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Abstract

Allogeneic hematopoietic cell transplantation (HCT) offers the potential to cure hematologic
malignancies. Absent an HLA matched donor, HLA mismatched unrelated donors may be used
although risks of graft-versus-host disease (GvHD) and treatment related mortality (TRM) are
higher. Identification and avoidance of amino acid substitutions and position types (AASPT)
conferring higher risks of TRM and GvHD would potentially improve the success of
transplantation from single HLA mismatched unrelated donors. Using random forest and logistic
regression analyses, we identified 19 AASPT associated with greater risks for at least one adverse
transplant outcome: grade I11-1V acute GVHD, TRM, lower disease free survival or worse overall
survival relative to HLA matched unrelated donors and to other AASPT. When tested in an
independent validation cohort of 3,530 patients, none of the AASPT from the training set were
validated as high-risk, however. Review of the literature shows that failure to validate original
observations is the rule and not the exception in immunobiology and emphasizes the importance of
independent validation prior to clinical application. Our current data do not support avoiding any
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specific class | AASPT for unrelated donors. Additional studies should be performed to fully
understand the role of AASPT in HCT outcomes.

Introduction

In the absence of an HLA identical sibling, an HLA-A, -B, -C, and -DRB1 matched
unrelated donor (8/8 URD) is the best-established donor option for patients with high-risk
hematological malignancies who need hematopoietic cell transplantation (HCT). However,
approximately 30% of Caucasian and 70%-94% of African-American patients are unable to
find an 8/8 URD (1). A single antigen or allele HLA mismatch results in approximately 10%
worse absolute 5-year survival and greater risk of graft-versus-host disease (GvHD) for
patients with early-stage hematological malignancies compared to an 8/8 URD-HCT (2-5).
Alternatives to mismatched unrelated donors include haploidentical donors and umbilical
cord blood (6-8) but these may have higher rates of relapse and delayed engraftment,
respectively.

Considerable interest has emerged in identifying more tolerable or permissive HLA
mismatches or, conversely, HLA mismatches to avoid between patients and their unrelated
donors to minimize adverse consequences of HLA mismatching. Numerous factors may
determine the effect of specific HLA mismatches, considering that alleles differ in the
number, type, and location of amino acid substitutions (AAS) in the structure of the HLA
molecule, and their impact on peptide binding and T-cell allorecognition may be critical in
determining transplant outcomes. Non-permissive AAS have been identified using both in
vitro structure-function studies (9, 10) and outcome studies (11-14).

We hypothesized that we could establish a subset of AAS associated with worse HCT
outcomes. In 2012, our group reported a set of AAS that were associated with worse 100
day survival in single HLA class | mismatched recipient-donor pairs compared to 8/8 URD
pairs (15). We now extend the analysis to include all AAS positions and as well as amino
acid substitution types (AASPT) and 1 year transplant and grades 111-1V GvHD outcomes in
separate training and validation datasets.

Materials and Methods

Patients

Patients had early or intermediate risk hematologic malignancies [acute myeloid leukemia
(AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), and
myelodysplastic syndromes (MDS)]. Patients and adult unrelated donors were either 8/8
matched at HLA-A, -B, -C and -DRB1 or 1 allele mismatched at class | by high resolution
typing. The training set underwent transplant from 1988-2003 (n=2,107) whereas the
validation set underwent transplantation from 2004-2011 (n=3,349). Table 1 describes
baseline characteristics of patients in each dataset.
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Clinical and outcome data from study participants were obtained from the Center for
International Blood and Marrow Transplant Research (CIBMTR®) database. The CIBMTR
is a research collaboration between the NMDP/Be The Match Registry and the Medical
College of Wisconsin. All patients and donors provided informed consent for inclusion in
the CIBMTR research program, and the NMDP Institutional Review Board approved the
study protocol.

