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Relative impacts of mitigation, temperature, and
precipitation on 21st-century megadrought risk in
the American Southwest
Toby R. Ault,1* Justin S. Mankin,2,3 Benjamin I. Cook,2,3 Jason E. Smerdon2

Megadroughts are comparable in severity to the worst droughts of the 20th century but are of much longer
duration. A megadrought in the American Southwest would impose unprecedented stress on the limited water
resources of the area, making it critical to evaluate future risks not only under different climate change mitigation
scenarios but also for different aspects of regional hydroclimate. We find that changes in the mean hydroclimate
state, rather than its variability, determine megadrought risk in the American Southwest. Estimates of megadrought
probabilities based on precipitation alone tend to underestimate risk. Furthermore, business-as-usual emissions of
greenhouse gases will drive regional warming and drying, regardless of large precipitation uncertainties. We find
that regional temperature increases alone push megadrought risk above 70, 90, or 99% by the end of the century,
even if precipitation increases moderately, does not change, or decreases, respectively. Although each possibility is
supported by some climate model simulations, the latter is the most common outcome for the American Southwest
in Coupled Model Intercomparison 5 generation models. An aggressive reduction in global greenhouse gas emis-
sions cuts megadrought risks nearly in half.
INTRODUCTION
Megadroughts are periods of aridity as severe as the worst multiyear
droughts of the 20th century and persist for decades. These droughts
are known to have occurred in the American Southwest (1, 2) and other
parts of the world (3, 4) during the pastmillennium, and they have been
linked to the demise of several preindustrial civilizations (3, 5, 6). A
megadrought occurring again in the Southwest in the coming decades
would impose unprecedented stresses on water resources of the region,
and recent studies have shown that they are far more likely to occur this
century because of climate change compared to past centuries (7, 8).

Estimating the probability of a megadrought under different climate
change scenarios is critical for effectively evaluating risk and managing
water resources, but recent studies have disagreed on the relative odds of
these events. For example, on the basis of precipitation projections and
paleoclimate data, Ault et al. (8) argued that the risk of multidecadal
megadrought in the American Southwest would increase at least
twofold from 5 to 15% over the last millennium to between 20 and
50% this century; Cook et al. (7) estimated those risks to bemuch higher
in an analysis of a wider range of soil moisture indicators of varying
levels of complexity. Further complicating this picture is that certain re-
gions (for example, much of the American West) are expected to be-
come drier, on average, even with a predicted increase in precipitation
because of the increased demand for moisture by the atmosphere and
consequent increases in evapotranspiration (9, 10). It is therefore critical
to clarify the relative contributions of precipitation and temperature to
future megadrought risk.

Here, we focus on characterizing megadrought risk as a function
of variables that govern the balance of moisture at the land surface dur-
ing climate change.At decadal and longer time scales, these variables are
primarily precipitation, which supplies moisture, and temperature and
vegetation, which modulate evapotranspiration (9, 11). Although cli-
mate change projections of higher temperatures are robust and broadly
consistent across different model simulations, projections of precipita-
tion change are subject to considerably more uncertainty. Moreover,
megadroughts are extreme events that unfold over decades, implying
that even state-of-the-art multimodel ensembles used for the Inter-
governmental Panel on Climate Change (IPCC) will have only a hand-
ful of realizations of these intervals at best. This small sample size
inherently makes estimating the probability of a megadrought
challenging because any empirical probability density function (PDF)
of its occurrence will be finite and incomplete. For example, imagine
two simulations run with a model that predicts overall drying: In the
first realization, there is a megadrought, and in the second, there is
none. Themodel-predicted probability would appear to be 50% regard-
less of the truemegadrought PDF. As an alternative, we characterize the
megadrought PDF by asking the following: (i) What are the changes in
regional hydroclimate that elevate (or lower) megadrought risk? (ii)
How do state-of-the-art general circulation models (GCMs) simulate
the variables that govern megadrought risk?

We adopt a probabilistic framework for quantifying the risk of
future events under a broad range of possible climate outcomes and
then compare GCMs against these possibilities. Although there are a
number of objective methods for identifying periods of megadrought
in a hydroclimate time series (12–16), here we define a megadrought
as a multidecadal (35-year) period of aridity as bad as, if not worse than,
the worst droughts of the 20th century (−0.5 of an SD on average;
Materials and Methods). By megadrought “risk,” we refer to the prob-
ability of an event occurring this century, acknowledging that the sta-
tistics of regional hydroclimate in the future will likely be different from
past statistics. This notion of risk accommodates the possibility that an
event might not unfold even if megadroughts are generally more likely
to occur (for example, a few fortuitous wet years in a drier climate with
higher megadrought risk could prevent an event from fully unfolding).

