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Abstract
Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromo-

somes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging

suggests that this centripetal motion is driven by a biased ‘search-and-capture’ mechanism.

Here, we develop a model of a random walk in a drift field to test the nature of the bias and

the spatio-temporal dynamics of the search process. The model is used to optimize the spa-

tial field of drift in simulations, by comparison to experimental motility statistics. In a second

step, this optimized gradient is used to determine the location of immobilized dynein motors

and MT polymerization parameters, since these are hypothesized to generate the gradient

of forces needed to move MTOCs. We compare these scenarios to self-organized mecha-

nisms by which asters have been hypothesized to find the cell-center- MT pushing at the

cell-boundary and clustering motor complexes. By minimizing the error between simulation

outputs and experiments, we find a model of “pulling” by a gradient of dynein motors alone

can drive the centripetal motility. Interestingly, models of passive MT based “pushing” at the

cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by

themselves do not result in the observed motility. The model predicts the sensitivity of the

results to motor density and stall force, but not MTs per aster. A hybrid model combining a

chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering

motors and pushing at the cell cortex, is required to comprehensively explain the available

data. The model makes experimentally testable predictions of a spatial bias and self-orga-

nized mechanisms by which MT asters can find the center of a large cell.

Author Summary

Recent microscopy based time-lapse measurements of spindle assembly in the absence of
pre-existing centrosomes, have improved our understanding of the principles of self-orga-
nization at a cellular scale. Mouse oocytesmeiosis is one such example, where radial micro-
tubule (MT) arrays, or asters, nucleated by MT organizing centers (MTOCs) centripetally
converge on the central chromatin mass and reorganize to form a bipolar structure. This
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centripetalmotility resembles a biased ‘search-and-capture’ process. Here we attempt to
test whether such a bias is necessary and if so, to define the form and nature of the bias. We
quantify the statistics of the experimentallymeasuredmotility and findMTOC transport
involves both “pulling” from the center and “pushing” from the cortex.We hypothesize
that the bias consists of a spatial gradient of forces driving this motility. To test this hypoth-
esis, we develop a model of a random walk with drift in the mouse oocyte geometry. By
optimizing the functional form of the drift field to experimental data, we then explore
whichminimal combination of molecularmotors and dynamic instability parameters in
such a gradient, could result in the generation of asymmetric forces. When minus-end
directed dynein-likemotors are localized in a gradient around chromatin, it reproduces the
experimental spatio-temporal dynamics. By themselves, MT regulatory gradients, cluster-
ing motor complexes and cortical pushing fail to reproduce experimental statistics. A com-
bination of the motor-gradient and clustering motors appears to explain all the available
experimental statistics. Our findings suggest a possible functional role for previously
observed enrichment of dynein around chromatin in mouse oocytes, and address howMTs
asters find the center of a large cell, without the predominance of cortical interactions.

Introduction

Spindle assembly in higher eukaryotic cells involves the self-organization of microtubules
(MT) into a bipolar structure. Duringmitosis in animal cells, spindle poles are defined by a
pair of centrosomes. However bipolar structures emerge even in the absence of centrosomes
duringmeiosis in vertebrates as well as mitosis in plants. In such acentrosomal spindles, the
poles self-organize by the dynamic interactions of MTs with molecularmotors, regulatory fac-
tors and chromatin. While multiple components of this cellular-scale pattern forming system
have been identified, the precise nature of the interactions between the components are still
not completely understood.
The meiotic maturation of mouse oocytes is a well studied example of such an acentrosomal

spindle assembly system. The first meiotic division is characterized by germinal vesicle break-
down (GVBD) [1], before and after which small aster-like fibrillar structures or microtubule
organizing centers (MTOCs) are observed [2]. MTOCs which are nucleated both in the cyto-
plasmic and peri-nuclear spaces, both aggregate at the center to form a spindle by prometa-
phase I [3]. Such a convergence of radial MT arrays or asters was reported previously in
Xenopusmeiosis II oocytes [4]. Using cell-freeXenopus oocyte extracts, this convergence was
shown to result from asymmetric centrosomalMT growth due to a gradient of RanGTP [5–7]-
referred to as biased ‘search-and-capture’. However duringmeiosis I in mouse oocytes, experi-
mental perturbation of RanGTP levels does not significantly affect spindle assembly [8, 9]. If
RanGTP does not act as a guidance cue as reported previously [10], the nature of the direc-
tional cue and force generation remains to be understood.
The force required for MTOC convergence to the nuclear region is thought to originate from

a combination of MTs, motors and anchorage points. Multiple mechanisms have been reported
in the past to drive radial MT array transport in cells- (a) polymerization dependent pushing
forces as seen during the centering of asters in vitro [11, 12], (b) cortical force-generator based
pulling [13], (c) corticalmotors which both depolymerize and pull [14], (d) cytoplasmicminus-
endedmotors which pull asters in a length-dependentmanner [15], (e) cytoplasmic streaming
by cargo transport driving aster movement [16, 17] and (f) acto-myosin contractility as seen in
starfish oocytes [18]. Contact with the cell cortex can move asters when the relative MT lengths
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is comparable to the cell radius [19]. Both active and passive mechanisms drive the movement
of centrosome nucleated asters. However most of the cortical pushing and pulling models are
unlikely to affect long-rangemovement of MTOCswhich have MT lengths*3 μm as compared
to the cell-radius of*40 μm. Transport of asters by cytoplasmic streaming based on cargo
transport by one large aster [17], is also unlikely to drive mouse meiosis I oocyteMTOCs due to
their size and number (*80 to 100), which will prevent a coherent and directed flow. Inhibition
of acto-myosin contractility has also been shown to have no effect on the centripetalmovement
of mouseMTOCs [9]. While centrally-anchoredMTOCs and cross-linkingmotors have also
been proposed by Schuh et al. [9] to drive the MTOCmotility, the movement continues even
after nuclear envelope breakdown (NEBD). Thus for a complete theoretical understanding of
the mechanism by whichMTOCs converge in spindle assembly a mathematical model of the
process is necessary to test multiple hypotheses that have been proposed.
Theoretical models have been used to probe the interactions of microtubules and motor

complexes and are capable of reproducing in vitro self-organized patterns [20–22]. These simu-
lations have been extended to understand the role of multiple components in spindle assembly
such as antiparallel interactions [23], pole focussing by minus-end directedmotors [24], gradi-
ents of stabilization [25] and intra-spindle nucleation and dynamic instability regulation [26].
In recent work, we have demonstrated the centripetalmovement of centrosomalMT asters
towards surface immobilized chromatin in Xenopus egg extracts can bemodeled by a gradient
of polymerization dynamics and uniformmotor distribution [27]. This is comparable to a
model of length-dependent pulling by motors to translocate MT asters during C. elegans
embryogenesis [15]. However, neither of these models take into account the relatively shorter
MTs seen in MTOC asters, and lack details specific to meiosis I. In search of common design
principles in spindle assembly, theoretical modeling of the centripetal motility of MTOC arrays
can be used to test the generality of previous results.
Here, we quantify the spatial trends in MTOCmotility and find the random and directional

components of motility depend on how far the MTOCs are from the cell center. The detailed
quantitative analysis allows us to develop and test theoreticalmodels of random walk with drift.
Only a spatial gradient of drift can reproduce the experimental data. Such an optimized gradient
is further used to modelMT dynamic instability and motor distributions, to test the combination
of mechanisms that can reproduce the experimental statistics of centripetalMTOCmotility.

