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Abstract

Background: Precision therapy for lung cancer will require comprehensive genomic testing to identify actionable targets as
well as ascertain disease prognosis. RNA-seq is a robust platform that meets these requirements, but microarray-derived
prognostic signatures are not optimal for RNA-seq data. Thus, we undertook the first prognostic analysis of lung adenocarci-
noma RNA-seq data and generated a prognostic signature.
Methods: Lung adenocarcinoma RNA-seq and clinical data from The Cancer Genome Atlas (TCGA) were divided chronologi-
cally into training (n¼255) and validation (n¼157) cohorts. In the training cohort, prognostic association was assessed by
univariate Cox analysis. A prognostic signature was built with stepwise multivariable Cox analysis. Outcomes by risk group,
stage, and mutation status were analyzed with Kaplan-Meier and multivariable Cox analyses. All the statistical tests were
two-sided.
Results: In the training cohort, 96 genes had prognostic association with P values of less than or equal to 1.00x10-4, including
five long noncoding RNAs (lncRNAs). Stepwise regression generated a four-gene signature, including one lncRNA. Signature
high-risk cases had worse overall survival (OS) in the TCGA validation cohort (hazard ratio [HR] ¼ 3.07, 95% confidence inter-
val [CI] ¼ 2.00 to 14.62) and a University of Michigan institutional cohort (n¼67; HR¼2.05, 95% CI¼1.18 to 4.55), and worse
metastasis-free survival in the TCGA validation cohort (HR¼3.05, 95% CI¼2.31 to 13.37). The four-gene prognostic signature
also statistically significantly stratified overall survival in important clinical subsets, including stage I (HR¼2.78, 95% CI¼1.91
to 11.13), EGFR wild-type (HR¼3.01, 95% CI¼1.73 to 14.98), and EGFR mutant (HR¼8.99, 95% CI¼62.23 to 141.44). The four-
gene prognostic signature also stood out on top when compared with other prognostic signatures.
Conclusions: Here, we present the first RNA-seq prognostic signature for lung adenocarcinoma that can provide a powerful
prognostic tool for precision oncology as part of an integrated RNA-seq clinical sequencing program.

Lung cancer is the leading cause of cancer death in the United
States, with an estimated 158 000 deaths in 2015, accounting for
27% all cancer deaths and more than colon (�50 000), breast (�41
000), and prostate cancer (�28 000) combined (1). Lung adenocar-
cinoma is the most common histology, and rates are increasing.

Individualized lung cancer therapy primarily consists of tyrosine
kinase inhibitors (TKIs) for EGFR- and ALK-altered tumors and,
more recently, MET and ROS1 alterations (2). Individualized ther-
apy based on prognostic information has focused on early-stage
lung adenocarcinoma, as patients with mediastinal nodal
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involvement unfortunately have poor outcomes even with high-
intensity tri-modality therapy, and five-year survival after sur-
gery alone remains poor at 73% in stage IA and 58% in stage IB
(3). Though early-stage patients represent a minority currently,
expanded lung cancer screening is likely to increase this propor-
tion (4). Thus, continued efforts to improve management of
early-stage lung adenocarcinoma are warranted.

In the genomics era, there have been numerous efforts to
use unbiased microarray methods to develop prognostic signa-
tures in lung cancer, dating back to 2002 (5,6). Although there
has been some question about the reproducibility and validity
in mutation subsets (7), two early-stage lung adenocarcinoma
prognostic signatures have been commercialized and are avail-
able clinically, though adoption has been slow (8). Logistically,
these signatures require a separate clinical test that, along with
separate clinical tests for targetable alterations, result in in-
creased cost and specimen handling. Perhaps more impor-
tantly, the microarray technology used in those studies is not
reflective of the current view of the genome, as it assays only
protein-coding genes. In a recent large-scale bioinformatics ef-
fort, our group has computationally predicted that long noncod-
ing RNA (lncRNA) genes are several-fold more numerous than
protein coding genes, and often cancer- and/or lineage-specific
(9). These characteristics make lncRNAs prime biomarker candi-
dates, leading to our characterization of the lncRNA SChLAP1 as
a promising single-gene prognostic biomarker in prostate can-
cer (10). Combining protein- and noncoding genes may prove to
increase the robustness of molecular biomarkers.

RNA sequencing (RNA-seq) represents a single comprehen-
sive solution to many of the drawbacks of existing molecular as-
says. In a single platform, RNA-seq can comprehensively assay
for an array of alterations, including point mutations and gene
fusions, as well as comprehensively assay gene expression for
prognostic and/or predictive genomic signatures and other ap-
plications (11). Additionally, exome-capture RNA-seq allows for
accurate expression profiling in archival formalin-fixed paraf-
fin-embedded samples (12). In this study, we utilized RNA-seq
data from a lung adenocarcinoma cohort to identify a robust
prognostic gene signature that can be directly incorporated into
an RNA-seq clinical test for prognostic prediction.

Methods

Clinical Cohorts and RNA-Seq and Alteration Data

TCGA lung adenocarcinoma RNA-seq data was downloaded and
processed with the Tuxedo pipeline as previously described (13).
Briefly, reads were aligned to hg19 with Tophat2 (2.0.4) (14), and
FPKM values generated based on the Ensembl v69 assembly
(http://www.ensembl.org) (15). As previously described, the valida-
tion cohort consisted of 67 lung adenocarcinoma samples that
were surgically resected and subjected to RNA-seq at the
University of Michigan (5,16). Briefly, size-selected (350 bp) tran-
scriptome libraries were polymerase chain reaction (PCR)–ampli-
fied (14 cycles) and analyzed by Agilent 2100 BioAnalyzer (Santa
Clara, CA, USA). After paired-end 100 bp sequencing (2 x100 bp) on
an Illumina HiSeq 2000 (San Diego, CA, USA), Illumina BaseCall–fil-
tered reads were used and deposited in the Sequence Read
Archive (SRA) as SRP048484. EGFR and KRAS nonsilent mutation
cases were extracted from the raw mutation data files down-
loaded from the Broad GDAC FireHose (gdac.broadinstitute.org).
ALK fusion cases were identified in the TCGA Fusion gene Data
Portal (17). Samples from TCGA data set were divided

chronologically into training and validation sets, and we did not
find any bias in TCGA test and validation set in case bias analysis.