Study end Points

End points of this study were overall survival (OS), disease-free survival (DFS) and
treatment-related mortality (TRM) at one year and severe (grades I11-1V) acute GvHD by
day 100. These outcomes were dichotomized for the random forest and logistic regression
analyses and treated as time-to-event outcomes in the survival analyses as described below.

Statistical Analyses

Random forest analysis—The random forest method, which grows a collection of
classification trees, is a combination classifier and has been previously described (15, 16).
Briefly, the random forest (RF) method is an extension of CART (Classification and
Regression Trees), which is used to discover relationships among a large number of
predictor variables and a categorical or continuous outcome variable. Models were created
that included four patient-donor clinical characteristics generally known to be associated
with transplant outcomes (recipient age, gender match, type of disease, and disease stage)
and all HLA-A, -B, and -C AASPT (n=389 candidate AASPT) as predictor variables. The
procedure ranks all predictor variables in terms of an importance score (IS). In our previous
publication (15) we chose an IS cutoff of =3 to indicate potentially important amino acid
substitutions; here a more conservative IS of 5 or greater was selected as the threshold. Note
that the 1S does not, by itself, indicate the statistical significance nor even the direction of
the effect. The analysis was performed using commercially available software (Salford
Systems, Version 6, San Diego, CA).

Multivariate logistic regression analysis—To determine the direction and statistical
significance of the effect of each AASPT on each clinical outcome, we performed
multivariate logistic regression adjusted for the same four clinical variables mentioned
above, i.e. each model included five predictor variables. To avoid sparse data, we limited the
logistic regression to the AASPT present in at least 10 individuals, thereby reducing the
number of candidate AASPT from 389 to 155. The odds ratio (OR) for the given AASPT
relative to 8/8 URD was determined and the average marginal effect for each outcome was
estimated by computing a marginal probability from the fitted logistic regression model
using Stata (version 12.1, Stata, College Station, TX). AASPT were categorized into “high-
risk” or “non-high-risk” on the basis of the logistic regression and random forest results.

Survival Analysis—The Kaplan-Meier (17) method was used to estimate OS and DFS
rates according to risk groups, [high-risk (presence of one or more high-risk AASPT), non-
high-risk (mismatch but no high-risk AASPT), and 8/8 URD], defined on the basis of the
random forest and multivariate logistic regression analyses as described above. Comparison
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among the three groups was performed using the Cox proportional-hazards (PH) model (18).
All patients without an event were censored at one year. Cox regression was also performed
to estimate cause-specific hazard ratios for TRM and GvHD. For TRM, patients who died
from disease relapse were censored at the time of death and for acute GvHD all deaths in the
absence of prior GVHD were treated as censored observations. Finally, cumulative incidence
curves (19) were generated to estimate the incidence rates of acute GvHD, with death in the
absence of acute GvHD as a competing event. All models were adjusted for the four patient-
donor clinical characteristics.

Validation analyses—The validation analysis tested the AASPT discovered in the
analysis of the training set directly in the validation cohort. Of note, identified high-risk
AASPT varied for each outcome in the training dataset. The AASPT were therefore tested in
the validation cohort in two ways. First, outcome-specific AASPT were created with a
trichotomous indicator variable for whether the donor/recipient pair had a high-risk AASPT,
non-high-risk AASPT or were 8/8 matched for the specific outcome. A second test of the
AASPT was based on an aggregated AASPT indicator variable which defines “high-risk” as
presence of any of the AASPT identified as important for any of the four outcomes. This
aggregated AASPT variable reflected the clinical reality that, if possible, transplant centers
are likely to avoid donors with a high-risk AASPT for any adverse outcome.

We used the Cox PH model to evaluate the association between risk groups and each
outcome controlling for outcome-specific significant clinical variables that were identified
based on the validation cohort instead of limiting adjustment to the previously identified four
clinical variables. The outcome-specific models were constructed using a stepwise selection
procedure with a threshold of 0.05 for both entry and removal, and the final set of
adjustment clinical variables differed from the training cohort. As above, both the outcome-
specific and aggregate definitions of high-risk AASPT were tested separately based on these
models. Because of multiple testing, A<0.01 was considered statistically significant. All
reported p-values are two-sided. Analyses were performed using SAS version 9.3.