Models

We have developed two kinds of models- phenomenological and mechanistic- to address both
the general principles and specificmechanisms of the centripetal convergence of small MT
asters, MTOCs. The models are:

1. 2D Randomwalk with drift (RWD) model

2. 2DMT-motor model

The outputs of both models are compared to 2D experimentalmotility measures of MTOCs
frommouse oocytemeiosis I reported previously by Schuh and Ellenberg [9] The RWD model
is used to optimize the functional form of the spatial drift field by comparison to experiment,
while the MT-motor model is used to test molecularmechanisms which could generate the
drift field. Mechanisms that have been previously hypothesized to drive asters to the center of
cell involve MT-pushing and pulling [28, 29]. A combination of pulling and pushing mecha-
nisms has been experimentally tested in sand-dollar eggs [30] and C. elegans embryos [16, 31]
and pulling alone in Xenopus egg extracts [5, 27], while pushing has been seen in fibroblasts
[32]. The MT-motor model is used to test whether the reported self-organized clustering of
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MTOCs in mouse oocytes [9] is sufficient to result in MTOC convergence, or whether addi-
tional mechanisms are necessary. These mechanisms are:

1. Self-organizedmechanisms: not requiring explicit spatial localization

a. Cortical pushing alone

b. Clusteringmotors and cortical pushing

2. Spatial gradients: requiring explicit spatial localization

a. MT dynamic instability gradient

b. Dyneinmotor gradient

3. Hybrid model: combination of self-organized and gradient mechanisms

An optimization routine has been developed to compare the outputs of the ‘scenarios’, i.e. com-
binations of these mechanisms, to reproduce previous experimental reports of mouse meiotic
MTOCmotility and distribution [9, 33, 34].
The choice of a 2D model for a 3D spherical oocyte is determined by the need to compare

simulated motility outputs with the only available experimental time-series dataset of MTOC
motility in mouse oocytemeiosis I, which is 2D over time [9] (Fig 1A). This compatibility of
dimensions is essential since some of the RWD model input parameters are obtained from fits
to experiment and MT-motor model mechanisms are optimized based on their ability to repro-
duce experimental statistics. Additionally, the choice of dimensionality of spatial models is
considered to be determined by the balance between the need to capture the behavior of the
system sufficiently and the clarity of the model [35].

Random walk in a drift field

The mouse oocyte is modeled in a 2D circular geometry of radius rcell, with concentric circular
chromatin of radius rchr. The outer cytoplasmic region has a radius rcyto and rcell = rchr + rcyto
(Fig 1B). MTOC asters are modeled as point particles, nucleated uniformly in the cytoplasmic
space of the oocyte. The motion of the simulated particles is a mixture of random Brownian
and directed centripetalmotion, depending on the position of the MTOC in the oocyte (Fig
1B), based on the previously observed ‘stop and go’ nature of the motility [9]. In this model,
MTOCs are transported to the cell center and ‘captured’ by the chromatin once they reach the
central chromatin mass. The process resembles models of biased ‘search-and-capture’ used to
describe spindle assembly [7, 36, 37]. Here, we use the model to define the spatial properties of
the bias of attraction by comparing the simulation outputs to spatial trends in MTOCmotility
seen in experiment.

Velocity. The Brownian component of the motion results from radial MTs in an aster
interacting with motors in all directions resulting in uniform forces, which fluctuate due to
thermal noise and microtubule dynamics [27]. The equation of motion of the particle is given
by its velocity ( _X) and net angle (θnet). The magnitude of the velocity is describedby:

_X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � Deff=t

q
; Brownian component

veff ; Directed component

8
<

:
ð1Þ

whereDeff is the effective diffusion coefficient, veff is the effective velocity and t is time. The val-
ues of Deff and veff are determined by fits to experimental data as described in the section on
data analysis and listed in Table 1.
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Fig 1. Optimizing the random walk with drift (RWD) gradient to experiment. (A) The experimentally

measured 2D trajectories of MTOCs from mouse oocytes (from previous work [9], replotted based on raw data

provided by the authors) are modeled by (B) a 2D RWD model with the concentric cytoplasmic and chromatin

regions of radius rcyto and rchr respectively. The cytoplasmic motility of MTOCs from their initial positions (open

circle) to final positions (closed circle) is driven by a field of drift (small arrows). (inset) The direction of motion is

determined by the Brownian (θdf) and directed (θdr) components. (C) The functional forms of the fields of

attraction, �að
~X Þ (blue) and repulsion, �rð

~X Þ (red), as a function of radial distance to chromatin (r) is determined by

the respective r1/2 and s values. The optimized gradient results in (D) XY trajectories from simulation (colors

indicate individual tracks), (E) directionality (χ) (mean ± s.d.) as a function of radial distance from simulation (red)

compared to experiment (black) and (F) the frequency distribution of capture time (tc) from simulation (black)

compared to experiment (grey).

doi:10.1371/journal.pcbi.1005102.g001

Table 1. RWD model parameters. Parameters are used from literature and fits to experimental data.

Parameter Value Reference

Model geometry

Oocyte radius (rcell) 40 μm [9]

Chromatin radius (rchr) 10 μm [9]

RWD model

Total simulation time (T) 8000 s [8, 9]

Step time (δt) 0.1 s Optimized for numerical accuracy

No. of MTOCs (Np) 100 [8, 9]

Effective diffusion coefficient (Deff) 0.006 μm2/s Fit to experiment (S1A and S1B Fig)

Effective velocity (veff) of directed motion 0.008 μm/s Fit to experiment (S1A and S1C Fig)

doi:10.1371/journal.pcbi.1005102.t001
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Direction. The net angle (θnet) of motion, which governs the direction of motion, is deter-
mined by:

ynet ¼
ydf ¼ randð0; 2pÞ; Brownian component

ydr ¼ f ðXC�!Þ; Directed component

(

ð2Þ

where θdf is the diffusive and θdr the directed angle. The angle θdf can take random values uni-

formly distributed between 0 and 2π, while θdr is determined by the angle of the vector XC
�!

between the particle (~X) and the center (~C) of the cell (Fig 1B).
Drift field. Sub-cellular transport has been successfullymodeled in previous work by com-

bining Brownian motion and directed transport [38]. In our model, the Brownian and directed
components are spatially determined.Here, two radially symmetric fields of drift, one repulsive
and one attractive, were modeled to represent the effective forces acting on the MTOCs. The
attractive field resulting in centrosomal aster convergence in Xenopus oocytes towards chroma-
tin [5], was modeled by a sigmoid gradient [7, 27], A similar functionwas tested for the model
of mouse oocytes. Since the attractive (�að~XÞ) and repulsive fields (�rð~XÞ) determine the
nature of motion, depending on the position of the particle in space, the net velocity of a parti-
cle ( _Xnetðx; yÞ) is given by:

_Xnetðx; yÞ ¼ �a � veff þ ð1 � �aÞ � _Xcðx; yÞ ð3Þ

where _Xcðx; yÞ is the velocity at the cell cortex determined by the weighted average of repulsion
and Brownian motion. _Xc is determined by:

_Xcðx; yÞ ¼ �r � veff þ ð1 � �rÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � Deff=t

q
ð4Þ

In this model, attraction originates from the central chromatin, since the removal of the
nucleus in previous experiments resulted in MTOCs losing their directionality of motion [9,
39]. The repulsion from the cell cortex, is based on models of MT-aster pushing at the cell cor-
tex as a mechanism of centering in multiple cell types [28, 29]. MTOCs undergo Brownian
motion when neither attraction nor repulsion are acting on them. The net angle θnet(X) is the
circular weighted average [40] of θdf and ydrð

~XCÞ, weighted similarly to the velocity magnitude
(Eqs 3 and 4).
The fields of �að~XÞ and �rð~XÞ are modeled in 2D by radially symmetric functions depen-

dent solely on the distance r from chromatin. A modified sigmoid gradient was tested, based
on previous experimentalmeasurements of long-range gradients acting on MTs around chro-
mosomes in Xenopus spindle assembly [5–7] and theoretical models testing their form [25, 26]
and their role in centrosome directionalmotility [27].
The field (ϕ) of either attraction (ϕa) or repulsion (ϕr) is determined by:

� ¼
1

1þ e½ðr� rð1=2ÞÞ=s�
ð5Þ

where r is the distance- for ϕa, r = 0 at the chromatin edge and for ϕr, r = 0 at the cell boundary.
r1/2 is the distance at which the function takes the half-maximal value and 1/s is the steepness
factor. While exponential gradients were also tested, they failed to reproduce the spatial trend
in experimental data and are not shown here. Representative gradients of ϕa and ϕr are plotted
as scaled values between 0 and 1 (Fig 1C).
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Mechano-chemical model of MT-motor interactions

Amechanistically detailedmodel was developed using Cytosim [41], a C++ Langevin dynamics
simulation engine, by building on previously developedmodels of MT-mechanics [14, 42],
polymerization kinetics [7, 25] and motor interactions [20–24, 26, 27, 43]. To test what mini-
mal components will produce the observed centripetalmotility of MTOC asters, a model of an
MT stabilization gradient describedpreviously [27] was developed by mapping the gradient
shape optimized in the RWD model. This scenario was compared with scenarios where the gra-
dient consisted of immobilizedminus-endedmolecularmotors. These biased ‘search-and-cap-
ture’ scenarios were contrasted with self-organized scenarios which lacked any directional bias,
i.e. diffusiblemotor-complexes and MTOC pushing from the cell boundary. The model is
implemented in an oocyte cell geometrywith MT polymerization dynamics and mechanics as
well as discrete stochastic molecularmotors that are either immobilized or diffusible.