Evidence Before this Study

Pubmed was searched for articles relating to prognostic signa-
tures in lung adenocarcinoma using the search expression
“prognostic [Title/Abstract] AND signature [Title/Abstract] AND
lung [Title/Abstract] AND (adenocarcinoma [Title/Abstract] OR
non-squamous [Title/Abstract])” with no filters. This search re-
turned over 40 articles, which were reviewed, and reports on 12
prognostic signatures, including two that have been converted
into a commercial PCR-based platform, all of which were based
on microarray studies. To the original search expression was
added “AND (rnaseq[Title/Abstract] OR rna-seq[Title/Abstract]
OR rna-sequencing[Title/Abstract] OR rna seq[Title/Abstract] OR
rna sequencing[Title/Abstract]),” which returned no results to
confirm that no RNA-seq prognostic signatures have been de-
veloped in lung adenocarcinoma.

Signature Generation and Statistical Analysis

TCGA clinical data was downloaded from the TCGA data portal
and manually curated (Supplementary Tables 1 and 2, available
online). Survival data for the validation cohort was collected at
the University of Michigan (Supplementary Table 3, available on-
line). TCGA data was partitioned into chronologically consecutive
cohorts I (n ¼ 255) and II (n ¼ 157) before and after 2013 as train-
ing and validation cohorts, respectively. Univariate and multivar-
iable Cox proportional hazards regression was used to assess
association with overall or metastasis-free survival using BRB-
ArrayTools (linus.nci.nih.gov/BRB-ArrayTools.html) and SPSS v19
(IBM, Inc., Chicago, IL, USA). Proportional assumptions for Cox
proportional hazard model were examined by Kaplan-Meier
analysis (for example, low vs high expression), by ensuring two
curves do not intersect, and also by scaled Schoenfeld residuals.
Benjamini-Hochberg false discovery rate (FDR) multiple hypothe-
sis correction was applied where indicated as such. Hazard ratios
(HRs) from univariate Cox regression analysis were used to iden-
tify protective (HR < 1) and risky genes (HR > 1). A risk score was
calculated by taking into account the expression of gene and cor-
relation coefficient. Kaplan-Meier analysis with log-rank test for
difference was performed in GraphPad Prism (La Jolla, CA, USA).
Heatmaps were generated in TreeView with z-score normaliza-
tion within each row (gene). All statistical tests were two-sided.
A P value of less than .05 was considered statistically significant.

Gene Signature Analysis

The Oncomine (www.oncomine.com) concept analysis tool was
used with all available lung adenocarcinoma studies with default
settings (18). PantherDB analysis was performed online (pantherdb.
org) (19). Gene set enrichment analysis (GSEA) was performed with
the indicated gene sets using phenotype labels “high risk” vs “low
risk” (20). Results were exported as the nodes and edges of a concept
association network and were visualized using Cytoscape v3.1.1.

Results

Identification of Prognostic Genes

In order to comprehensively analyze the genomic prognostic as-
sociations in lung adenocarcinoma, we developed an analysis
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pipeline (Figure 1A). The Cancer Genome Atlas lung adenocarci-
noma cohort (n ¼ 412) was divided chronologically into a train-
ing cohort (TCGA cohort I, n ¼ 255) and a validation cohort
(TCGA cohort II, n ¼ 157). The demographics of these cohorts
were well balanced (Table 1). In TCGA cohort I, we analyzed ap-
proximately 15 000 genes with a standard deviation greater
than 1.5 FPKM to ensure adequate variance, including approxi-
mately 1100 long noncoding RNA genes. Univariate Cox

proportional hazards regression analysis showed that 96 genes
were statistically significantly correlated, with overall survival
at the P value of less than or equal to 1.00x10-4 level, though
genes with lower statistical significance may be important as
well (Supplementary Table 4, available online). In contrast to
prior analyses, which included few or no lncRNAs, we found
that five of these top 96 genes were lncRNAs. Oncomine concept
analysis of this gene list in lung adenocarcinoma cohorts

A TCGA lung adenocarcinoma
cohort (n = 412)

TCGA Cohort I 
(n = 255)

Genes for prognostic analysis (14 939)

FPKM stdev ≥ 1.5 

UVA Cox analysis
P ≤ 1.00x10-4

Prognostic gene list (96)

FDR ≤ 0.001 

Prognostic gene list (13)

risk score
(∑ coefficient X FPKM)

MVA Cox analysis
Kaplan-Meier analysis

Risk stratification

MCTP lung
adenocarcinoma
cohort (n= 67)

MVA Cox analysis with
stepwise forward selection

Final prognostic model (4 genes)

TCGA
cohort II
(n = 157)Ensembl v69

genes (55 968)

High risk
threshold

determination

risk score (∑ coefficient X FPKM)

Signature training Signature validation

B

96 prognostic 
genes

High grade  

 Recurrence

Smokers

 Poor prognosis

Director’s
Challenge

Hou et al.

Ding et al.Ding et al.

Lee et al.
Director’s
Challenge

Okayama et al.

Lee et al.

Okayama et al.

