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Background: Ginseng extracts are known to have angiogenic effects. However, to date, only limited in-
formation is available on the molecular mechanism underlying the angiogenic effects and the main
components of ginseng that exert these effects. Human umbilical-vein endothelial cells (HUVECs) are
used as an in vitromodel for screening therapeutic agents that promote angiogenesis and wound healing.
We recently isolated gintonin, a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand, from
ginseng. LPA plays a key role in angiogenesis and wound healing.
Methods: In the present study, we investigated the in vitro effects of gintonin on proliferation, migration,
and tube formation of HUVECs, which express endogenous LPA1/3 receptors.
Results: Gintonin stimulated proliferation and migration of HUVECs. The LPA1/3 receptor antagonist,
Ki16425, short interfering RNA against LPA1 or LPA3 receptor, and the Rho kinase inhibitor, Y-27632,
significantly decreased the gintonin-induced proliferation, migration, and tube formation of HUVECs,
which indicates the involvement of LPA receptors and Rho kinase activation. Further, gintonin increased
the release of vascular endothelial growth factors from HUVECs. The cyclooxygenase-2 inhibitor NS-398,
nuclear factor kappa B inhibitor BAY11-7085, and c-Jun N-terminal kinase inhibitor SP600125 blocked
the gintonin-induced migration, which shows the involvement of cyclooxygenase-2, nuclear factor kappa
B, and c-Jun N-terminal kinase signaling.
Conclusion: The gintonin-mediated proliferation, migration, and vascular-endothelial-growth-factor
release in HUVECs via LPA-receptor activation may be one of in vitro mechanisms underlying ginseng-
induced angiogenic and wound-healing effects.
Copyright � 2015, The Korean Society of Ginseng, Published by Elsevier. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wound healing is a physiological process that involves cell
proliferation and migration to restore normal state after injury
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of the skin, blood vessels, and other tissues. This process in-
cludes hemostasis, inflammation, angiogenesis, collagen depo-
sition, epithelialization, and remodeling [1]. Angiogenesis is a
critical component in wound healing and involves a series of
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steps, including proliferation and migration of endothelial cells
[1,2]. Endothelial dysfunction causes impairment in wound
healing and angiogenesis. The therapeutic effects of angiogen-
esis have been investigated in repairing and minimizing tissue
damage due to cardiovascular diseases, such as coronary heart
diseases and peripheral arterial diseases, and wound-healing
disorders [3e6].

Ginseng, the root of Panax ginseng, is a traditional herbal med-
icine used as a tonic for invigorating the body or for alleviating a
variety of diseases, including cardiovascular diseases, rheumatoid
arthritis, diabetes mellitus, and cancer [7e10]. Ginseng contains
several bioactive components, such as ginsenosides, acidic poly-
saccharides, and other unidentified components. Previous studies
have shown that the ginseng extract and the ginseng saponin
fraction, which contain a mixture of ginsenosides and other un-
identified ingredients, stimulate angiogenesis [9,11,12]. Each of the
ginsenosides has different effects on angiogenesis or wound heal-
ing. While ginsenoside Rg1 stimulates angiogenesis [12,13], ginse-
nosides Rg3 and compound K inhibit in vitro angiogenesis [14,15].
Although ginsenoside Rb1 and Rd seem to stimulate wound healing
of the skin [16,17], the angiogenic effects of those ginsenosides are
controversial depending on experimental models [16,18]. In addi-
tion, ginseng extracts and the total saponin fraction of ginseng
include additional unidentified ingredients. Therefore, the active
component responsible for the effects of ginseng remains to be
clarified.

Recently, we isolated gintonin, a lysophosphatidic-acid (LPA)
receptor ligand, from ginseng [19,20]. Gintonin consists of a com-
plex of ginseng proteins and LPAs, and potently activates LPA re-
ceptors in animal cells. LPA-receptor activation plays a role in
diverse cellular effects, including proliferation and migration of
cells, vascular development, and neurite retraction [21]. LPA-
receptor-mediated cellular effects are further coupled to biolog-
ical activities, such as brain development, angiogenesis, embryo
implantation, spermatogenesis, and wound healing [21].

Human umbilical-vein endothelial cells (HUVECs) express
endogenous LPA-receptor subtypes, LPA1 and LPA3 [22]. LPA in-
duces proliferation and migration of HUVECs, and silencing of
LPA1/3 by short interfering RNA (siRNA) markedly suppresses the
LPA-induced proliferation and migration of HUVECs, which are
essential steps for angiogenesis [23]. In addition, LPA stimulates the
release of vascular endothelial growth factor (VEGF), which in turn
facilitates the angiogenic processes [24]. In addition,
cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-kB) are
involved in the increased release of VEGF by various stimulators
[25,26]. On the basis of the findings reported previously, we
assumed that activation of the LPA receptors by gintonin can be a
molecular basis of ginseng-extract-induced angiogenesis.