Identifying high-risk AASPT and risk groups in the training set

Based on the criteria of AASPT present in at least 10 individuals (n>=10), 1S>=5 from
random forest, OR>1 (i.e. a detrimental effect) and P<=0.01 from logistic regression, the
analysis discovered 19 high-risk AASPT, shown in Table 2. Among them, only C97_WR
was classified as high-risk for all four outcomes. Given each list, we then stratified patients
into three categories: 1) high-risk group included patients with at least one of the identified
high-risk AASPT for that outcome; 2) non-high-risk group if they had any of the remaining
AASPT including AASPT where n<10; and 3) 8/8 URD. The complete list of AASPT with
IS>=5 or P<=0.01, including predicted event rates, is provided in the Supplementary
Appendix, ST1.

High-risk AASPT for OS—We observed that 7 AASPT were associated with significantly
increased mortality as compared with the 8/8 URD group (HR 1.92; 95% CI, 1.55 to 2.37)
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and the non-high-risk group (HR 1.58; 95% ClI, 1.25 to 2.01) as shown in Figure 1a (left-
hand side).

High-risk AASPT for DFS—The estimated 1-year event rate for 8/8 URD pairs was
50.7%. Only 3 AASPT met high-risk criteria. Figure 1c shows Kaplan Meier curves
according to AASPT risk groups.

High-risk AASPT for TRM—Eight AASPT were significantly associated with an
increased risk of TRM. High-risk group had significantly higher TRM than the non-high-
risk group (HR 1.42; 95% ClI, 1.13 to 1.78) and 8/8 URD group (HR 1.70; 95% ClI, 1.40 to
2.06).

High-risk AASPT for acute GvHD grades IlI-IV—A total of 7 AASPT were identified
as risk factors for severe acute GvHD by day 100. Amino acid substitution C97_WR was
again identified as a high-risk factor similar to the results for the other three HCT outcomes
whereas the other 6 AASPT were uniquely identified as risk factors for acute GvHD. The
HR for the high-risk group relative to the 8/8 URD was 1.72 (95% CI, 1.38 to 2.15;
£<0.0001) and the HR for the non-high-risk group relative to 8/8 URD was 1.40 (95% ClI,
1.15 to 1.70; P=0.0009). Figure 2a shows the cumulative incidence curves according to
patient-stratifications.

HLA class | mismatched alleles comprising high-risk and non-high-risk AASPT in the

training set

The mismatched HLA-class | allele (n>=10) comprising high-risk AASPT associated with
all outcomes was HLA-C*01:02/02:02 (n=11). In addition, HLA-C*02:02/01:02 (n=14), and
C*04:01/16:01 (n=11) were identified in the TRM and acute GvHD analyses and the HLA-
C*15:02/14:02 (n=11) allele combination was identified in the acute GvHD analysis. The
HLA-C*03:03/03:04 (n=20) and HLA-C*03:04/03:03 (n=30) were the most common
mismatched allele combinations comprising all non-high-risk AASPT. These alleles differ
by one amino acid at position 91 (HLA-C*03:03—91A, HLA-C*03:04—91G).

Validation of high-risk AASPT

Of 155 AASPT present in at least 10 individuals in the training set, a total of 19 were
identified as high-risk across all four outcomes. Only these 19 AASPT were considered
when analyzing the validation set. Of these 19, all but two (C156_QR and C116_YL) were
present in at least 10 individuals in the validation set. Note, however, that in the validation
analysis, patients were grouped as “high-risk” if they had any one of the high-risk AASPT
found in the training set.