Figure 1. Identification of prognostic gene signature. A) RNA-seq prognostic analysis and signature generation pipeline. The Cancer Genoma Atlas (TCGA) lung adenocarcinoma

cohort was divided chronologically into TCGA cohort I (n¼ 255) and TCGA cohort II (n¼157). In TCGA cohort I, we filtered the 55 968 Ensembl v69 genes by standard deviation

(stdev) greater than or equal to 1.5 fragments per kilobase of transcript per million reads (FPKM). The resulting 14 939 genes were analyzed individually for prognostic signifi-

cance by univariate Cox proportional hazards models, and 96 genes were statistically significant at the level of P � 1.00x10-4. We further narrowed this gene list to 13 genes with

false discovery rates (FDRs) � 0.001 and used multivariable Cox proportional hazards stepwise regression with forward selection to build a prognostic model that included four

genes: RHOV, CD109, LINC00941, and FRRS1. This model was used to calculate risk scores for all TCGA cohort I patients by summing the product of model coefficient and FPKM

for each gene, and a high risk threshold was chosen. This risk score calculation and high risk threshold was then applied to TCGA cohort II and Michigan Center for

Translational Pathology cohort, and prognostic significance was analyzed with multivariable Cox proportional hazards models and Kaplan-Meier analysis. B) Oncomine lung ad-

enocarcinoma signature concept analysis of top 96 prognostic genes. Results were exported as the nodes and edges of a concept association network and visualized using

Cytoscape v3.1.1. Oncomine lung adenocarcinoma signatures are color-coded for the cohort in which they were generated, as labeled, and grouped (dashed circles) by the con-

cept of the signature (Poor prognosis, Smokers, High grade, or Recurrence). The size of each signature circle is proportional to the number of genes in the signature, including for

the top 96 prognostic genes in our study. Arrows in the center of each signature circle indicate positive (up arrow) or negative (down arrow) correlation with the top 96 prognostic

genes, and the width of the connecting line indicates the strength of correlation. FDR ¼ Benjamini-Hochberg false discovery rate; FPKM ¼ fragments per kilobase of transcript

per million reads; MCTP¼Michigan Center for Translational Pathology; MVA¼multivariable; Stdev¼ standard deviation; TCGA¼ The Cancer Genome Atlas; UVA¼ univariate.
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showed statistically significant positive association with signa-
tures of smoking, high grade, recurrence, and poor prognosis
(Figure 1B). An FDR threshold of less than or equal to 0.001 fur-
ther refined the candidate gene list to 13 genes, including one
lncRNA gene (Figure 1A; Supplementary Table 4, available on-
line), to ensure proper algorithm performance for signature
generation.

Generation and Validation of Prognostic Signature

The 13 genes with univariate Cox analysis FDR of less than or
equal to 0.001 were used for prognostic signature building using
forward conditional stepwise regression with multivariable Cox
analysis in the training cohort. This procedure selected a prognos-
tic model containing four genes: protein-coding genes RHOV,
CD109, and FRRS1, as well as the lncRNA gene LINC00941
(Supplementary Table 5, available online). A risk score was con-
structed with the regression coefficients from this model, and a
threshold was chosen manually at the 75th percentile (Figure 2A).
The four signature genes were statistically significantly overex-
pressed in high-risk tumors compared with normal lung tissue
samples, while there was no difference between low-risk tumors
and normal samples (Figure 2B). In order to begin understanding
the biology underpinning high-risk tumors, we identified the top
100 genes statistically significantly overexpressed and the top 100
genes underexpressed in high-risk tumors (Figure 2C;
Supplementary Table 6, available online). The overexpressed genes
are statistically significantly enriched for processes related to can-
cer biology, including developmental process, immune-related pro-
cesses, mesoderm development, and angiogenesis (Figure 2D;
Supplementary Table 7, available online). Directed GSEA analysis
showed that high-risk tumor expression was consistent with pre-
vious lung cancer survival–related signatures (Supplementary
Figure 1, A and B, available online). Unbiased GSEA analysis
showed moderate differentiation to be the top overall signature
and an EGFR-related signature to be the top biological signature,

consistent with its role in lung cancer (Supplementary Figure 1, C
and D, and Supplementary Table 8, available online) (20). High-risk
patients, as defined by the four-gene signature-based risk score,
had statistically significantly worse overall survival (HR¼ 3.56,
95% CI¼ 3.52 to 11.71, P < .001) and metastasis-free survival (HR¼
2.34, 95% CI¼ 1.65 to 5.32, P < .001) in TCGA cohort I independent
of age, sex, and stage (Figure 2, E and F; Supplementary Figure 1E
and Supplementary Table 9, available online).

Independent Clinical Validation and Signature
Comparison

The four-gene prognostic signature was tested in two indepen-
dent clinical cohorts for validation. Using the same risk score
threshold chosen in the TCGA cohort I (Figure 3A), the four-gene
prognostic signature risk group statistically significantly strati-
fied the TCGA cohort II for overall survival (HR¼ 3.07, 95% CI¼
2.00 to 14.62, P < .001) and metastasis-free survival (HR¼ 3.05,
95% CI¼ 2.31 to 13.37, P < .001) independent of age, sex, and
stage (Figure 3B and Table 2; Supplementary Figure 3A, available
online). In a second independent institutional MCTP cohort,
again using the TCGA cohort I threshold (Figure 3D), the four-
gene prognostic signature risk group was also able to statisti-
cally significantly stratify patients for overall survival (HR ¼ 2.
05, 95% CI ¼ 1.18 to 4.55, P ¼ .03) independent of age, sex, and
stage (Figure 3E and Table 3; Supplementary Figure 3B, available
online).