Quantifyingmegadrought risk over a wide range of plausible climate
change outcomes allows us to assess how deterministic GCMs, forced
with rising greenhouse gas (GHG) concentrations, simulate changes in
temperature and precipitation associated with different levels of risk
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(see Materials and Methods). We apply this framework to characterize
the chances of amegadrought defined by precipitation andmultiple soil
moisture metrics in output from the Coupled Model Intercomparison
Project Phase 5 (CMIP5) multimodel ensemble (17), as well as a single-
model [Community Earth System Model (CESM)] “large” ensemble
(18). Although structural uncertainty and internal variability are con-
flated in the CMIP5 ensemble, diagnosis of a single-model ensemble
allows us to delineate the role of internal variability alone in shaping
future megadrought risk.
RESULTS
We express megadrought risk as a two-dimensional (2D) PDF of both
changes in mean hydroclimate state (denoted ∆m, Materials and
Methods) and changes in hydroclimate variability (ds) relative to the
historical period (1951–2000). This framework reveals that risks are
dominated by changes in the mean state of a given hydroclimate vari-
able (∆m), although there are some exceptions, as seen in the shading of
Fig. 1 and fig. S1. For example, decreases in the mean (Dm < 0) can be
compensated by decreases in variance (ds > 1), maintaining lowmega-
drought risk in the light-colored triangle-shaped region of negative ∆m
(between the dark shading and the dashed line on all panels of Fig. 1).
Likewise, increases in hydroclimate mean values (Dm > 0) do not nec-
essarily correspond to lower megadrought risk if those changes are ac-
companied by increases in variance (dark gray shading to the right of
the dashed line on all panels in Fig. 1). Herein, we will adopt the
language of the IPCC to characterize probabilities (19): The black region
of the 2D PDF in Fig. 1 identifies areas where megadroughts are “vir-
tually certain” (>99% probability of occurrence), whereas the white
region shows combinations of mean state and variability changes that
would make these events “exceptionally unlikely” (<1% probability).
Note that the regions shaded in black depict probabilities in excess of
99.9%andhencewould correspond to a climate that is drier, on average,
than the worst droughts of the past 1000 years (7). For reference, mega-
droughts in the preindustrial era only occurred once or twice per mil-
lenniumon average (2, 8, 20); thus, without climate change, these events
would be “very unlikely” (0 to 10% probability) (8).