Cell geometry. As before the oocytewas modeled in a 2D circular geometrywith a con-
centric chromatin region. The chromatin region here is not treated as an absorber in this
model, unlike in the RWD model.

MT polymerizationdynamics and mechanics. MTs were modeled as discrete polymers
undergoing dynamic instability- stochastic switching between growth and shrinkage phases-
based on the four-parameter model [44, 45]. Since dynamic instability parameters of meiosis I
mouse oocytes are not reported, values were taken frommeasurements made on centrosomal
MTs in mitotic pig kidney cells, which have average MT lengths of 3.2 μm [46], very similar to
the average length of MTs in mouse meioticMTOCs (<L>*3 μm) [2, 3, 33]. The flexibility
of the simulated MTs is defined by a combination of bendingmodulus (κ), typical cytoplasmic
viscosity and thermal energy. The values of these parameters were taken from literature
(Table 2), from the mouse oocytes or related systems, if mouse data was not available.

MTOCs. MTOCs were modeled as hollow circular structures of radius 0.2 μm, initialized
randomly throughout the cytoplasmic region. EachMTOC had NMT number of MTs uni-
formly distributed radially around the centrosome, forming an aster. MTOCs can move
throughout the cell interior.

Motor mechanics. Molecular motors were modeled as describedpreviously [27, 42] as dis-
crete particles with properties taken fromminus-end directed dynein-likemotors moving at a
velocity vm. Motors bind stochastically to MTs at an attachment rate rattach only if the distance
between them is less than a threshold distance of attachment (dattach). Detachment occurs at a
rate rdetach. Motors bound to MTs behave like Hookean springs with a spring constant (kmot),
experiencing a extension force (fex) parallel to the filament if attached to a motile filament. The
rate of detachment increases with extension as: rdetach ¼ r0detach � e

jfex j=f0 (based on Kramers theory
[47]), where r0detach is the constant basal detachment rate and f0 stall force. A separate r

end
detach rate

accounts for the rate at which motors detach from the end of a filament- here it is set to a value
similar to r0detach. As fex increases to values approaching f0, motor step sizes are expected to
change, referred to as the ‘gear-like’ behavior of dynein [48]. This is modeled by a piece-wise
approximation, as previously described [27, 49]. The parameters of motor mechanics, when
available, are taken from experimentalmeasurements of dynein (Table 2). In the absence of
reported values estimates were used. Immobilizedmotors bind to microtubules and generate
forces on the MTs causing their movement. Conversely, diffusiblemotor complexes with diffu-
sion coefficientDc, are modeled as crosslinkers [23], which can bind two different microtu-
bules. Since aster have minus-ends at the center, cross-linkingminus-end directedmotility of
the motors results in coalescence of the MTOCs.

Aster motility. MTOC asters move due to a net force calculated by resolving multiple
forces acting on the MTs (using a finite difference scheme to solve the Langevin equation of
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motion in Cytosim [42]) which are: (a) fbend, arising due to bending of growingMT filaments
contact the rigid cell boundary and scaled by the bendingmodulus of MTs (κ) [11, 12, 50]; (b)
f iex, the extension force generated when immobilizedmotors bound to MTs walk on the fila-
ment and are stretched by length x, experience a restoring force f iex ¼ kmot � x, resulting in fila-
ment motion [42]; (c) f cex, the motor-complex of diffusible tetramericmotors have two binding
sites separated by a spring of stiffness kmot. Complexes that are simultaneously bound to two
MTs, undergo stretching. The restoring spring force brings the twoMTs close and results in
clustering [20, 22, 23]; (d) fdiff, the diffusive force is a random normally distributed force [42];
and (e) fdrag, the drag force acting on the MTs resulting from the translational and rotational
drag forces on the individual points representing the filament [42] based on the cytoplasmic
viscosity (η). Parameters are reported in Table 2.

Methods

Data analysis. Experimental 2D trajectories of multiple MTOCs in mouse oocytesmeiosis
I describedpreviously by Schuh and Ellenberg [9] with Δt� 3 to 4 minutes) ranging between
pre- and post-NEBD stages (data kindly shared by M. Schuh) were normalized by origin shift

Table 2. MT-motor model parameters. The mecho-chemical parameters of motors were based on reported values for dynein, while motor densities were

estimated. MT polymerization dynamics and mechanics is taken from literature, while cell geometry parameters are identical to Table 1.

Parameter Value Reference

Filament unit size 0.5 � 10−6 m [23]

Time step 0.01 s [23]

Total time 1200 s [9]

Cytoplasmic viscosity (η) 0.05 Pa � s [51]

Microtubule bending modulus (κ) 2 � 10−23 N �m2 [52]

Thermal energy scale (kBT) 4.1 � 10−21 N �m -

MTOC Parameters

Number of MTOCs per oocyte 80 [9, 34]

Number of MTs per MTOC (NMT) 20-120 [9, 34], estimate

Mean MT length (<L>) 3.2 μm [3, 9, 34]

MT polymerization dynamics

Cytoplasmic; Stabilized

Growth rate (vg) 0.178; 0.178 μm/s [46], estimate

Shrinkage rate (vs) 0.205; 0.205 μm/s ”

Catastrophe frequency (fcat) 0.075; 0.0397 1s−1 ”

Rescue frequency (fres) 0.023; 0.0122 1s−1 ”

Motor parameters

Motor stiffness (kmot) 0.1 pN/nm [53]

Motor (dynein) speed (vm) 2 μm/s [54–56]

Attachment rate (rattach) 12 s−1 [27]

Basal detachment rate (r 0detach) 1.5 s−1 [27]

Motor stall force (f0) 2 and 7 pN [48, 55–57]

Attach distance (dattach) 0.02 μm/s [27]

End detach rate (renddetach) 1 s−1 [27]

Diffusion constant of motor-complexes (Dc) 20 μm2/s [23]

Immobilized motors per oocyte (Nim) 102 to 104 Estimate

Diffusible motor complexes per oocyte (Ncm) 103 to 105 Estimate

doi:10.1371/journal.pcbi.1005102.t002
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to the respective end-points. Thus, multiple experimental trajectories could be compared. For
comparison with experiment, simulated trajectories were down-sampled to a time-interval
comparable to experiment (Δt = 3.5 minutes), and the followingmeasures of motility were
evaluated from both experimental and simulated data:
Motility statistics: The instantaneous velocity v = δL/δt and directionality or tortuosity (χ)

was estimated as χ = dnet/L. A value χ = 1 indicates directionalmotion, while χ* 0 indicates a
random (tortuous) path. The time taken by MTOCs from their time of nucleation to arrive at
the edge of the central chromatin region is used to calculate a ‘capture time’ from both experi-
ments and simulations. The mean square displacement (msd) of experimental and simulated
trajectories was estimated by:

hDr2i ¼ h rðtÞ � rðt þ dtÞ½ �
2
i ð6Þ

where r is the displacement, t is the time point, δt is the time increment. A sliding window of δt
from the smallest simulated time step to 3/4th of the trajectory length was used [27]. This
empirically determined cut-off reduces artifacts arising from the fact that the number of steps
of time-length greater than this threshold are extremely small [58, 59].
In order to estimate input parameters for the RWD model (Eq 1), the msd profiles of experi-

mentally measuredMTOCs were fit to the model of diffusion and transport:

< r2 >¼ 4 � Deff � dt þ ðveff � dtÞ
2

ð7Þ

On the other hand, the msd output from the motor-MT interactionmodel (Models section)
were quantified by fitting to an ‘anomalous diffusion’ model:

< r2 >¼ 4 � D0 � ta ð8Þ

to estimate the apparent diffusion coefficient (D0) and the anomaly parameter (α) as described
previously [27] (S1 Text). All data fitting was performed using the trust region reflective least
square fitting algorithm implemented in theOptimization Toolbox of MATLAB (Mathworks
Inc, USA).

Simulations. The RWD simulation time steps were optimized for numerical stability, by
simulating a normal random walk (α = 1) with no boundary conditions and minimizing the
error in input and fit diffusion coefficient (D). Simulations with typically 100 particles were
run for 8 � 103 seconds and took*20 minutes. The explicit MT-motor model (Cytosim) with
80 MTOCs was run for 1.2 � 103 seconds, typically requiring*8 hours on a 12 core Intel Xeon
machine with 16 GB RAM.