We compared the four-gene prognostic signature to five
other published lung adenocarcinoma prognostic signatures, in-
cluding a commercial signature, by rederiving a multivariable
Cox model using the gene list from each signature due to plat-
form differences (21–25). As might be expected, four out of five
signatures were statistically significant on univariate analysis
in TCGA cohort I. None of the other five signatures was statisti-
cally significant on univariate analysis in both validation co-
horts, and these results were typically mirrored in multivariable
analysis including age, stage, and sex (Supplementary Figure 2
and Supplementary Table 10, available online).

Validation of Signature in Clinically Important Stage I
and Mutation Subsets

Lung adenocarcinoma prognostic signatures have focused on
early-stage patients as a subset where adjuvant treatment deci-
sions might be tailored based on prognosis, as opposed to
advanced-stage patients who will have poor outcomes even
with full-intensity multimodality therapy. Thus, we evaluated
the four-gene prognostic signature in stage I patients from the
full TCGA lung adenocarcinoma patients to ensure adequate
numbers for analysis (n ¼ 139). The four-gene prognostic signa-
ture statistically significantly stratified the stage I patients for
both overall survival (HR¼ 2.78, 95% CI¼ 1.91 to 11.13, P < .001)
and metastasis-free survival (HR¼ 3.30, 95% CI¼ 2.89 to 13.45, P
< .001) independent of age, sex, and stage (Figures 4, A and B).
Additionally, in the full TCGA cohort, the four-gene prognostic
signature risk groups statistically significantly stratified stage II
and stage III–IV patients (Supplementary Figures 3, C–F, avail-
able online). The four-gene prognostic signature also statisti-
cally significantly stratified the MCTP cohort stage I patients,
though a median threshold was used because of the small num-
ber of patients (Supplementary Figure 3G, available online).

Given the importance of EGFR and ALK alteration status in
lung adenocarcinoma for TKI use and/or prognostication, we

Table 1. Clinical characteristics of the patients*

Factor
TCGA

cohort I
TCGA

cohort II
MCTP
cohort

No. of patients 255 157 67
Age, y, mean (SD) 65.3 (10) 65.3 (10.5) 68.3 (10)
Female sex, No. (%) 134 (52.5) 88 (56.1) 36 (53.7)
Median survivor

follow-up, mo
19.3 20.0 33

Smoking history, No. (%)
Yes 211 (82.7) 128 (81.5) NR
No 35 (13.7) 24 (15.2) NR
Unknown 9 (3.5) 5 (3.2) NR

Stage, No. (%)
I 139 (54.5) 88 (56.1) 40 (59.7)

IA 63 (24.7) 55 (35.0) NR
IB 74 (29.0) 30 (19.1) NR

II 59 (23.13) 40 (25.5) 13 (19.4)
IIA 25 (9.8) 19 (12.1) NR
IIB 34 (13.3) 21 (13.4) NR

III 43 (16.9) 24 (15.2) 14 (20.9)
IIIA 38 (14.9) 20 (12.7) NR
IIIB 5 (1.9) 4 (2.5) NR

IV 14 (5.5) 4 (2.5) 0

*MCTP ¼ Michigan Center for Translational Pathology; NR ¼ not recorded; TCGA

¼ The Cancer Genome Atlas.
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analyzed the performance of the four-gene prognostic signature
in patient subsets with wild-type or mutant status
(Supplementary Tables 11 and 12, available online). In EGFR
wild-type patients from TCGA cohort II (131/157, 83%), who
would receive chemotherapy if adjuvant therapy were given,
the four-gene prognostic signature risk group provided
statistically significant overall survival stratification (P ¼ 0.003,
HR¼ 3.01, 95% CI¼ 1.73 to 14.98) (Figure 4C). EGFR-mutant

patients from the full TCGA cohort (56/412, 14%), who might re-
ceive an EGFR TKI as adjuvant treatment, were similarly statisti-
cally significantly stratified (HR¼ 8.99, 95% CI¼ 62.23 to 141.44,
P < .001). There is statistically significant enrichment of EGFR
mutant cases in the low-risk group from the full TCGA cohort,
while KRAS mutant and ALK fusion cases are not statistically
significantly different (Supplementary Figure 4A, available on-
line). KRAS mutation status has been reported as a confounder
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Figure 2. Four-gene prognostic signature biomarker characteristics in The Cancer Genoma Atlast (TCGA) cohort I. A) Four-gene expression and risk score distribution in

TCGA cohort I by z-score, with red indicating higher expression and light blue indicating lower expression. The risk scores for all patients in TCGA cohort I are plotted

in ascending order and marked as low risk (blue) or high risk (red), as divided by the threshold (vertical black line). B) Fragments per kilobase of transcript per million

reads (FPKM) expression distribution of the signature genes in Normal (N), low risk (LR), and high risk (HR) tumors in TCGA cohort I. Bar represents mean, with error

bar showing minimum and maximum values. C) Heatmap of the top 200 genes differentially expressed between high and low risk, with red indicating higher expres-

sion and blue indicating lower expression. D) Statistically significant Gene Ontology–Slim Biological Processes from PantherDB analysis of the genes differentially over-

expressed in high-risk tumors. Full PantherDB results can be found in Supplementary Table 5 (available online). Kaplan-Meier curves of overall survival (E) and

metastasis-free survival (F) in TCGA cohort I stratified by four-gene prognostic signature in high and low risk. A two-sided log-rank test was used to calculate hazard ra-

tio (HR). HR, 95% confidence interval, P value, and median survival are shown. *P < .001. FPKM ¼ fragments per kilobase of transcript per million reads; HR ¼ hazard

ratio.
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Figure 3. Four-gene prognostic signature biomarker performance in two validation cohorts. A) Four-gene expression and risk score distribution in The Cancer Genome