Although some studies have relied on precipitation alone to identify
prolonged drought or megadrought conditions (13, 21, 22), our results
show that this approach tends to underestimate risk in a changing cli-
mate (Fig. 1). On each panel, changes in normalized drought indicators
[annually averaged precipitation, June-July-August (JJA) soil moisture
at 2 m and 30 cm, and JJA Palmer Drought Severity Index (PDSI)] are
overlaid on the 2D PDF of megadrought risk, expressed again as a
function of ds and ∆m. We focus on JJA for soil moisture and PDSI
because it is the driest, hottest part of the year inmuch of the Southwest
and also for compatibilitywith paleoclimate reconstructions of JJA arid-
ity (7, 12). Bymidcentury (2051–2080), under a business-as-usual emis-
sions scenario, the “large ensemble” (LENS) from one model (CESM)
simulates increases in annual precipitation, which decreases mega-
drought risk according to estimates solely based on this variable (Fig.
1A, blue circles). TheCMIP5multimodel ensemble shows a similar pat-
tern, although (on average) regional annual precipitation decreases,
slightly increasing megadrought risk (Fig. 1B). Nonetheless, models
within the CMIP5 archive also support decreases in average normalized
annual precipitation of nearly one full SD and increases of more than
1 SD (Fig. 1B and fig. S1). These projected changes encompass mega-
drought probabilities that range fromvirtually certain (>99.9%) to excep-
tionally unlikely (<0.1%) if precipitation alone is used to assess its risk.
Ault et al., Sci. Adv. 2016;2 : e1600873 5 October 2016
Fig. 1. Megadrought risk estimates for the American Southwest shown with
model-projected changes in mean hydroclimate. (A to C) Megadrought risk esti-
mates for the American Southwest (shading) shown with model-projected changes
in mean hydroclimate under the RCP 8.5 (high emissions) scenario for (A) annual pre-
cipitation and JJA soilmoisture (PDSI, 30-cm soilmoisture, and 2-m soilmoisture) in the
CESM LENS, (B) annual precipitation from all CMIP5 models, and (C) JJA soil moisture
indicators derived from a 17-model subset of CMIP5 for which all variables needed to
compute these quantities were available (7). In all panels, the interquartile range of the
ensemble is shown (the full range is shown in the Supplementary Materials). Model-
based variables are normalized to unit variance over a historical reference period
(1951–2000) and compared with midcentury changes (2051–2080). The shading
shows the 2D PDF of megadrought risk for combinations of changes in the mean
(∆m) and variability (ds) of a normalized drought indicator time series [z′(t)].
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In contrast to precipitation, indicators of JJA soil moisture depict a
more consistent picture of drying (Dm < 0) and correspondingly higher
megadrought risks (orange symbols in Fig. 1, A and C). Most simula-
tions in both the CESM and CMIP5 ensembles plot into a region of the
megadrought risk PDFwhere events are virtually certain (>99.9% prob-
ability) bymidcentury (Fig. 1C and figs. S1 and S2).Note that Cook et al.
(7) estimated regional risks to be closer to 80% because that study
derived risks from the CMIP5 ensemble itself (which includes models
that simulate both low and high risks), whereas here we are plotting
where each ensemble member falls in the 2D megadrought PDF. The
contrasting estimates of risk between precipitation and soil moisture
hint at the role that temperature might play in elevating megadrought
probabilities by altering the mean regional moisture balance during cli-
mate change. They further imply that this tendency is generally
independent of the particular soil moisture metric targeted for analysis,
as also shown in earlier studies (7, 23).

Not all variables from all models plot into the portion of the 2DPDF
shown here (fig. S2). For example, onemodel (CanESM2) simulates av-
erage 2-m soil moisture conditions (∆m) that are approximately 3s
wetter by midcentury than over the historical period (1951–2000).
We therefore cannot completely rule out the possibility that moisture
will increase in deeper soil layers despite warming temperatures (22),
but this possibility is inconsistent with near-surface conditions in most
of the models, some of which support mean conditions far worse than
the worst years of drought during the historical period. Moreover,
Ault et al., Sci. Adv. 2016;2 : e1600873 5 October 2016
variables from four models (MIROC-ESM-CHEM 2-m soil moisture,
MIROC-ESM 2-m soil moisture, NorESM1-M 30-cm soil moisture,
andGFDL-CM32-msoilmoisture) fall to levels below−3s (muchdrier),
three of which are associated with the deep soil layer. Nonetheless, these
uncertainties motivate a closer look at the relative contributions of mean
temperature and precipitation change to regional megadrought risk.

Because changes in the mean state largely determine megadrought
risk (Fig. 1), the second 2D PDF that we consider (Fig. 2) is generated
using the JJA PDSI calculated from resampled and rescaled observa-
tional and reanalysis data over a wide range of plausible changes in
mean precipitation and temperature (Materials and Methods). These
values are “plausible” in the sense that they are supported by the range
of estimates derived from the CMIP5 ensemble (Materials and
Methods). This PDF shows a strong risk dependence on both variables,
with decreasing precipitation and/or increasing temperature linked to a
higher probability of megadrought (Fig. 2). At a constant temperature
relative to the 1951–2000 baseline (DT = 0), reductions in precipitation
are associated with increases in risk. Likewise, increases in temperature
elevate risk if precipitation is held constant (for example,DP= 0%). This
effect is stronger for higher regional temperature change, such that even
without any reduction in precipitation, the probability of megadrought
is close to 100% if Southwest temperatures rise by 5°C or more, a pos-
sibility encompassed by the CMIP5 multimodel distribution under
business-as-usual forcing (Fig. 2C). Moreover, the general characteris-
tics of this 2DPDF, including its strong dependence on temperature, are
Fig. 2. Megadrought risk expressed as a function of bothmeanprecipitation and temperature for theAmerican Southwest comparedwith projected changes in temperature and
precipitation. (A)Megadrought risk expressedas a functionof bothmeanprecipitationand temperature for theAmericanSouthwest (shading) comparedwithprojectedchanges in temperature
andprecipitation (symbols) for twoscenarios: RCP2.6 (lowemissions,blue triangles)andRCP8.5 (highemissions, redcircles).CMIP5estimatesofchangeareexpressedas thedifferencebetweenthe
historical referenceperiod (1951–2000)andthemidcenturyaverage (2051–2080). Themegadrought risksurface (shading) is theaverageofall2DPDFscalculatedateachgridpoint in theSouthwest
for each combination of temperature and precipitation change. JJA PDSI is used as the reference normalized drought indicator time series [z′(t)]. The vertical dashed line marks no change in
precipitation. (B)Marginaldistributionofprecipitationchange inCMIP5models, binnedat 5% intervals from−30 to+30%ofhistorical climatology. (C)Marginal distributionof temperature changes,
binned at 0.5°C intervals from zero to six.
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robust even if temperature and precipitation only change during certain
seasonal windows (fig. S3).