Outcome specific analysis in the validation cohort—Table 3 shows the results for
the outcome-specific analyses in the validation cohort. Presence of at least one high-risk
AASPT relative to HLA mismatch without a high-risk AASPT was not associated with OS,
DFS, TRM or grade I11-1V acute GvHD (all 7>0.33). As expected, HLA mismatch had
inferior outcomes relative to 8/8 MUD, irrespective of presence or absence of high-risk
AASPT defined by the training dataset. Figure 1b shows survival and Figure 1d shows DFS
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Kaplan Meier curves according to AASPT risk groups. Figure 2b shows cumulative
incidence curves for the validation cohort. All curves are adjusted for recipient age, gender
match, type of disease, and disease stage.

Aggregate analysis in the validation cohort—Table 4 shows the aggregate analysis
results in the validation cohort comparing high-risk AASPT for any outcome to only non-
high-risk AASPT. Presence of at least one high-risk AASPT for any outcome was not
associated with OS, DFS, TRM, or grade I11-1V acute GvHD relate to non-high-risk AASPT.

Discussion

We sought to identify and validate high-risk class | HLA AASPT for one-year outcomes and
grade I11-1V acute GvHD after allogeneic transplants. To accomplish this, we used two
independent recipient-donor populations, training dataset 1988-2004 predominantly bone
marrow and a more recent validation dataset (2004-2011) predominantly peripheral blood
stem cell as donor sources and employed a novel statistical approach using RF and logistic
regression methods in a large and homogeneous group of patients with hematological
malignancies to define AASPT associated with worse outcomes. AASPT C97_WR (patient-
donor respectively) showed greater risks across all outcomes and AASPT C80_NK,
C77_SN, and C156_RW conferred greater risks in more than one endpoint. These results are
consistent with day 100 survival results previously reported from our group (15), Table 5, as
well as with previous reports from the literature (11, 12) (14). The training set was the same
as our prior analysis but extended to 1 year outcomes. We tested our results in an
independent cohort from a more recent era for validation. Although a similar trend in the
validation results was observed, Figures 1 and 2, we did not confirm that the specific
AASPT found in the training set were significantly associated with any of the tested
outcomes in the validation cohort.

Evaluation of permissiveness of HLA mismatches has been an area of interest in the field of
HCT for over a decade and by using approaches based on a biological hypothesis and
experimental data, some permissive HLA alleles have been identified and validated in
independent datasets, i.e. HLA-DPB1 T-cell-epitope groups (20-22) as well as HLA-
C*03:03 versus HLA-C*03:04 (23, 24).

Several groups have studied HLA non-permissiveness using other approaches. In regards to
high-risk AASPT at HLA-class I loci, review of the literature indicates that no classification
scheme has been validated in an independent dataset (11, 12, 14) (25-28). It is noteworthy
that our results from the training dataset were consistent with results from Ferrara (11) and
Kawase (12) even though those studies were performed in heterogeneous populations that
included both patients with advanced hematological malignancies and patients with non-
malignant diseases (12). In particular AAS HLA-C-116, located in the F pocket of the
peptide binding region (29) has been consistently been identified as high-risk in outcome
studies (11, 12, 14, 15) as well as in cellular assays (30). A number of other CIBMTR
studies testing proposed algorithms for categorizing mismatches were unsuccessful when
applied to HCT data (25-28). Approaches to categorizing mismatches varied using
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serologically defined cross-reactive epitopes (25), HLA Matchmaker, (26), traditional
statistical methods (27), and the Histocheck algorithm (28, 31) (32).

Therefore, at the present time despite substantial effort, suitability of HLA-mismatched
unrelated donors cannot be predicted with a few exceptions. We believe that the main
reasons why results from training datasets fail to be validated in independent datasets can be
grouped into two categories: 1) differences in analyzed datasets, 2) complexity of the
problem, and/or inadequacy of statistical approaches used. First, in the case of our study, the
training and testing datasets differed because transplant technologies evolved, i.e.
predominantly bone marrow transplants in the initial dataset versus peripheral blood stem
cells in the discovery dataset, and different conditioning regimens and GvHD prophylaxis
were used. Because of how the study evolved, the training and testing sets were derived from
two different eras of transplantation. Lack of validation of previous results using more
modern datasets has been reported (33, 34). Although a randomized analysis would remove
population heterogeneity as a potential cause of failure to validate, it also fails to
acknowledge that the goal of the testing set is to prove that results are robust enough to be
applicable to future patients. Therefore, established algorithms of non-permissible
mismatches need to be re-tested as clinical and transplant conditions evolve.