Model optimization to experiment. The parameters of the model were optimized by a
rank minimizationmethod based on a modifiedweighted root mean square error (�) of simula-
tions as compared to experiment. Only one published dataset by Schuh and Ellenberg [9], has
reported detailed XY over time trajectories of MTOC centering motility during mouse oocyte
maturation, as a result of which quantitative model optimization was performed on this dataset
(kindly provided by M. Schuh). The error (�(k)) for a parameter set k was estimated between
the ith experimentallymeasured (ei) and simulated (si) values by:

�ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
Xn

i¼1

wi � ðei � siðkÞÞ
2

s

ð9Þ

The weight (wi) was determined based on whether the simulated value was within one σ of the
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average experimentalmeasure or outside that range:

wi ¼
ni=nmax si8ðei � sdÞ

wm si � ðei � sdÞ

(

ð10Þ

wherewm = 2, ni is the number of experimental data-points for the ith value and nmax is the
maximal number of data-points in experiment. This weighting scheme allows us account for
the increased uncertainty in experimentalmeasurements with fewer data points. The choice of
wm was set empirically to 2 to ensure a high penalty (since ni/nmax� 1). For each parameter set
the � of multiple variables (v) were ranked (Rv(k)). The directionality (χ) distribution with dis-
tance (r) and frequency distribution of capture times (tc) were used to calculate errors. The
sum rank, Rs = Sv Rv(k) was minimized to obtain a parameter set, referred to as optimal.

Results

RWD simulated MTOC motility compared to experiment

The experimental trajectories of MTOCs show a distinct centripetalmotion as seen in the
time-projected trajectories (Fig 1A). The input parameters for diffusive and directedmotion in
the RWD model (Fig 1B) were obtained from fitting Eq 7 to experimentalmsd profiles (S1A
Fig) and obtaining the meanDeff (S1B Fig) and veff (S1C Fig). As a result, the nature of the cen-
tripetal motility depends solely on the parameters determining the field of drift.We optimize
the parameters that determine the shapes of both attractive (ϕa) and repulsive (ϕr) fields (Fig
1C) by scanning 600 possible combinations, and minimizing the sum rank of errors (S2A Fig)
obtained from the ranked errors (�) between simulated and experimental values of χ and tc.
Our minimization scheme identifies the optimal gradient to be a long range attractive gradient
(r1/2 = 10 μm and s = 1) and a short range repulsive gradient from the cell boundary (r1/2 = 0
μm and s = 2) based on directionality and capture time.While the error (�) minima do not
coincide (in terms of gradient parameters) between χ (S2B Fig) and tc alone (S2C Fig), our
sum-rank scheme gives us a global optimum. The outputs of such a gradient result in XY tra-
jectories which are directed inwards at the cell boundary, random in the mid-zone and directed
closer to chromatin (Fig 1D), qualitatively comparable to experiment (Fig 1A). Quantitative
comparisons between experimental and simulated χ profile reflects this trend in motility- parti-
cles at the cell boundary and near chromatin are more directed, than those in the mid-zone
(Fig 1E). The simulated capture time distribution also matches with experiment (Fig 1F). In
order to understand the mechanism underlying the experimentalmotility observed, trajectories
were further analyzed for their time-dependence.

Pushing and pulling profiles in MTOCs transport

The experimentallymeasuredMTOCs have heterogeneous distance-time profiles, with some
MTOCsmoving rapidly in< 40 min, while others undergo a delayed (> 40 min) inward
movement (Fig 2A). The optimized RWD model profiles qualitatively match those from exper-
iment. In previous work, distance-time plots with a sigmoid profile have been interpreted to
mean pulling forces are at work, while a parabolic has been interpreted to mean pushing is at
play [15]. Here, we use a fit functionwith three parameters, n: a measure of the shape of the
profile (n> 1: sigmoid and n� 1: parabolic), Thalf: the time at which the distance travelled is
half-maximal, and dmax: the maximal distance travelled, as follows:

dðtÞ ¼ dmax � t
n=ðTn

half þ t
nÞ ð11Þ

The experimental and RWD simulation distance-time plots were fit to obtain dmax, Thalf and n.
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A value of n> 1 is taken to indicate pulling, while n� 1 is taken to indicate pushing. Represen-
tative data from experiment (Fig 2C) chosen based on their nucleation position close to chro-
matin (dn = 7.05 μm), mid-way in the cytoplasm (dn = 15.49 μm) and close to the cell
membrane (dn = 26.36 μm), show an apparent pattern in the n values- high in the mid-zone
and low close to chromatin and near the cell boundary. Representative plots from the opti-
mized RWD simulations (Fig 2D) with dn = 7.03 μm, dn = 14.01 μm and dn = 24.88 μm show a
similar trend in the values of n. When the n from all experimental data (S3 Fig) is compared to
simulated fits for different positions of nucleation, a qualitative match is observed (Fig 2E). The
n value from simulations is higher in the mid-cell region as compared to near chromatin or at
the cell boundary. This can be understood in terms of the sharp transition in the attractive gra-
dient of drift (ϕa) at r� 15 μm, resembling a ‘pulling’ process. The phenomenological model
does not allow an interpretation of the origin of pushing or pulling forces. We therefore pro-
ceeded to add detailedmolecular-motor and MT polymerization dynamics to the model to
make experimentally testable predictions about the system.

Mechanistic models of MTOC centering: Gradient and Self-Organized

Models

The RWD model predicts two drift fields- attractive from the center and repulsive from the cell
boundary- are required to reproduce experimental statistics. Here, we proceed to test molecular
mechanisms which combine molecularmotors, MT-dynamics and mechanics of MTs and

Fig 2. Distance travelled by MTOCs in experiment and simulation. The distance travelled from the site

of nucleation is plotted as a function of time from (A) experiment and (B) optimized RWD gradient model.

Colors indicate individual tracks. Representative fits (black line) to Eq 11 of data from (C) experiment and (D)

simulation. Blue and red indicate the axes which scale the respective distance-time graphs. dn is the distance

from chromatin where the MTOC is nucleated and n is the cooperativity coefficient from the fit. (E) The fit

values of n from experiment (blue) and simulation (red) are plotted as a function of dn. The goodness of fit R2

> 0.7 for all plots.

doi:10.1371/journal.pcbi.1005102.g002
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membrane interactions, with the aim of developing a mechano-chemical understanding of the
effective drift fields.We categorize these mechanisms into two types:

1. Self-organized

2. Gradient-based

We then systematically evaluate plausible mechanisms and evaluate them for their ability to
result in MTOCs finding the center of the oocytewithin an experimentally observed time-scale
(*20 min).

(i) Self-organizedmechanisms. (a) Cortical pushing. In somatic cells the MT-asters find
the center of a cell entirely based on pushing interactions at the cell cortex [32]. We test if push-
ing from the cell boundary alone, could result in MTOC centering, while maintaining uniform
MT polymerization and immobilized dynein-likemotors (Fig 3A). MTOCs at the start of the
simulation are localized randomly throughout the oocyte (Fig 3B). However even after 20 min-
utes, asters did not move centripetally (Fig 3C, S1 Video).
(b) Clustering motors and cortical pushing. Based on the self-organized centripetal motility

of MTOCs observed experimentally in mouse oocytes, clustering motor complexes had been
proposed to be the major driver of MTOCmotility to the center of the cell [9]. As a result, we
modeled diffusibleminus-end directed (dynein-like)motor complexes uniformly in the cyto-
plasmic region (Fig 3D and 3E). These complexes couple two nearby MT filaments and as a
result of minus ended-motility, result in clustering of the asters (since asters have their minus-
ends at the MTOC center). In this scenario, dynamic instability parameters were uniform and
no immobilizedmotors were modeled. The complexes diffuse through the whole cell including
the chromatin region within� 30 s, mimicking start of NEBD (S2 Video). However even after
20 min of simulations, only a small fraction of the simulated MTOCs are inside the chromatin
region (Fig 3F, Table 3).