Model-based projections of mean Southwest temperature and pre-
cipitation change are plotted as symbols in Fig. 2A (model IDs are
provided in fig. S1). Becausemegadrought risk largely depends on these
mean changes, we evaluate the effect of climate mitigation on mega-
drought risk. We consider the two experiments that bracket a large
number of possible mitigation outcomes from the “low-emission” Rep-
resentative Concentration Pathway 2.6 (RCP 2.6) (blue triangles) to the
“high-emission”RCP8.5 (orange circles) scenarios.Marginal distributions
of mean precipitation and temperature change from the CMIP5 archive
are also shown in Fig. 2 (B and C, respectively). There is clearly more am-
biguity about the direction and magnitude of precipitation change in the
Southwest as compared to temperature: The distribution of RCP 2.6 pre-
cipitation is nearly unchanged from the historical period (median precip-
itation change of +0.7%),whereas theRCP8.5 scenario is onlymoderately
drier (median of −3%), albeit with greater spread (Fig. 2, A and B).

In contrast to precipitation, the temperature distributions are uni-
versally of the same sign (positive), but the RCP 2.6 and RCP 8.5 scenar-
ios are distinct from one another (Fig. 2C). It is clear that the combined
projections of DT and DP from the two scenarios do not overlap appre-
ciably because RCP 8.5 projects a higher regional temperature change
than RCP 2.6. These warmer temperatures shift the entire RCP 8.5
distribution into a region of the 2D PDF where megadrought risks
are much higher. Even in the case where one model (CanESM2; fig.
S2) predicts a 30% increase in precipitation, this amount is insufficient
to overcome the effects of higher temperature—the projection still plots
into a region of elevated megadrought risk (30 to 40%) despite the pre-
cipitation increase. On the other hand, some RCP 2.6 simulations proj-
ect a net increase of precipitation (blue triangles to the lower right of the
gray shading in Fig. 2A), and these simulations map onto a region of
megadrought risk that is either similar to (5 to 10%) or lower than
(<1%) the preindustrial period (8). This reduction in risk occurs largely
Ault et al., Sci. Adv. 2016;2 : e1600873 5 October 2016
because increases in precipitation are accompanied by onlymodest tem-
perature shifts that stay below 2°C.

In Figs. 3 and 4, we further highlight the role that temperature plays
in “loading the dice” to make megadroughts more probable through its
effect on themoisture balance of the region. In Fig. 3,megadrought risks
estimated for fixed values of mean precipitation change are shown with
the median temperature increases simulated by RCP 2.6 (1.9°C) and
RCP 8.5 (4.5°C) over the period 2051–2100 compared to 1951–2000.
Here, we focus on the second half of the 21st century to emphasize
the outcomes ofmitigation onmean regional temperature. Two features
of Fig. 3 are important to note. First, unlessmeanprecipitation increases,
megadroughts are likely (>66% probability) to occur for a regional tem-
perature change above 2°C (dashed line). Second, median regional
warming simulated for RCP 8.5 (4.5°C; dotted line) would make mega-
droughts very likely (>90% probability) by the end of the century if
average precipitation does not increase. This risk remains above 50%
unless precipitation increases by 10 to 20%, which is not typical of
models in the CMIP5 archive. These estimates of risk would be even
higher, and the required increases in precipitation would be even
greater, if regional warming exceeds 4.5°C, which itself is a possibility
supported by many of the individual model simulations (Fig. 2C).