Atlas (TCGA) cohort II by z-score, with red indicating higher expression and light blue indicating lower expression. The risk scores for all patients in TCGA cohort II are

plotted in ascending order and marked as low risk (blue) or high risk (red), as divided by the threshold (vertical black line). B and C) Kaplan-Meier curves of overall sur-

vival (B) and metastasis-free survival (C) in TCGA cohort II stratified by four-gene prognostic signature high and low risk with log-rank hazard ratio (HR), 95% confidence

interval (CI), P value, and median survival. D) Four-gene expression and risk score distribution in the Michigan Center for Translational Pathology (MCTP) cohort by z-

score, with red indicating higher expression and light blue indicating lower expression. The risk scores for all patients in MCTP cohort are plotted in ascending order

and marked as low risk (blue) or high risk (red), as divided by the threshold (vertical black line). E) Kaplan-Meier curves of overall survival in the MCTP cohort stratified

by four-gene prognostic signature in high and low risk. A two-sided log-rank test was used to calculate hazard ratio (HR). HR, 95% CI, P value, and median survival are

shown. HR ¼ hazard ratio.

Table 2. Cox proportional hazards models in TCGA cohort II

Factor

Univariate Multivariable

HR (95% CI) P* HR (95% CI) P*

Stage 1.61 (1.15 to 2.23) .004 1.54 (1.80 to 2.17) .02
Sex, female vs male 0.75 (0.39 to 1.42) .38 0.72 (0.37 to 1.38) .32
Age 0.99 (0.96 to 1.01) .45 0.98 (0.95 to 1.01) .29
Risk score 1.69 (1.26 to 2.25) <.001 1.67 (1.21 to 2.28) .001

*Two-sided likelihood ratio test. CI ¼ confidence interval; HR ¼ hazard ratio;

TCGA ¼ The Cancer Genome Atlas.

Table 3. Cox proportional hazards models in the MCTP cohort

Factor

Univariate analysis Multivariable analysis

HR (95% CI) P* HR (95% CI) P*

Stage 3.12 (2.11 to 4.63) <.001 3.64 (2.39 to 5.54) <.001
Sex, female vs male 1.40 (0.74 to 2.65) .29 2.22 (1.08 to 4.53) .49
Age 1.01 (0.98 to 1.04) .54 1.01 (0.98 to 1.04) .03
Risk score 2.44 (1.49 to 4.00) <.001 3.49 (1.98 to 6.18) <.001

*Two-sided likelihood ratio test. CI ¼ confidence interval; HR ¼ hazard ratio;

MTCP ¼Michigan Center for Translational Pathology.
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for lung adenocarcinoma prognostic signatures (7). In contrast,
the four-gene prognostic signature risk groups statistically sig-
nificantly stratify KRAS mutant (120/412, 29%) and wild-type
KRAS (119/157, 76%) patients for overall survival, as well as pa-
tients that are wild-type for ALK, EGFR, and KRAS
(Supplementary Figure 4, B–D, available online). Finally, the risk
score remained statistically significant (HR ¼ 2.13, 95% CI¼ 1.79
to 2.52, P < .001) in a multivariable Cox analysis that included
EGFR, KRAS, and ALK alteration status (Supplementary Table 13,
available online). Interestingly, EGFR mutation status was
also statistically significant (HR ¼ 2.03, 95% CI¼ 1.26 to 3.62, P ¼
.005) in the multivariable analysis.

Discussion

Lung cancer is the leading cause of cancer deaths in the United
States, causing 158 000 deaths, with adenocarcinoma histology
playing a major role (1). In an effort to bolster clinical tools and
biological understanding in lung adenocarcinoma, we present
the first RNA-seq prognostic signature. Using a TCGA lung ade-
nocarcinoma cohort subset, we found 96 genes with statistically
significant prognostic association, including five lncRNAs.
Prognostic model training in this subset selected a four-gene
signature, including the lncRNA gene LINC00941, from the top
13 genes, reiterating that lncRNAs are an important class of bio-
marker candidate genes. The four-gene signature was validated

as statistically significantly associated with metastasis-free sur-
vival and overall survival in the remaining TCGA lung adenocar-
cinoma cases, and in an independent institutional cohort. Thus,
our four-gene RNA-seq prognostic signature provides biological
insights and has potential for rapid incorporation into RNA-seq
clinical sequencing programs to tailor management in early-
stage lung adenocarcinoma.

Early-stage lung adenocarcinoma is, unfortunately, charac-
terized by statistically significantly worse survival outcomes
than many other early-stage cancers, with five-year survival af-
ter surgery alone at 73% in stage IA and 58% in stage IB in the
most recent 7th TNM staging system (3). Therapy intensification
is therefore needed, but patient selection tools have been lim-
ited. Based on the Lung Adjuvant Cisplatin Evaluation (LACE)
meta-analysis and the CALGB 9633 trial, patients are selected
for adjuvant chemotherapy based on clinical criteria (stage IB
and tumor �4 cm) (26,27), though there is an ongoing trial using
a commercial microarray-derived quantitative PCR (qPCR)–
based prognostic signature to select patients for adjuvant che-
motherapy randomization (28). More sophisticated genomic
guidance in the form of mutation identification has been recog-
nized as essential for targeted therapy in the metastatic setting
(29); however, outcome variability within mutation cohorts has
been underexplored. Furthermore, trials of adjuvant targeted
therapy have so far not focused on mutation status, including
in the BR19 (30) and RADIANT trials (31). The ongoing
ALCHEMIST trial should randomize sufficiently large numbers
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Figure 4. Four-gene prognostic signature biomarker performance in stage I and EGFR mutation subsets. Kaplan-Meier curves with log-rank hazard ratio (HR), 95% confi-

dence interval (CI), P value, and median survival for overall survival (A, C, D) and metastasis-free survival (B) in the stage I cases in The Cancer Genome Atlas (TCGA) co-

hort I (A, B), EGFR wild-type cases from validation cohort TCGA cohort II (C), and EGFR mutant cases from the full TCGA cohort (D) stratified by four-gene signature into

high and low risk. A two-sided log-rank test was used to calculate hazard ratio (HR). HR, 95% CI, P value, and median survival are shown. The hazard ratio and 95% CI

for the EGFR mutant analysis could not be accurately calculated due to the small number of patients. HR ¼ hazard ratio.