(ii) Gradient-basedmechanisms. (a) MT dynamic instability gradient. Based on evidence
of a gradient of dynamic instability in multiple cell types [5, 7, 10, 36], we tested a gradient of
fcat and fres as a mechanism for centering of asters, while maintaining a uniform surface-immo-
bilizedmotor distribution (Fig 3G) and randomMTOC nucleation (Fig 3H). However, this too
did not result in a perceptible increase in accumulation of MTOCs at the chromatin center at
the end of 20 minutes (Fig 3I, Table 3, S3 Video).
(b) Dynein motor gradient. It was only whenmotors were localized in a chromatin-centered

sigmoid gradient and dynamic instability parameters were homogeneous (Fig 3J), did the ran-
domly nucleated MTOCs (Fig 3K) dramatically converge to the center (Fig 3L, S4 Video).
Thus, a minimal model of asymmetric pulling forces resulting from a gradient of immobi-

lizedmotors can move MTOCs to the center of the cell in a time-scale comparable to experi-
ments (*20 min). However, a quantitative comparison of the simulation statistics with
experiment is necessary to understand the critical parameters in this model.

Model sensitivity to stall-force and density of motors and MTs per aster

In the previous section, qualitatively, self-organizedmechanisms of MTOC centering could not
drive centripetal motility. The spatially binned directionality (χ) of simulated MTOCs in the
absence of any gradient further quantifies this (Fig 4A). Neither tetramericmotor complexes,
nor uniform surface immobilizedmotors and pushing at the cell boundary result in a trend in
χ comparable to experiment. Cross-linking by motor complexes of different stall forces (f0 = 2
and 7 pN) and densities (Nc

m ¼ 103 and 104 motors/oocyte)were tested and higher stall forces
with high densities result in high values of χ throughout the cell (> 0.5). A directional bias in
the form of a field of fcat and fres (based on Eq 5) resulting in asymmetricMT lengths, also fail
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Fig 3. MT-motor model scenarios. (Left column) The distributions of fcat (red), fres (blue) and motor density

of immobilized minus-ended motors (green) and (at t = 0) diffusible minus-ended motor complexes (purple)

are plotted as a function of radial distance from the oocyte center. (Middle column) Simulation output at t = 0

minutes and (Right column) t = 20 minutes with MTOCs (grey) and a concentric nucleus (blue circle) with

immobilized minus-ended motors (green dots) and diffusible tetrameric motor complexes (purple dots).

Scenarios simulated: (A, B, C) Uniform distribution of fcat and fres and surface-immobilized motorsNim ¼ 103
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to reproduce the directionality trends (Fig 4B). Confirming our qualitative observations from
the simulation visualization, only a gradient of motors (f0 = 7 pN,Ni

m ¼ 103) can reproduce
most of trend in directionality as a function of distance (Fig 4C and 4D).
In the absence of experimental estimates of the number of motors and their stall forces from

meiotic mouse oocytes,we explore two extreme values of f0 (2 and 7 pN) reported in literature
for dynein and scanNi

m over thee orders of magnitude.We find high density (N
i
m ¼ 104

motors/oocyte) of weakmotors (f0 = 2 pN) (Fig 4C) and a lower density (Ni
m ¼ 103 motors/

oocyte) of strong motors (f0 = 7 pN) (Fig 4D), can both reproduce experimental profiles of
directionality. The proportion of MTOCs captured at the chromatin boundarywas evaluated
by following the distance of MTOC centers as they entered the chromatin mass. Strikingly the
proportion of MTOCs captured in the first 20 minutes of simulation from the motor gradient
with immobilizedmotors of f0 = 7 pN and Ni

m ¼ 103 most closely matched experiment
(Table 3). However, the mean velocity values from simulations were insensitive to either f0 = 2
or 7 pN and motor densities over a rangeNm = 102 to 104 motors/oocyte (Table 4).
Additionally to test how the motility was affected by the total number of MTs per aster in

the scenario of a motor gradient, we examined the χ and<v> of simulated MTOCs which
were initialized at a distance of 15 μm from the chromatin edge. As a result we expect these
asters to experience the maximal force asymmetry, as they are at the lower end of the motor
gradient.We find for increasing motor densities (Ni

m) directionality χ continues to increase,
but increasingNMT per aster appears to rapidly saturate the χ value for any givenNi

m value for
both f0 = 2 and 7 pN (Fig 5A and 5B). IncreasingNi

m leads to a marginal increase in the mean
velocity (<v>) for a fixedNMT value. However increasing the value of MTs per aster, to our
surprise, does not affect<v> (Fig 5C and 5D). We interpret this to be the result of the uniform
radial distribution of MTs in the aster and a tug-of-war arising from it.

motors/oocyte, f0 = 7 pN (green dots). (D, E, F) Diffusible minus-end directed motor complexesNcm ¼ 103

motors/oocyte, f0 = 7 pN (purple dots) and uniform fcat and fres. (G, H, I) Gradients of fcat and fres with uniform

immobilized minus-ended motorsNim ¼ 103 motors/oocyte, f0 = 7 pN (green dots). (J, K, L) Gradient model of

motor density withNim ¼ 103 motors/oocyte, f0 = 7 pN and uniform fcat and fres values. Scalebar 10 μm.

doi:10.1371/journal.pcbi.1005102.g003

Table 3. Percentage of MTOCs captured. After 20 min simulation time the proportion of MTOCs captured were evaluated for the different scenarios in the

mechanistic models and compared to experimental values on a similar time-scale. Values are estimated from 10 runs of a typical simulation with 80 MTOCs

each.

Model Motor type Localization f0 (pN) Nm % captured

Self-organized scenarios

No gradient Minus-end directed Uniform, immobilized 2 103 0.5

7 103 3.125

Clustering Minus-end directed, tetrameric Uniform, diffusible 2 104 0.375

7 104 0

Gradient scenarios

Stabilization gradient Minus-end directed Uniform, immobilized 2 103 2.375

7 103 8

Motor gradient Minus-end directed Gradient, immobilized 2 103 18.5

7 103 32

Experiment 30.43

doi:10.1371/journal.pcbi.1005102.t003
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In order to further understand the role of motor-density changes and their effect on MTOC
motility, we evaluate the random walk statistics of the motility and compare it to experiment.

A hybrid model of a motor-gradient and self-organized clustering

enhances MTOC centering

Simulations of multiple gradient forms, motor types and densities in this work suggest a
motor gradient as a minimal model to understand the centering motion of MTOCs in

Fig 4. Directionality of simulated MTOCs compared to experiment. The distance dependence of binned

directionality (χ) from experiment (black line) is compared to multiple simulated scenarios. (A) Uniformly

distributed motors which are either immobilized weak (f0 = 2 pN) (red) or strong (f0 = 7 pN) (green) dynein-like

motors withNim ¼ 103 motors/oocyte are compared to tetrameric diffusible minus-end directed dynein like

motor complexes with f0 = 2 pN (blue) and f0 = 7 pN (orange), withNcm ¼ 104 motors/oocyte. (B) The χ
resulting from a gradient of fcat and fres (green) is compared to a gradient of the immobilized motors (Nim ¼ 103

motors/oocyte, f0 = 7 pN) (blue). In a gradient of immobilized motors with (C) f0 = 2 pN and (D) f0 = 7 pN the

radial distribution of χ is plotted for increasing motor densities: Nim ¼ 102 (purple), 103 (green) and 104

motors/oocyte (blue). All values of χ are mean ± s.d. Simulations were averaged from 10 runs with 80

MTOCs each.

doi:10.1371/journal.pcbi.1005102.g004
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mouse meiosis I oocytes.However, we were unable to reproduce the experimentally observed
χ* 0.5, whenMTOCs were 10-20 μm from the chromatin edge. Interestingly, the presence
of the self-organized clustering motors (f0 = 7 pN,Nc

m ¼ 104 motors/oocyte) alone resulted in
simulated χ values that matched experiment, in the radial distance between 10 and 20 μm

Table 4. MTOC velocity in a motor gradient. The mean instantaneous velocity (<v> ± s.d.) with increasing

motor density was calculated from 20 min simulation time and compared to experiment.