Whereas the estimates above are based on the average 2D PDFs of
megadrought risk for the entire American Southwest, our approach
allows us to make similar estimates for each grid point in the domain
(Fig. 4, A to C). These estimates are not based on CMIP5 output but
instead are derived from probabilistic modeling of megadrought risk
as a function of rescaled historical temperature and precipitation cli-
matologies. Our results clarify the effects of these two variables on PDSI
throughout the region. For temperature change below 1° and no change
in precipitation, most of the domain is exposed to levels of risk below
20% (yellow regions in Fig. 4, A to C). As temperatures reach 2°C and
above, increasing fractions of the domain see megadrought risks above
90%, with nearly the entire domain doing so at 6°C of warming.
Fig. 3. Megadrought risk estimates for fixedmean precipitation changes, shown as a function of mean annual temperature and comparedwith CMIP5 projections of
meanwarming from2051 to2100 compared to1951 to2000.Contours show risks for constant levels ofmeanprecipitation change (DP), derived from the 2DPDF in Fig. 2. The
dashed lines denote themedianwarming (again comparing 2051–2100 to 1951–2000) fromRCP 2.6 (1.9°C) and RCP 8.5 (4.5°C) and their corresponding risks assuming no change
in precipitation (DP = 0%).
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For each warming threshold in Fig. 4 (A to C), we have also cal-
culated the amount by which precipitation would need to increase to
keepmegadrought risks below 50% (Fig. 4, D to F, blue shading). For
levels of warming below 2°C, most of the region would only need
modest (<10%) increases in precipitation to keep megadrought risk
levels under this threshold. As warming reaches 4°C, increases of 10
to 30% are needed throughout Nevada and the four-corner region,
and at 6°C, these required increases reach 40 to 50%. For reference,
the changes in precipitation projected by the RCP 8.5 CMIP5 multi-
model ensemble mean at each level of warming (for example, 2°, 4°,
and 6°C) are shown in contours on Fig. 4 (D to F). These projected
precipitation changes are negative (dashed contours) for much of the
domain, with the CMIP5 ensemble average predicting a 5 to 15% re-
duction in precipitation in the southernmost areas considered here for
levels of warming between 2° and 6°C. Furthermore, projected precip-
itation change is close to zero, on average, in regionswhere a 40 to 50%
increase is needed to keep risks below 50% by the end of the century
when warming levels approach 6°C.
DISCUSSION
Our findings have important implications for both mitigation and
adaptation.With regard to mitigation, the dependence of megadrought
Ault et al., Sci. Adv. 2016;2 : e1600873 5 October 2016
risk on mean temperature highlights a relative advantage of keeping
GHGemissions low. In a business-as-usualworld (RCP8.5), rising tem-
peratures alone are sufficient todrivemegadrought risks tounprecedented
levels. On the other hand, if regional warming remains below 2°C, mega-
drought risks will correspondingly remain below 66% for a wide range of
precipitation changes [for example, below the IPCC-defined threshold for
likely (19)]. Further emission reductions, and hence smaller temperature
increases, would have even greater benefits in reducing megadrought
risks, thus highlighting the fact that global efforts aimed at mitigating cli-
mate change through GHG emission reductions will also help minimize
prolonged drought probabilities (24).

Our results also provide insight into howmuch additional moisture
supply is needed in the Southwest on average to keepmegadrought levels
below certain thresholds. In our case, we again focus on the 50% thresh-
old, though, in principle, this could be lowered.We find that even for this
fairly high tolerance of risk, most of the region would need to see at least
a 40 to 50% increase in precipitation (Fig. 4, D to F, shading), which,
according to the CMIP5 projections, is unlikely for the area (Fig. 4, D
to F, contours) (8, 25). A constellation of adaptation policies, such as
demand reduction and increased efficiency strategies, interbasin water
transfers, shifts to groundwater reliance, increased surface irrigation,
and other management measures, could serve to offset some of this
increased moisture requirement. However, the feasibility, sustainability,
Fig. 4. Maps of megadrought risk for the American Southwest under different levels of warming, and the required increase in precipitation to compensate for that
warming. (A toC) Maps ofmegadrought risk for the entire American Southwest domain at constant (historical) precipitation climatology (DP= 0%) and various levels ofwarming.
These estimates are based on theMonte Carlo procedure of observational and reanalysis data, not on CMIP5 (seeMaterials andMethods). (D to F) Increases in precipitation (blue
shading) needed to maintain megadrought risks below 50% for different levels of regional warming. Contours map the projected changes in precipitation derived from the
multimodel CMIP5 mean and are shown for reference at each level of temperature change.
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and implementation of these measures and the extent to which they
could reduce megadrought risk remain critical open questions.