A
R

T
IC

LE

S. Shukla et al. | 7 of 9

Deleted Text: -
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djw200/-/DC1
Deleted Text: <italic>p&thinsp;<&thinsp;0</italic>.001, 
Deleted Text: &equals;
Deleted Text: 95&percnt; CI
Deleted Text: -2
Deleted Text: multivariate
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djw200/-/DC1
Deleted Text: p&thinsp;&equals;&thinsp;0.005, 
Deleted Text: &equals;
Deleted Text: 95&percnt; CI
Deleted Text: -3
Deleted Text: multivariate
Deleted Text: S
Deleted Text: ,
Deleted Text: 5
Deleted Text: 5 
Deleted Text: Stage
Deleted Text: Stage
Deleted Text: Stage
Deleted Text: -
Deleted Text:  


of early-stage EGFR mutant patients to have a clear indication of
benefit, though the results are several years away (32). National
basket trials, including NCI-MATCH, NCI-MPACT, and ASCO’s
TAPUR, will provide therapeutic response information about
targetable alterations that are less prevalent and thus highlight
the need for comprehensive parallel genomic alteration testing.
These trials are histology-independent but are likely to enroll a
large numbers of lung cancer patients.

RNA-seq clinical tools, including prognostic signatures for
individualized therapy intensification as presented here, have
several key advantages over other platforms. RNA-seq includes
noncoding gene expression data that were not represented in
the microarrays of past efforts and which the ENCODE Project
has demonstrated occupy a majority of the transcribed genome
(33). Microarray data have biases and limitations that are im-
proved with RNA-seq, particularly in the detection of low-
abundance transcripts (34,35). This advantage of RNA-seq trans-
lates into better correlation with qPCR data both in the labora-
tory and on patient samples and is particularly important for
lncRNAs that tend to be differentially expressed but at low abso-
lute abundance (22,35). Continually improving RNA-seq plat-
forms also provide nearly all the genomic alteration
information needed, including single-nucleotide variants (SNV)/
mutations and gene fusions (36). Moreover, RNA-seq provides
comprehensive expression data that will be increasingly impor-
tant in understanding and predicting therapeutic response in
the substantial proportion of tumors that lack a classical target-
able alteration (37). Additionally, exome-capture RNA-seq re-
cently published by our group can be used on FFPE samples to
mine completed randomized trial samples on the same plat-
form (12). These advantages prompted the Sweden Cancerome
Analysis Network – Breast (SCAN-B) clinical sequencing pro-
gram to focus on RNA-seq; this effort has enrolled nearly 4000
women (�85% of the primary breast cancer cases in south
Sweden) and has collected nearly 3000 tumor samples (38).
Though slightly more costly, the major advantages of RNA-seq
place it as a highly attractive comprehensive clinical test in pre-
cision oncology.

Potential clinical uses of the four-gene signature are driven
by its strong prognostic performance in several clinically impor-
tant settings. As described above, adjuvant therapy for early-
stage lung adenocarcinoma is currently driven by a clinical fac-
tor of tumor size 4 cm or larger (stage IB). The four-gene signa-
ture offers an opportunity for individualized adjuvant therapy
based on biological factors, as well comprehensive alteration
testing through the RNA-seq platform. For more advanced and
metastatic tumors, the four-gene signature offers patient risk
stratification for both EGFR mutant and wild-type patients that
might be used to intensify EGFR inhibitor therapy in patients at
high risk. We also note that the high-risk group identified in our
analysis displayed enrichment for genes associated with im-
mune response. It is plausible this would influence the response
to immunotherapies that have shown so much promise in re-
calcitrant disease, including lung adenocarcinoma. The direc-
tion of this effect is difficult to predict, as either increased (in
high-risk tumors) or decreased (in low-risk tumors) immune re-
sponse may facilitate either more or less robust immunother-
apy response. Clinical integration of the four-gene signature
needs to be tested directly, but appears promising from these
initial results.

Though the four-gene signature is promising, there are limi-
tations to this initial work. The patient cohorts, including the
validation cohorts, were multi-institutional, but retrospective,
and therefore these findings must be validated prospectively.

Therapy was not randomized or systematic in any way across
the cohorts, which limited our ability to test the predictive
power of the signature with respect to guidance on specific
treatment decisions. Given the low prevalence of mutations, we
had limited patient numbers to test the performance of the sig-
nature in mutational cohorts. RNA-seq results have some sensi-
tivity to bioinformatics parameters that may vary among
clinical sequencing programs and affect the performance of the
signature, though validation in the independently collected and
processed MCTP cohort demonstrates some robustness to pipe-
line variations. These limitations can be addressed in future
studies.

Our analysis is also likely to provide biological and therapeu-
tic information as well. CD109 is a glycoprotein on the surface of
immune and endothelial cells that negatively regulates TGF-
beta signaling (39). It is the most studied gene of the four, being
nominated as a biomarker and/or therapeutic target in several
cancers, including pancreas and breast (40,41). RHOV is an atypi-
cal RHO GTPase that has been nominated as upregulated in
non–small cell lung cancer in a minor study, and its role in can-
cer is poorly understood (42). FRRS1 is a cytochrome b561 family
iron reductase whose role in cancer is not characterized, though
iron metabolism has been studied as a possible therapeutic tar-
get (43,44). LINC00941 was identified initially by shotgun clon-
ing, and re-identified by the ENCODE Project, but has not been
studied in detail (45). These genes highlight diverse biological
processes that may underpin their prognostic significance and
provide avenues for further research.