Total no. of motors (Nim) <v> (10−3 μm/s)

f0 = 2 pN f0 = 7 pN

102 4.3 ± 6.3 4.8 ± 4.5

103 4.8 ± 4.6 5.4 ± 5.7

104 5.4 ± 5.7 5.4 ± 5.7

Experiment 8.7 ± 6.0

doi:10.1371/journal.pcbi.1005102.t004

Fig 5. Effect of varying MTs per aster and motor density. MTOCs in the optimized motor gradient nucleated

at dn = 15 μm from the chromatin edge, were simulated for increasing MTs per aster (NMT): 20, 40, 60, 80, 100

and 120 (colors). (A, B) The directionality χ and (C, D) mean velocity (hvi) are plotted for f0 = 2 pN and, f0 = 7 pN

for motor densities ranging betweenNim ¼ 102 to 104 motors/oocyte (x-axis). All values are mean ± s.d. from 10

asters.

doi:10.1371/journal.pcbi.1005102.g005
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(Fig 4A), due to MTOC aggregation.We hypothesized that a hybrid mechanism combining
an immobilizedmotor-gradient with diffusible clustering motor-complexes might reproduce
the complete experimental distance-dependent directionality profile. Visually the MTOCs
appear to find the center more efficiently (Fig 6A and 6B). Here 104 clustering motors
per oocyte of stall force 2 pN were combined with 104 immobilizedmotors per oocyte and
stall force 2 pN. A systematic screen of the effect of increasing tetrameric complex density
while keeping the density of immobilized of motors constant was evaluated in terms of the
measure of directionality. The radial distance profile of χ increases in the mid-range when
clustering complex density is increased from 103 to 105 motors/oocyte (Fig 6C). Either ‘weak’
diffusible dynein-like complexes (f0 = 2 pN) with a high density (Nc

m105) or ‘strong’ motors

Fig 6. Combining immobilized and clustering motors. Simulation outputs of MTOCs (grey) motility in the

presence of a combination of diffusible tetrameric minus-ended motor complexes (Ncm ¼ 104, f0 = 7 pN) with

chromatin-centered gradient of immobilized motors (Nim ¼ 103 motors/oocyte, f0 = 7 pN) at (A) t = 0 and (B)

t = 20 minutes. (C) The χ values of aster movement resulting from increasing densities of weak (f0 = 2 pN) and

strong (f0 = 7 pN) clustering motors (Ncm ¼ 103 to 105 motors/oocyte) in the presence of a gradient of

immobilized motors with the same f0 values (Nim ¼ 104 for f0 = 2 pN andNim ¼ 103 for f0 = 7 pN). (D) The sum

rank (Rs) based on the sum of square errors (�) from χ distributions (grey) and % MTOCs captured in 20

minutes (black) from experiment are plotted in an ascending order, with the parameters of the density of

immobilized motors (Nim) and diffusible motor complexes (Ncm) plotted, assuming the f0 is constant for both.

doi:10.1371/journal.pcbi.1005102.g006
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(f0 = 7 pN) with a lower density (Nc
m ¼ 104 motors/oocyte), both result in χmatching the

experimental values in the mid-zone of the cell (10-20 μm) (Fig 6C and 6D). This result sug-
gests that while clustering alone cannot center MTOCs in oocytes, it improves the fit to
experiment.
Thus we believe our model reproduces both the qualitative and quantitative nature of the

MTOC centering motility and provides novel insights into the sensitivity of this model. It dem-
onstrates how a combination of directional cues and self-organized clustering can center small
MT asters in a large cell such as an oocyte.

Discussion

Meiotic spindle assembly in mammalian cells in the absence of centrosomes involves the nucle-
ation of MTOCs in cytoplasm and their coalescence and sorting around chromosomes, result-
ing in bipolar spindle assembly. The nucleation of MTOCs in cytoplasm and the centripetal
motility of small radial MT asters has been previously observedduring the first meiotic division
in mouse oocytes [3]. Similar convergence was also observed inDrosophila oocytes [60] and
quantitative analysis and model calculations were used to infer that directed transport for the
MTOCs was essential for the coalescence of MTOCs [61]. In Drosophila the unconventional
kinesin Ncd (minus-end directed) was implicated to play a role in this inward motility [62]. In
mouse oocyteMTOC coalescence, cytoplasmic dyneins or comparable minus-end directed
motor have been implicated in force generation for the centripetalmovement [9]. Here, we
analyze experimental data from the early stages of the meiotic maturation of mouse oocytes.
The experimental analysis is used to constrain a field of spatially inhomogeneous drift in a ran-
dom walk. The optimizedmodel of drift is used to model gradients of the motor dynein and
MT dynamic instability. By comparing the simulation outputs with experiments, we arrive at a
minimal model of a gradient of motors, essential to reproduce the experimentally observed
statistics.
The experimental statistics of the MTOCmotility frommouse oocytes are mostly represen-

tative of post-NEBD dynamics, allowing us make the simplifying assumption that the nuclear
envelope plays no explicit role in the process. The movement of these radial MT arrays appears
visually to have both an effectively diffusive and a transport component (Fig 1A). The fre-
quency distribution of velocity from experiment is long tailed and fit to a lognormal function
(S4 Fig), suggesting anomalous super-diffusive transport.While the motility had been previ-
ously described as ‘stop-and-go’ [9], we find little evidence of ‘stop’ or pause events in the
motility. Our quantification of MTOCmotility in cells, demonstrates the motility is qualita-
tively comparable to previous estimates of centrosomal aster movement observed in C. elegans
fertilization [15], MTOCs inDrosophila oocytemeiosis I [61] and centrosomal asters in Xeno-
pusmeiotic extracts [5, 27]. This suggests a common theme underlying the transport of radial
MT arrays in meiotic spindle assembly.
The distance travelled or displacement from the start-point plotted over time of MT arrays

have been used previously [15] to distinguish between “pulling” and “pushing” modes of
motility of centrosomal MT arrays during pronuclear migration. In the case of mouse meiotic
MTOCs, these plots also help to distinctly separate trajectories into two sub-populations-
those which show an initial rapid rise followed by capture (< 40 min), while others do not
move much for a long time (> 40 min) and after this delay are captured at chromatin (Fig
2A). We further improve on the work of Kimura et al. (2005) [15] by fitting the data with a
saturation model with cooperativity (Eq 11), and use it quantitatively to distinguish between
pushing (n * 1) and pulling (n> 1) mechanisms (Fig 2C). Every trajectory from experiment
was fit to obtain a profile shape (sigmoid or parabolic) term n (S3 Fig) and comparing n from
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simulation and experiment shows a pushing mode of transport (n * 1) close to chromatin
and the cell boundary, while those in the mid-range are pulled (n> 1) (Fig 2E). The distance
travelled plots from the mechanistic motor-gradient model with MT asters sorted by nucle-
ation distance demonstrate an increase after a short delay near chromatin (dn = 0 to 10 μm)
due to pulling (S5A Fig). Those in the intermediate range (dn = 10 to 20 μm) have a longer
delay and then appear to be pulled (S5B Fig). Close to the cell-boundary (dn> 20 μm) they
increase rapidly and then saturate, due to MT-pushing at the membrane (S5C Fig). Thus a
model of a gradient of chromatin-centered motors and a rigid cortex can reproduce the quali-
tative differences observed in the distance-time profiles of MTOC transport. However in these
experiments, the absence of clear ‘pulling’ in experiment (n> 1) near chromatin might have
beenmissed, since the MTOC identity is lost as it nears the chromatin. While cell cortex-
based pushing mechanisms have been demonstrated to generate centripetal movement [12,
50], the nature and localization of minus-end directed pulling motors in the oocyte remains to
be determined. Recent evidence of frommouse oocytes duringMTOC fragmentation [63]
and meiotic maturation [34] suggest dynein anchored at the nuclear envelope might influence
both processes. A careful study of dynein localization dynamics in this and related systems,
could by used to test our model prediction.
A ‘tug-of-war’ in the transport of anti-parallel MTs moving on a surface coated with motors

arises from the action of the same species of motor acting against each other, with small asym-
metries in length, amplifying the velocity of transport [64]. Two-fold length asymmetries (10
to 20 μm) have been previously observed in centrosomal asters [5, 7] and simulations of such
asymmetric asters on sheets of dyneinmotors resulted in aster transport towards chromosomes
[27]. However, the mouseMTOC radius is in the range of 2 to 3 μm and no appreciable asym-
metry of lengths has been reported [9]. In this work, neither homogeneousmotor distributions
(S1 Video), nor tetramericmotor-complexes (S2 Video), nor a dynamic instability gradient (S3
Video) result in convergence to chromatin in the*20 min time scale seen in experiment.
Taken together, a gradient of motors is necessary in a minimal model with a mouse oocyte
geometry for MTOCs to converge to the chromatin center (S4 and S5 Videos). This suggests
aster motility in meiosis I of mouse oocytes differs from that in meiosis II of Xenopus oocytes.
In the latter, length asymmetry can result in directional transport, however in mouse oocytes
the MTOC asters are*4 fold shorter in MT length, resulting in smaller forces being generated.
The motor numbers would then be insufficient to successfully resolve the tug-of-war in mouse
oocytes by a simple*2-fold changes in MT length, as seen in Xenopus oocytes. In contrast, the
gradient of immobilizedmotors result in a comparable spatial distribution of velocity for
minus-endedmotors with f0 = 2 pN (S6A Fig) and f0 = 7 pN (S6B Fig).
Spatial gradients of RanGTP [6, 65] are thought to direct centrosomal MT asters to chro-