The second reason that initial observations are not validated in independent cohorts may be
that robust identification of permissive or non-permissive HLA mismatches may not be a
tractable problem given the size of the available analytic population, the analytic methods
currently available, the blunt outcomes available to study, and the complexity of the
problem. It is likely that a combination of AASPT rather than single residues is associated
with specific outcomes. In addition, our statistical approach is not based on a specific
biological hypothesis and assumes that any AAS could potentially have comparable impact
on outcomes. With multiple AASPT being responsible for outcomes, our ability to use
traditional statistical models may not be sufficient due to the high number of variables and
low number of cases for each of them. It is possible that genome wide diversity affecting
immune responses and other determinants of alloreactivity may also play a role on HCT
outcomes. Therefore, investigation of novel methodological approaches is a highly desirable
goal.

The complexity of donor-recipient incompatibility is the result of the exponential number of
combinations that must be considered to evaluate risk stratification. Our group has explored
a molecular modeling based approach to simulate binding of peptides among mismatched
recipient-donor pairs to predict high versus non-high-risk groups (35). Simulations such as
these may be used to propose hypothesis driven molecular modeling approaches, and results
could then be validated experimentally, and statistically and then translated into clinical
practice.

This study has some limitations. Only patients with HLA-A, B, C, and DRBL typing have
been studied. Therefore, the impact of the cumulative effects of HLA disparities in low
expression class 11 HLA loci (36) on HCT outcomes is unknown. In addition, the effect of
non-permissive DPB1 T-cell epitope mismatching (21) has not been studied.
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Based on our results and review of the literature, we strongly recommend that initial
observations are tested in independent cohorts and validation results follow the original
observations. Although identification of an algorithm that can help stratify risk of specific
recipient-donor mismatches is a desirable goal, it has proved difficult and elusive to date.
Our results do not suggest that any particular AASPT in class | should be avoided based on
OS, DFS, relapse or grade I11-1V acute GvHD. Additional studies should be performed to
fully understand the role of AASPT in HCT outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Adjusted estimates of overall survival (1a and 1b) and disease free survival (1c and 1d) by
12 months after transplantation according to the three (matched, high-risk and non-high-
risk) groups. Training cohort (panels 1a and 1c), validation cohort (panels 1b and 1d).
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Adjusted cumulative incidence estimates of acute GvHD by day 100 after transplantation
according to the three (matched, high-risk and non-high-risk) groups. Panel 2a: training

cohort; panel 2b: validation cohort.
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Table 3
Outcome-specific analyses of high-risk amino acid substitution position and typein the
validation cohort

Hazard Ratio | 95% ConfidenceInterval | p-value
Overall SurvivalZ No AASPT (n=575) vs. 8/8 138 1.22-157 <0.0001
At least 1 AASPT (n=170) vs. 8/8 | 1.55 1.26-1.91 <0.0001
At least 1 AASPT vs. no AASPT 112 0.89-1.41 0.33
Disease-Free SurvivalZ No AASPT (n=638) vs. 8/8 1.33 1.18-1.49 <0.0001
At least 1 AASPT (n=106) vs. 8/8 | 1.50 1.17-1.93 0.0012
At least 1 AASPT vs. no AASPT 1.13 0.87-1.47 0.35
Treatment-Related Mortality? | NO AASPT (n=539) vs. 8/8 161 1.37-191 <0.0001
At least 1 AASPT (n=205) vs. 8/8 | 1.75 1.38-2.22 <0.0001
At least 1 AASPT vs. no AASPT 1.09 0.83-1.42 0.54
Grades I11-IV Acute GvHD? | No AASPT (n=336) vs. 8/8 174 1.36-2.22 <0.0001
At least 1 AASPT (n=172) vs. 8/8 | 1.52 1.08-2.14 0.015
At least 1 AASPT vs. no AASPT | 0.88 0.60-1.29 0.50

lAdjusted for patient age, CMV match, conditioning, donor age, disease status, KPS; stratified by graft type.