Both structural differences between GCMs and natural variability
introduce uncertainty into projected changes in precipitation (Fig. 1).
These uncertainties in precipitation play out in terms of both the mean
state and the variability of the Southwest, although most models
simulate drying in general (Fig. 1B) (8, 25, 26). Our analysis of a LENS
of onemodel (CESM) suggests that the role of natural variability in gen-
erating precipitation uncertainty is relatively small compared to struc-
tural differences between models, which simulate regional responses to
warming between −1 and more than 1 full SD. Notwithstanding these
uncertainties, higher temperatures shift the moisture balance toward
conditions that are drier on average, as evidenced bymultiple soil mois-
ture metrics (Fig. 1C) (7). This shift consequently makes megadrought
conditions much more likely than they are today, even if precipitation
increases. Consideration of soil moisture therefore reduces the uncer-
tainty in megadrought risk estimates stemming from natural variability
and model differences because it integrates the effects of moisture sup-
ply, storage, and atmospheric demand under higher temperatures.

Several features of our approach make it easily extensible to other
drought indicators, other parts of the world, and other global climate
model data sets. For example, land surface model (LSM) components
of GCMs could be forced with similar ranges of temperature and pre-
cipitation change to generate LSM-based 2D PDFs of risk, as we have
done for PDSI. Thiswould facilitate sensitivity tests of LSMcomponents
under a wide range of future possible climates, akin to “stress tests” in
engineering (27), and could even be extended to include the relative im-
pacts of CO2 “fertilization” onmegadrought risk (11). Additionally, the
2D PDFs developed here are particularly useful in the context of IPCC
climate model assessments because a new generation of simulations is
released for analysis every few years. Although the details of regional
hydroclimate in these simulations might change, the PDFs we generate
as a function of mean state and variability (Fig. 1), or temperature and
precipitation (Fig. 2), will not change, because they are generated from
the observed climatology. Further work could also extend risk estimates
to other aspects of hydroclimate beyond soil moisture (for example, re-
servoir levels, snowpack, and streamflow) and other parts of the world.

Finally, the dependence of megadrought risk on temperature
makes the probability of these events in the future very distinct
from such intervals in the past. Historically, megadroughts were
extremely rare phenomena occurring only once or twice per mil-
lennium, possibly from internal variability (28) or weak external
forcing (29). According to our analysis of modeled responses to
increased GHGs, these events could become commonplace if cli-
mate change goes unabated. This appears to arise not because of
any particular change in the dynamic circulation of the atmosphere
but because the projected increase in atmospheric demand for
moisture from the land surface will shift the baseline of soil mois-
ture balance, making megadroughts far more likely than they have
been for at least the last millennium (7).
MATERIALS AND METHODS
Drought indicators, including precipitation, surface (30-cm) soil mois-
ture, full column–integrated soil moisture (2 m), and the PDSI, were
obtained or calculated from the following sources:

(1) Output from a recent LENS experiment (18) conducted using a
single model (CESM) to address the relative importance of internal cli-
mate variability as opposed to its combination with structural differ-
Ault et al., Sci. Adv. 2016;2 : e1600873 5 October 2016
ences between models. Annual precipitation, JJA 30-cm soil moisture,
JJA 2-m soil moisture, and JJA PDSI were either obtained or computed
from the “historical” (1920–2005) and RCP 8.5 (2005–2080) experi-
ments in the LENS data set.