matin during spindle assembly in meiotic extracts [5–7]. However the outcome of our simu-
lations predicts that in meiotic MTOCmotility, motor gradients are necessary. Such a
gradient could arise from self-organized diffusion and attachment of minus-endedmotors on
MTs nucleated at the chromatin periphery. In addition, the motors could be immobilized on
intracellular organelles, as shown in centrosomal aster centration in C. elegans [16]. It
remains to be seen which of these specificmechanisms results in the the chromatin centered
gradient of anchored motors. Some evidence from experiments in mouse oocytes serves to
support our motor gradient model, where pre-NEBD maturing oocytes showed a high-con-
centration of dynein motors around the nucleus [66]. More recently, evidence of dynein
localized at the nuclear periphery fragmentingMTOCs [63], suggests a validation of our
model of a chromatin centered gradient of dynein-like motors. Further testing is however
required to examine its dynamics.
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The role of chromosomes in the centering activity of MTOCs in maturing mouse oocytes
during meiotic I spindle assembly had been tested by experimentally removing the nucleus [9,
39]. The MTOCs of such oocytes have a scattered appearance and fail to assemble bipolar
spindles. While chromosomes are considered essential for meiotic spindle assembly [67], we
hypothesize that they also serve as the primary guidance cue of centripetalMTOCmotility, in
a manner comparable to other aster cell centering systems [5, 27, 36]. To test this, the spatial
organization of MTOCs in enucleated oocytes was measured using published experimental
data reported by Schuh and Ellenberg [9]. The image analysis of MTOCs positions from
experiment (S7A and S7B Fig) resulted in a radial density distribution around the cell center
(S7C Fig). This distribution is comparable to a simulation of randomly localizedMTOCs,
suggesting the chromatin serves as an important guidance cue for the centripetal motility of
MTOCs, and in it’s absence the directional motility is lost. The molecularmechanism which
converts the positional information of the chromatin into a gradient of molecularmotors,
still remains to be understood.
The msd profiles of MTOCs from simulations that were close to chromatin transition from

super-diffusive to sub-diffusivemotility (S1 Text, S8 Fig), as estimated by α, the measure of
anomalous diffusion (S8F Fig). This transition results purely from changing the single dynein
motor stall force from that reported for bovine brain cytoplasmic dynein (f0 = 2 pN) [48] to
the yeast cytoplasmic dynein (f0 = 7 pN) [56] value. The MTOC convergence in the 2 pN stall
force calculations is slow (S4 Video) as compared to when the motors had a higher stall force
(7 pN) (S5 Video) at the same motor density (Ni

m ¼ 103 motors/oocyte).Once the MTOCs
reach the center of the motor gradient, they undergo effectively sub-diffusivemovement,
unable to generate enough force asymmetry to escape.With an additional centrosomal fluo-
rescence label in mouseMTOCmotility, the intra-nuclear motility and reorganization of
MTOCs could be studied in future. This will also help better understand the subsequent bipo-
lar spindle formation and its connectionwith chromosome biorientation in meiosis I of
mouse oocytes [68, 69].
The sensitivity analysis of the gradient model demonstrates that MT number per aster does

not affect velocity and directionality of the asters. On the other hand the model is sensitive to
motor density. The motor density in 2D area-density ranging betweenNi

m ¼ 103 and 104

motors/oocyte corresponds to a physical density of� 0.2 to 2 motors/μm2 for an oocyte of
radius 40 μm. The addition of motor complexes, which cross-linkMTs and walk to the minus-
ends of the respectiveMTs, also change the dynamics of MTOC transport. At high densities of
motor complexes, the asters coalesce to a few (*10) clusters and centripetal convergence
results. Yet the directionality profiles are qualitatively different from the experimentalmeasures
(Fig 6C). While the densities of both immobilized and diffusiblemotors tested are mean area
densities, over-expression of dynein motor proteins could serve as an experimental test of our
model predictions.
A limitation of the models describedhere is that both the phenomenological and mechanis-

tic models assume a 2D circular geometry, while the mouse oocyte is a 3D sphere. So asters
finding the cell center in 3D is expected to take longer due to dimensionality in biological
search problems [70], and a further parameter optimization would be required. Our effort here
serves to reduce the search for ‘scenarios’, i.e. combinations of mechanisms such as motors,
MT-dynamic instability, gradients and clustering motors, by optimizing simulations to experi-
mental data. In future, a full 3D model would then only require parameter optimization to a
3D experimental dataset. At the other extreme, a 1D model could have further simplified the
geometry based on the radial-symmetryof the system, as has been assumed in the ‘slide and
cluster’ model of linear MT filaments in spindle assembly [71]. However this would ignore the
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orthogonal interactions betweenMTs of multiple asters, which are only possible in an explicit
2D geometry. Thus our choice of spatial dimensions is driven by an attempt to capture the
important qualitative behavior of the system, while keeping the model simple enough for clar-
ity and calculation speed.While a 3D simulations of cellular processes are more ‘complete’, it
has been suggested the choice of spatial dimensions should simplify the system to sufficiently
capture the spatial dynamics [35, 72]. A further limitation of both the phenomenological RWD
and MT-motor model is the availability of only one time-series dataset. In future, additional
experiments with mouse oocytes could help test the model predictions.While this model has
been developed to test the generality of mechanisms on the mouseMTOCmotility, it would be
useful in future to explore the relevance of this model to other aster-centering systems such as
in C. elegans [15], Xenopus [27],Drosophila [73] and sea urchin [74]. Additional mechanisms
such as a contractile actin network has been shown to drive spindle assembly in meiosis I of
starfish oocytes [18], but are ignored in this model since in experiments, it does not affect the
process [9]. Additionally the potential role of MT-dependent MT nucleation [75] remains to
be explored as a self-organizedmechanism. Testing alternative cellular geometries and addi-
tional mechanisms could in future result in a more complete exploration of MT aster centripe-
tal transport and the physical constraints. This in turn might help us better understand the
physical basis of the evolutionary diversity of aster-centering mechanisms.
The models of of MTOC centripetalmotility explored in this study, provide insights into

several aspects of the early stages of self-organized spindle assembly. For instance, the RWD
model demonstrates that for a cell of diameter� 80 μm, a simple random-walk strategy of
MTOC particles ‘search-and-capture’ at the chromosomes is insufficient within the time-scale
of spindle assembly in meiosis (20-30 min) [9], and a long-range bias in motility is essential.
The mechanistic model demonstrates that a bias of motors is minimally capable of reproducing
the dynamics. MTmass increase which could arise due to increasingMT lengths (stabilization)
[5, 6] or number (nucleation) [75], both appear to be insufficient to affect the dynamics of
motility. We also find, dynein-like clustering motor complexes, which diffuse and cross-link
MTs, at a high density result in an aggregation of MTOC asters to the cell interior. Such a self-
organizedmechanism however is inefficient in resulting in MTOC capture percentages compa-
rable to experimental values (Table 3) in comparable time-scales (� 20 min). Additionally MT
density per aster does not affectMTOC centripetal motion but the density of immobilized
motors (Ni

m) localized in a gradient does change the dynamics. Such parameters are likely to be
adjusted by cells, depending on the specific geometry and time-constraints. The results of this
study could be used to predict the nature of MTOC centripetal transport, when the size ratios
of asters to cell sizes are also comparable to the mouse oocyte.A more complete picture of the
evolutionary constraints on mechanisms driving radial MT arrays to find the center of a cell
will however require further quantitative studies from acentrosomal spindle assembly from
more organisms, as well as calculations that explore a greater parameter space.
The model presented here predicts the functional form of a drift field in agreement with

experimental data of MTOCmotility. A mechanistic model of the gradient with immobilized
minus-endedmotors minimally reproduces experimental dynamics and allows us to test the
effect of single molecule characteristics of motors on collective transport statistics. A hybrid
model with a gradient of immobilizedmotors and diffusible clustering dynein-like complexes,
combined with cortical pushing (Fig 7), satisfies all experimentalmeasures available. Measur-
ing the localization, density and mobility of dyneins in the mouse oocyte during meiosis I,
would be a useful test of the model predictions.While the model is fit to spindle assembly dur-
ing meiosis I in mouse oocytes, it also predicts the design constraints in terms of MT lengths
and the localization,mobility and density of molecularmotors whenMT radial arrays are
required to search space and undergo capture at the cell center.