ZAdjusted for patient age, CMV match, donor age, disease status, KPS, year of transplantation; stratified by graft type and disease type.

3Adjusted for patient age, donor age, disease, disease status, KPS; stratified by graft type

4Adjusted for patient sex; stratified by graft type.

Abbreviations: AAS, high-risk AASPT defined by the training dataset; GVHD, graft-versus-host disease; CMV, cytomegalovirus
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Aggregate analyses of all high-risk amino acid substitution position and typein the

validation cohort

Table 4

Hazard Ratio | 95% ConfidencelInterval | p-value
Overall SurvivalZ No AAS (n=390) vs. 8/8 141 1.21-1.64 <0.0001
At least 1 AAS (n=354) vs. 8/8 | 1.43 1.23-1.66 <0.0001
At least 1 AAS vs. no AAS 1.01 0.83-1.23 0.91
Disease-Free Survival? No AAS vs. 8/8 1.33 1.15-1.54 <0.0001
At least 1 AAS vs. 8/8 1.37 1.18-1.59 <0.0001
At least 1 AAS vs. no AAS 1.03 0.85-1.24 0.76
Treatment-Related Mortalitys | NOAAS vs. 8/8 165 1.37-1.99 <0.0001
At least 1 AAS vs. 8/8 1.66 1.36-2.01 <0.0001
At least 1 AAS vs. no AAS 1.00 0.79-1.28 0.97
Grades -1V Acute GvHD4 | No AAS vs. 8/8 175 1.34-2.30 <0.0001
At least 1 AAS vs. 8/8 1.58 1.18-2.10 <0.002
At least 1 AAS vs. no AAS 0.90 0.63-1.28 0.55

lAdjusted for patient age, CMV match, conditioning, donor age, disease status, KPS; stratified by graft type.

ZAdjusted for patient age, CMV match, donor age, disease status, KPS, year of transplantation; stratified by graft type and disease type.

3Adjusted for patient age, donor age, disease, disease status, KPS; stratified by graft type.

4Adjusted for patient sex; stratified by graft type.

Abbreviations: AAS, high-risk AASPT defined by the training dataset; GVHD, graft-versus-host disease; CMV, cytomegalovirus
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Table 5

Comparison of the high-risk amino acid substitutions (AAS) identified in this report with the high-risk AAS
identified in our previous report (Marino et al, BMT 2012). High-risk AAS identified in both studies are
highlighted and bolded.

Thisstudy | Previousstudy (Marino et al, BMT 2012)

HLA-C - HLA-C6

- HLA-C9

HLA-C11 HLA-C11

- HLA-C14

HLA-C21 HLA-C21

HLA-C24 -

- HLA-C66

HLA-C77 HLA-C77

HLA-C80 HLA-C80

- HLA-C95

HLA-C97 HLA-C97

- HLA-C99

HLA-C116 HLA-C116

HLA-C156 HLA-C156

- HLA-C163

- HLA-C173

HLA-A HLA-A9 HLA-A9

HLA-A43 HLA-A43

- HLA-A62

- HLA-A63

HLA-A76 HLA-A76

- HLA-AT77

- HLA-A95

- HLA-A97

- HLA-A114

- HLA-A116

- HLA-A152

- HLA-A156

HLA-A166 HLA-A166

HLA-A167 HLA-A167

HLA-B - HLA-B97

- HLA-B positon 109

- HLA-B position 116

- HLA-B position 156
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