(2) GCM data from two RCPs included in the CMIP5 archive:
RCP 2.6, which assumes aggressive cuts in emissions for the coming
decades, generally preventing global mean temperatures from
exceeding 2°C of total warming (17, 30); and RCP 8.5, which assumes
that anthropogenic emissions of GHGs will continue to increase and
contribute 8.5 W/m2 of average net radiative forcing by the year 2100.
As in the study by Cook et al. (7), we computed PDSI from a 17-model
subset of the CMIP5 archive for which all fields were available to cal-
culate the Penman-Monteith estimates of evapotranspiration, and for
which soil moisture fields were also available. Annual precipitation
averages were used as the normalized drought indicators in Fig. 1,
whereas JJA averages of soil moisture (30 cm and 2 m) and PDSI were
used from the 17-model subset for consistency with earlier studies (7, 12)
and to focus on the hottest, driest part of the year in the Southwest. In
contrast to the earlier study (7), we also included the remaining GCMs
in our analysis of risk arising from changes in precipitation and tempera-
ture (Fig. 2), although PDSI and soil moisture were not always available
from these products. In this case, annual temperature and precipitation
were used.

(3) Observational temperature and precipitation fields, used in the
MonteCarlo procedure described below, originated from theUniversity
of East Anglia’s Climate Research Unit’s “TS2.1” data product (31).
These fields are produced at 0.5° native resolution but were linearly
interpolated to 1° for themegadrought risk estimates computed here.
Net radiation, relative humidity, and surface pressure fields used for
calculating PDSI with the Penman-Monteith method for estimating
evapotranspiration are from theNational Centers for Environmental
Prediction reanalysis data (32). Climatological values of these fields
were all averaged for the Southwest domain (125°W to 105°W; 32°N
to 41°N) and used to compute both historical and future estimates of
JJA PDSI with bootstrap resampling procedures described below.
The use of climatological values for all fields other than temperature
and precipitation was motivated by the goal of isolating the effects of
temperature and precipitation alone on future JJA PDSI values;
changes in megadrought risk were therefore constrained to arise
solely from changes in either of these two variables.

Precipitation and soil moisture are physical quantities, whereas the
PDSI is a normalized index of aridity (though its local SD is not neces-
sarily unity). Negative and positive PDSI values correspond to drought
or wet conditions, respectively (33, 34). PDSI can be computed “offline”
from model output and presents an internally consistent measure of
drought across space, through time, and among models with different
land surface schemes.

There are a number of plausible objective methods for identifying
periods of megadrought in hydroclimate time series (12–16), but we
adopted a simple and relatively transparent definition recently used
by Cook et al. (7) and Ault et al. (8). Namely, for a given time series
(yt), we are interested in finding intervals when the running mean (of
lengthw) falls below a certain threshold (q). This definition has recently
been shown to reliably identify decadal droughts in the historical record
(with w = 11 and q = −0.5) and multidecadal megadroughts in the pa-
leoclimate record (withw = 35 and q = −0.5) (8). These definitions were
also applied to characterize 21st-century prolonged drought risk arising
primarily from climate change (7, 8). We adopt the latter definition to
assess multidecadal (35-year) megadrought risk in the projections.
6 of 8



SC I ENCE ADVANCES | R E S EARCH ART I C L E
Identifying megadroughts across a wide range of hydroclimatic
time series that might include precipitation, soil moisture, drought
indices, and paleoclimate records required us to normalize data in
ways that would allow objective comparisons across results. We
therefore considered a “modified z score” (zt′) defined as

z 0
t ¼ yt � mref

sref

where yt is the original variable and mref and sref are the mean and
SD, respectively, of that variable over a reference time period (in
our case, 1951–2000). The modified z score is then smoothed using
a moving average of length w to produce a new time series [Xw(t)]

Xw tð Þ ¼ 1
w

z 0
t þ z 0

t�1 þ z 0
t�2 þ…þ z 0

t�wð Þ

Fundamentally, we were interested in the probability that any ele-
ment of Xw(t) falls below the threshold q for different combinations
of shifts in the mean values of zt′ (∆m) and changes in the SD (ds =
snew/sref). The parameters ∆m and ds were interpreted as being esti-
mates of the influence of climate change on themean and SD of some
particular drought indicator (yt). The quantity of interest was the 2DPDF
ofmegadrought: Pr{Xw≤ q | ds,∆m}, which depends on both changes in
the mean (∆m) and the SD (ds) of the modified z score (zt′).