Here, we have performed the first RNA-seq prognostic analy-
sis in lung adenocarcinoma, resulting in an independently vali-
dated four-gene prognostic signature that includes an lncRNA,
as well as identification of numerous genes with strongly statis-
tically significant prognostic association for further study.
Importantly, this four-gene prognostic signature performed
well in stage I patients and EGFR-mutant and wild-type cohorts.
Thus, this four-gene prognostic signature could be a clinically
useful tool easily incorporated into an RNA-seq clinical se-
quencing program to individualize lung adenocarcinoma
therapy.

Funding

Supported in part by the National Cancer Institute Early
Detection Research Network (UO1CA113913) and
R01CA154365 (to DGB and AMC).

Notes

The study funders had no role in the design of the study; the
collection, analysis, or interpretation of the data; the writing of
the manuscript; or the decision to submit the manuscript for
publication.

SS, JRE, FYF, RM, SMD, GC, DGB, HJ, and AMC conceived, de-
signed, or planned the study. SS, JRE, RM, SMD, and HJ analyzed the
data. SS, JRE, RM, SMD, XC, GC, and DGB acquired data. SS, JRE, FYF,
RM, SMD, DGB, HJ, and AMC helped to interpret the results. XC, GC,
DGB, and AMC provided study materials or patients. SS and JRE
drafted the manuscript. All authors revised and reviewed this work,
and all authors had final approval of the submitted manuscript.

All authors declare no conflicts of interest.
Corresponding author confirmation: AMC confirms he had

full access to all the data in the study and had final responsibil-
ity for the decision to submit for publication.

A
R

T
IC

LE

8 of 9 | JNCI J Natl Cancer Inst, 2017, Vol. 109, No. 1

Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: &ge;
Deleted Text: Stage
Deleted Text: -
Deleted Text: which
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: which
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: Stage
Deleted Text: n
Deleted Text: Declaration of interests: 


References
1. Cancer Facts & Figures 2015. In: Atlanta, GA: American Cancer Society; 2015.
2. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet

Oncol. 2011;12(2):175–180.
3. Goldstraw P, Crowley J, Chansky K, et al. The IASLC Lung Cancer Staging

Project: Proposals for the revision of the TNM stage groupings in the forth-
coming (seventh) edition of the TNM Classification of malignant tumours. J
Thorac Oncol. 2007;2(8):706–714.

4. Ten Haaf K, van Rosmalen J, de Koning HJ. Lung cancer detectability by test,
histology, stage, and gender: Estimates from the NLST and the PLCO trials.
Cancer Epidemiol Biomarkers Prev. 2015;24(1):154–161.

5. Beer DG, Kardia SL, Huang CC, et al. Gene-expression profiles predict survival
of patients with lung adenocarcinoma. Nat Med. 2002;8(8):816–824.

6. Zhu CQ, Tsao MS. Prognostic markers in lung cancer: Is it ready for prime
time? Transl Lung Cancer Res. 2014;3(3):149–158.

7. Starmans MH, Pintilie M, Chan-Seng-Yue M, et al. Integrating RAS status into
prognostic signatures for adenocarcinomas of the lung. Clin Cancer Res. 2015;
21(6):1477–1486.

8. Zheng Y, Bueno R. Commercially available prognostic molecular models in
early-stage lung cancer: A review of the Pervenio Lung RS and Myriad myPlan
Lung Cancer tests. Expert Rev Mol Diagn. 2015;15(5):589–596.

9. Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in
the human transcriptome. Nat Genet. 2015;47(3):199–208.

10. Prensner JR, Zhao S, Erho N, et al. RNA biomarkers associated with metastatic
progression in prostate cancer: A multi-institutional high-throughput analy-
sis of SChLAP1. Lancet Oncol. 2014;15(13):1469–1480.

11. Damodaran S, Berger MF, Roychowdhury S. Clinical tumor sequencing:
Opportunities and challenges for precision cancer medicine. Am Soc Clin
Oncol Educ Book. 2015;35:e175–e182.

12. Cieslik M, Chugh R, Wu YM, et al. The use of exome capture RNA-seq for highly
degraded RNA with application to clinical cancer sequencing. Genome Res. 2015;
25:1372–1381.

13. Balbin OA, Malik R, Dhanasekaran SM, et al. The landscape of antisense gene
expression in human cancers. Genome Res. 2015;25(7):1068–1079.

14. Kim D, Pertea G, Trapnell C, et al. TopHat2: Accurate alignment of transcrip-
tomes in the presence of insertions, deletions and gene fusions. Genome Biol.
2013;14(4):R36.

15. Flicek P, Ahmed I, Amode MR, et al. Ensembl 2013. Nucleic Acids Res. 2013;
41(Database issue):D48–D55.

16. Dhanasekaran SM, Balbin OA, Chen G, et al. Transcriptome meta-analysis of
lung cancer reveals recurrent aberrations in NRG1 and Hippo pathway genes.
Nat Commun. 2014;5:5893.

17. Torres-Garcia W, Zheng S, Sivachenko A, et al. PRADA: Pipeline for RNA se-
quencing data analysis. Bioinformatics. 2014;30(15):2224–2226.

18. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, et al. Oncomine 3.0: Genes,
pathways, and networks in a collection of 18,000 cancer gene expression pro-
files. Neoplasia. 2007;9(2):166–180.

19. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: Modeling the evolution
of gene function, and other gene attributes, in the context of phylogenetic
trees. Nucleic Acids Res. 2013;41(Database issue):D377–D386.

20. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis:
A knowledge-based approach for interpreting genome-wide expression pro-
files. Proc Natl Acad Sci U S A. 2005;102(43):15545–15550.

21. Boutros PC, Lau SK, Pintilie M, et al. Prognostic gene signatures for non-
small-cell lung cancer. Proc Natl Acad Sci U S A. 2009;106(8):2824–2828.

22. Chen HY, Yu SL, Chen CH, et al. A five-gene signature and clinical outcome in
non-small-cell lung cancer. N Engl J Med. 2007;356(1):11–20.

23. Kratz JR, Van den Eeden SK, He J, et al. A prognostic assay to identify patients
at high risk of mortality despite small, node-negative lung tumors. JAMA.
2012;308(16):1629–1631.

24. Bianchi F, Nuciforo P, Vecchi M, et al. Survival prediction of stage I lung ade-
nocarcinomas by expression of 10 genes. J Clin Invest. 2007;117(11):3436–3444.

25. Lau SK, Boutros PC, Pintilie M, et al. Three-gene prognostic classifier for
early-stage non small-cell lung cancer. J Clin Oncol. 2007;25(35):
5562–5569.

26. Pignon JP, Tribodet H, Scagliotti GV, et al. Lung adjuvant cisplatin evaluation:
A pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008;26(21):
3552–3559.

27. Strauss GM, Herndon JE 2nd, Maddaus MA, et al. Adjuvant paclitaxel plus car-
boplatin compared with observation in stage IB non-small-cell lung cancer:
CALGB 9633 with the Cancer and Leukemia Group B, Radiation Therapy
Oncology Group, and North Central Cancer Treatment Group Study Groups. J
Clin Oncol. 2008;26(31):5043–5051.

28. Kratz JR, Mann MJ, Jablons DM. International trial of adjuvant therapy in high
risk stage I non-squamous cell carcinoma identified by a 14-gene prognostic
signature. Transl Lung Cancer Res. 2013;2(3):222–225.

29. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal
growth factor receptor underlying responsiveness of non-small-cell lung
cancer to gefitinib. N Engl J Med. 2004;350(21):2129–2139.

30. Goss GD, O’Callaghan C, Lorimer I, et al. Gefitinib versus placebo in com-
pletely resected non-small-cell lung cancer: Results of the NCIC CTG BR19
study. J Clin Oncol. 2013;31(27):3320–3326.

31. Kelly K, Altorki NK, Eberhardt WEE, et al. A randomized, double-blind phase 3
trial of adjuvant erlotinib (E) versus placebo (P) following complete tumor re-
section with or without adjuvant chemotherapy in patients (pts) with stage
IB-IIIA EGFR positive (IHC/FISH) non-small cell lung cancer (NSCLC):
RADIANT results. J Clin Oncol. 2014;32(15_suppl):7501.

32. Gerber DE, Oxnard GR, Govindan R. ALCHEMIST: Bringing genomic discovery
and targeted therapies to early-stage lung cancer. Clin Pharmacol Ther. 2015;
97(5):447–450.

33. Consortium EP, Birney E, Stamatoyannopoulos JA, et al. Identification and
analysis of functional elements in 1% of the human genome by the ENCODE
pilot project. Nature. 2007;447(7146):799–816.

34. Febbo PG, Kantoff PW. Noise and bias in microarray analysis of tumor speci-
mens. J Clin Oncol. 2006;24(23):3719–3721.

35. Robinson DG, Wang JY, Storey JD. A nested parallel experiment demonstrates
differences in intensity-dependence between RNA-seq and microarrays.
Nucleic Acids Res. 2015;43(20):e131.

36. Zheng Z, Liebers M, Zhelyazkova B, et al. Anchored multiplex PCR for targeted
next-generation sequencing. Nat Med 2014;20(12):1479-84.

37. Cancer Genome Atlas Research N. Comprehensive molecular profiling of
lung adenocarcinoma. Nature. 2014;511(7511):543–550.

38. Saal LH, Vallon-Christersson J, Hakkinen J, et al. The Sweden Cancerome
Analysis Network - Breast (SCAN-B) Initiative: A large-scale multicenter in-
frastructure towards implementation of breast cancer genomic analyses in
the clinical routine. Genome Med. 2015;7(1):20.

39. Bizet AA, Tran-Khanh N, Saksena A, et al. CD109-mediated degradation of
TGF-beta receptors and inhibition of TGF-beta responses involve regulation
of SMAD7 and Smurf2 localization and function. J Cell Biochem. 2012;113(1):
238–246.

40. Tao J, Li H, Li Q, et al. CD109 is a potential target for triple-negative breast can-
cer. Tumour Biol. 2014;35(12):12083–12090.

41. Haun RS, Fan CY, Mackintosh SG, et al. CD109 overexpression in pancreatic
cancer identified by cell-surface glycoprotein capture. J Proteomics Bioinform.
2014;Suppl 10:S10003.

42. Shepelev MV, Korobko IV. The RHOV gene is overexpressed in human non-
small cell lung cancer. Cancer Genet. 2013;206(11):393–397.

43. Vargas JD, Herpers B, McKie AT, et al. Stromal cell-derived receptor 2 and cy-
tochrome b561 are functional ferric reductases. Biochim Biophys Acta. 2003;
1651(1–2):116–123.

44. Jin Y, Wang L, Qu S, et al. STAMP2 increases oxidative stress and is critical for
prostate cancer. EMBO Mol Med. 2015;7(3):315–331.

45. Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human
long noncoding RNAs: Analysis of their gene structure, evolution, and ex-
pression. Genome Res. 2012;22(9):1775–1789.

A
R

T
IC

LE

S. Shukla et al. | 9 of 9


	djw200-TF1
	djw200-TF2
	djw200-TF3

