

epidemics, the methods presented here could be applied for other applications such as the 

spread of rumors or ideas through social contact networks.
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FIGURE 1. 
The flow of the standard SIR model.
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FIGURE 2. 
Nonlinear force of infection.
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FIGURE 3. 
Solution of ODEs of ISIR model.
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FIGURE 4. 
Total infected individuals as a function of λ.
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FIGURE 5. 
Total infected individuals as a function of β.
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FIGURE 6. 
Total infected individuals as a function of γ.
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FIGURE 7. 
An example of q-influence model.
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FIGURE 8. 
The degree distribution of the artificial social contact networks generate by BA models m = 

1 and m = 3.
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FIGURE 9. 
Distribution of the epidemic size from 1000 simulations with q = 0.09 (a), q = 0.1 (b), q = 

0.11 (c), γ = 0.1 and m = 1.
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FIGURE 10. 
Distribution of the epidemic size from 1000 simulations with q = 0.09 (a), q = 0.1 (b), q = 

0.11 (c), γ = 0.1 and m = 3.
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FIGURE 11. 
Distribution of the final size from 1000 simulations with q = γ = 0.1.
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FIGURE 12. 
Distribution of the final size from 1000 simulations with q = 0.11 and γ = 0.1.
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FIGURE 13. 
Performance of different immunization methods on BA network with N = 2000, m = 2 and k 
= 2.
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FIGURE 14. 
Performance of different immunization methods on BA network with N = 2000, m = 4 and k 
= 2.
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FIGURE 15. 
Performance of different immunization methods on primary school-cumulative networks 

(PS).
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TABLE 1

Symbols and notations.

Symbols Notations

N Number of individuals in a community

S(t) Number of susceptible individuals at time t

I(t) Number of Infected individuals at time t

R(t) Number of Recovered individuals at time t

E(t) Exposed individuals in the latent period at time t

α Level of crowding effect or protection

β The contact rate

β′ The effective contact rate after immunization

γ Mean recovery rate

λ The force of infection

λc The epidemic threshold

R0 The basic reproduction number

The basic reproduction number after immunization

R∞ The proportion of recovered individual when t → ∞

ν The power law exponent

κ The degree of a node

〈κ〉 The average degree of the network

q Infection probability

m Average node degree

n Number of infected neighbors
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TABLE 2

Infection models.

Models Description

p = q A fixed probability of infection

p = nq A linear probability of infection

p = 1 − (1 −q)n A q-influence model
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