The 2D PDF of megadrought risk (Pr{Xw ≤ q | ds,∆m}) was esti-
mated using a Monte Carlo procedure as in Ault et al. (8) and Cook
et al. (7) and checked analytically (see figs. S4 and S5). Because we
were interested in relative changes in megadrought risk as a function
of shifts in the mean and different variance ratios, we would assume
that the reference time series (zt′) has zero mean and unit variance
over the reference period. This assumption is analogous to the approach
used by Ault et al. (8) and Cook et al. (7), which looked at modified
z scores computed from precipitation and soil moisture indicators,
respectively. The difference herein is that we prescribed changes in
∆m and ds directly, rather than computing these parameters from
GCM output. We generated random (Monte Carlo) realizations (ẑt′)
from aGaussian (temporally white) distribution of changes in∆mmean
and ds SD to represent changes in megadrought risk as a function of
these two parameters (Fig. 1). Note that usingMonte Carlo realizations
with built-in sources of temporal persistence elevated risks in the “gray
area” (values between 0.1 and 0.8) in Fig. 1 (see fig. S6). Accordingly, the
PDF shown in Fig. 1 is “conservative” in the sense that true risks for
certain types of drought indicators with interannual autocorrelation
might be even higher than those depicted. CMIP5-based estimates
of∆m and dswere computed from annual precipitation, JJA soilmois-
ture (at 30 cm and 2 m), and JJA PDSI by normalizing each of these
indices over the historical period (1951–2000) and computing their
normalized means and SDs at midcentury (2051–2080). These
model-based estimates were then overlaid on the 2D PDF in Fig. 1.

We estimated the 2D PDF of megadrought risk as a function of
changes in both temperature and precipitation (Fig. 2) using PDSI as
a proxy for the surface moisture balance. To do so, the following four
steps were repeated 100 times for each grid point in the American
Southwest. First, the joint distribution of precipitation and temperature
was generated for each month from observations. Second, temperature
and precipitation values were drawn from this distribution (with replace-
ment) to generate 100 “bootstrap” years (1200 months). Third, changes
in temperature (∆T)were then added to eachmonth of these realizations,
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and precipitationwas likewise scaled between −30 and +30% of climatol-
ogy [that is, the range encompassed by the GCMs; see the studies by
Cook et al. (7), Ault et al. (8), and Diffenbaugh and Giorgi (25)]. Fourth,
these bootstrap realizations were used to compute PDSI for each unique
combination of change in precipitation and change in temperature. Cli-
matological values were used for all other variables (surface pressure, net
radiation, and humidity) required by the Penman-Monteith model of
evapotranspiration. As in the study by Cook et al. (7), the 1931–1990 pe-
riodwas used for calibrating the PDSI, and JJA average valueswere used to
identify megadroughts.

The process above generated bootstrap realizations of PDSI with
different combinations of change in temperature (∆T) and precipita-
tion imposed on the historical period. We estimated a 2D PDF of
megadrought risk for JJA PDSI at each grid point by normalizing each
realization by the mean and SD of the 1951–2000 period, applying a
35-year averaging window, and identifying periods where this running
mean dropped below −0.5s. This step yielded one 2D PDF per grid
point. PDFs from all grid points were averaged together for the American
Southwest to produce a “master” PDF of megadrought risk, against which
changes in temperature and precipitation from the entire CMIP5 mul-
timodel ensemble were compared [for example, even frommembers that
did not have sufficient data for computing the soil moisture quantities or
PDSI in the study by Cook et al. (7)]. This 2D PDF is shown in Fig. 2.

Last, in Fig. 2, CMIP5-based estimates of changes in temperature
and precipitation were computed as the difference (∆T), or ratio (%),
between midcentury (2051–2080) and historical (1951–2000) periods.
These differences were calculated independently from each run; thus,
the symbols in Fig. 2 represent internally consistent (with respect to
each simulation) estimates (as opposed to comparisons of model simu-
lations to historical values).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/10/e1600873/DC1
Analytical PDF of megadrought
fig. S1. Joint (2D) PDF of Southwest megadrought risk for a normalized drought indicator time
series [z′(t)] with various changes in the mean (∆m) and changes in the variance (ds).
fig. S2. Full range of changes in mean (∆m) and variability (ds) simulated by a CMIP5 model subset.
fig. S3. Megadrought PDF for various combinations of seasonal changes.
fig. S4. Reduction of variance in smoothed time series (Xw) as a function of smoothing window
length (w).
fig. S5. Two-dimensional PDF of prolonged drought risk computed from the analytical
expression for megadrought probability.
fig. S6. Megadrought 2D PDF for changes in mean and variance but for different
autocorrelation characteristics of the underlying data.
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