Model of MTOC Centering Motility

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005102 October 5, 2016 21 / 28



Supporting Information

S1 Fig. Msd of MTOCs measured in experiment. (A) The msd (μm2) (blue line) as a function
of time is calculated (based on Eq 6) for all available MTOC trajectories from Schuh & Ellenberg
[9] and fit to an effective diffusion and drift velocity model (Eq 7). The frequency distribution of
the fit parameters (B) effective diffusion coefficient (Deff) (mean 0.006 ± s.d. 0.006 μm2/s) and
(C) drift velocity (veff) (mean 0.008 ± s.d. 0.005 μm/s) are plotted.
(TIFF)

S2 Fig. Optimizing gradient parameters. (A) All those parameter sets (k) which fell within
the top 15% of the sum of scores ranking are plotted with the component rank for capture
time (Rt(k)) (grey) and directionality (Rχ(k)) (blue). The parameter sets (k) of the top-ten ranks
are listed in S1 Table with the values of r1/2 and s for ϕa and ϕr. For a representative subset
of the optimization scheme, the error (�) in (B) χ and (C) tc were evaluated keeping the attrac-
tive gradient constant (ra

1=2
¼ 10 μm and sa = 1) and varying the repulsive gradient parameters

rr
1=2
(y-axis) and sr

2
(x-axis). The colorbar indicates the value of �.

(TIFF)

S3 Fig. Fits to distance travelledby MTOC from experiment.The distance travelled of exper-
imentally measuredMTOCs were plotted as a function of time in minutes. The plots are sorted
based on increasing distance of nucleation (dn) from chromatin. Each profile was fit to the
effectivemodel (Eq 11) to obtain a ‘cooperativity parameter’ (n).
(TIFF)

Fig 7. Mechanism of MT centering. An overview of our model of the centering motility of MTOCs (red) in a

mouse-oocyte geometry. Net forces (solid arrows) arise from: inward inward pushing due to MT bending at

the cell boundary, inward pulling due to a gradient of immobilized motors around the chromatin space (green)

and clustering by uniformly distributed diffusible clustering motors (purple). The dotted arrows indicate the

process of clustering.

doi:10.1371/journal.pcbi.1005102.g007
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S4 Fig. MTOC velocity distribution. The experimentallymeasured frequency distribution of
instantaneous velocity (based on XY-trajectories taken from Schuh & Ellenberg [9] and re-ana-
lyzed) is fit to a lognormal function. The parameters are the mean μ = 8.8 � 10−3 μm/s and vari-
ance v = 4.57 � 10−5.
(TIFF)

S5 Fig. Distance travelled in a motor gradient.MT-motor simulations in presence of a motor
gradient (f0 = 2 pN,Nim ¼ 104 motors/oocyte)were used to plot the distance travelled by the
MTOCs (z-axis) as a function of time in minutes (x-axis) and nucleation position (y-axis). The
plots represent the subset of MTOCs nucleated (A) close to chromatin (0-10 μm), (B) in the
mid-cell region (10-20 μm) and (C) near the cell boundary (20-30 μm).
(TIFF)

S6 Fig. Spatial velocity distribution. The mean velocities in μm/s (y-axis) radially binned as
a function of distance from the cell center in μm (x-axis) calculated from the MT-motor
model in an immobilizedmotor gradient with motor stall forces and densities: (A) f0 = 2 pN,
Nim ¼ 104 motors/oocyte and (B) f0 = 7 pN and Nim ¼ 103 motors/oocyte.
(TIFF)

S7 Fig. Enucleation and MTOC distributions. (A) Previous data of mouse oocyte enucleation
prior to NEBD by Schuh & Ellenberg [9] was used to automatically detectMTOCs (yellow out-
lines) and their centroids (red asterisk). Scale bar = 10 μm. (B) The 2D coordinates of these
experimentalMTOC positions were used to (C) compare the radial density distribution of
experimentallymeasuredMTOCs (red) with simulated MTOCs (black) that were localized
randomly with a uniform density.
(TIFF)

S8 Fig. Msd as a function of nucleation distance from experiment and simulation.Msd pro-
files were calculated for the experimentallymeasuredMTOC trajectories and sorted by their
nucleation distance (dn) where (A) dn� 10 μm, (B) 10< dn� 20 μm and (C) 20< dn� 30
μm. (D) The Deff and (F) α values obtained from fits to simulated msd trajectories are plotted
as a function of dn. Experimental profiles (black line) are compared to multiple scenarios in
simulation (800 trajectories per scenario) with different stall forces (f0) and motors per cell
(Nim). The values are mean ± s.d. The error between simulation and experiment, � (colorbar) is
plotted for (E) D0 and (G) α as a function of stall force (f0) and motor density (Nim).
(TIFF)

S9 Fig. Spatio-temporal trends in apparent diffusion coefficient and anomaly parameter
from experiment.The apparent diffusion coefficient (D0) and the measure of anomalous diffu-
sion (α) were obtained from fitting the anomalous diffusionmodel (Eq 8) to experimentalmsd
profiles. (A) D0 and α are plotted as a function of nucleation distance (x-axis) and (B) time
duration of the trajectory (x-axis).
(TIFF)

S1 Video. MTOC motility in the absence of a gradient. 80 MTOCs (grey) in the oocyte are
pushed inwards by the cell boundary (outer blue circle) withNim ¼ 103 immobilizedminus-
end directedmotors (green dots) with f0 = 7 pN resulting in randomMTOCmotility. No gradi-
ent originates from the chromatin (inner blue circle).
(MP4)

S2 Video. MTOC motility in the presence of diffusibleminus-endedmotor complexes. 80
MTOCs (grey) were simulated in cytoplasmic space of the 2D oocyte geometrymarked by the
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outer cell boundary (outer blue circle) and inner chromatin region (blue circle) in the presence
of minus-end directedmotor complexes (purple dots) initialized in the cytoplasmwith density
Ncm ¼ 103 motors/oocyte. These diffusiblemotors with stall force f0 = 7 pN, can cross-linkMTs
and result in clustering by walking towards the minus-ends of neighboring asters that they
crosslink.
(MP4)

S3 Video. MTOC motility in a gradient of MT dynamic instability. 80 MTOCs (grey) were
simulated in the 2D oocyte geometrywith the outer cell boundary (outer blue circle) and
Nim ¼ 103 uniformly distributed surface immobilizedmotors with f0 = 7 pN. The fcat and fres
parameters were distributed in a sigmoid gradient (Fig 3G) originating from the center of the
chromatin region (inner blue circle).
(MP4)

S4 Video. MTOC motility in a gradient of weak motors. 80 MTOCs (grey) were simulated in
the 2D oocyte geometrywith the outer cell boundary (outer blue circle) andNim ¼ 103 surface
immobilizedmotors with f0 = 2 pN distributed in a sigmoid gradient (Fig 3J) originating from
the center of the chromatin region (inner blue circle), and homogeneous dynamic instability.
(MP4)

S5 Video. MTOC motility in a gradient of strong motors. 80 MTOCs (grey) were simulated
in the 2D oocyte geometrywith the outer cell boundary (outer blue circle) and Nim ¼ 103 sur-
face immobilizedmotors with f0 = 7 pN, distributed in a sigmoid gradient (Fig 3J) originating
from the center of the chromatin region (inner blue circle).
(MP4)

S6 Video. MTOC motility in a gradient of immobilizedmotors and diffusiblemotor-com-
plexes. 80 MTOCs (grey) were simulated in the 2D oocyte geometrywith the outer cell bound-
ary (outer blue circle) and motors which are immobilized at a density of Nim ¼ 103 motors/
oocyte (green dots) in a sigmoid gradient originating from the center of the chromatin region
(inner blue circle). The diffusibleminus-end directedmotor-complexes withNcm ¼ 104

motors/oocyte (purple dots) bind to 2 MTs and walk simultaneously on them, generating a
clustering force on the MTOC asters. For both kinds of motors f0 = 7 pN.
(MP4)

S1 Table. OptimizedRWD gradient parameters.The top ten sum ranks are listed in ascend-
ing order, based on the ranks from the directionality and capture time error (�(k)), with the
corresponding parameters of the attractive (ra

1=2
and sa) and repulsive (rr

1=2
and sr) gradients (see

S2A Fig).
(PDF)

S1 Text. Msd analysis and anomalous diffusion.
(PDF)
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