In the present study, we examined the in vitro angiogenic effects
of gintonin in HUVECs. Gintonin stimulated the proliferation,
migration, and tube formation of HUVECs. In particular, we dis-
cussed the molecular mechanisms underlying gintonin-induced
wound-healing effect with the evidence of LPA-receptor activa-
tion, VEGF release, and activation of COX-2 and NF-kB by gintonin in
HUVECs. Our results show that gintonin can induce in vitro angio-
genesis and wound healing through the activation of LPA receptors
and VEGF signaling pathways.

2. Materials and methods

2.1. Materials

Crude gintonin was isolated from P. ginseng as described previ-
ously [19]. Gintonin is a glycolipoprotein containing ginseng protein
complexedwith LPA [20]. Ginsenosideswerepurchased fromthe LKT
Laboratories Inc. (St. Paul, MN, USA). VEGF, basic fibroblast growth
factor, and Quantikine human VEGF immunoassay kit were pur-
chased from R&D Systems (Minneapolis, MN, USA). M199 medium
and 0.1% gelatin solution were purchased from WelGENE (Daegu-si,
Korea). Matrigel (growth factor reduced) and collagen type 1 were
purchased from BD Biosciences (Bedford, MA, USA). All other re-
agents usedwere purchased fromSigma-Aldrich (St. Louis,MO,USA).

2.2. Cell culture

HUVECs were isolated from human umbilical cord veins by
collagenase treatment as described previously [27], and cultured in
M199 medium supplemented with 20% (volume/volume) fetal
bovine serum (FBS), 5 units/mL heparin, 3 ng/mL basic fibroblast
growth factor,100 units/mL penicillin, and 100 mg/mL streptomycin.
The cultures were maintained at 37�C in humidified conditions
under 5% CO2. The cells at passages 2e7 were used in all the
experiments.

2.3. Cell proliferation

Proliferation of HUVECs was determined using a sodium 2,3,-
bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-
carbonyl]-2H-tetrazolium inner salt (XTT)-based assay, which
measures the cell viability based on the activity of mitochondrial
enzyme [28]. Cells were seeded at 3 � 103 cells per well into 96-
well plates coated with 0.1% gelatin solution. After 24 h, the cells
were washed with M199 medium and incubated for 6 h with M199
containing 1% FBS. The cells werewashed with freshM199 (1% FBS)
again, and incubated with gintonin, ginsenosides, or VEGF at the
specific concentrations. Inhibitors were added 30 min before the
incubation period. After the indicated incubation time, cell prolif-
eration was assessed using the XTT assay as described previously
[28]. The culture medium of cells in each well of the 96-well plate
was replaced with 200 mL of serum-free medium without phenol
red. Then, 50 mL of XTT reaction solution (containing 1 mg/mL XTT
and 0.0306 mg/mL phenazine methosulfate) was added to each
well. After incubation for 2 h, the absorbance was measured at
450 nm, which correlates with the cell viability.

2.4. Migration assay

The chemotactic motility of HUVECs was measured using the
modified Boyden chamber (Neuro Probe, Gaithersburg, MD, USA)
as described previously [20]. Briefly, a polycarbonate membrane
with an 8-mm pore size (Neuro Probe) was coated with 0.1 mg/mL
of collagen type I from the rat tail (BD Biosciences, San Jose, CA,
USA). Gintonin, VEGF, or ginsenosides in M199 (0.1% bovine serum
albumin) were added to the lower chambers. The Boyden chamber
was assembled by laying the membrane and the top chamber on
the lower chambers. Cells (5 � 104 cells/well) were loaded to the
top chambers and incubated for 70e80 min at 37�C. In some ex-
periments, the cells were placed in the lower chambers with or
without the inhibitors. The Boyden chamber was assembled and
placed upside down, and incubated for 60 min. Then, the chamber
was returned to the upright position, and gintonin or VEGF in M199
(0.1% bovine serum albumin) was added to the upper chambers,
followed by incubation for an additional 120 min. The cells on the
membrane were fixed and stained with Diff-Quik (Sysmex, Kobe,
Japan). The migrated cells in the four fields each well (16 fields each
group) were counted under a microscope (light microscopy) at a
magnification of 200�. The images were photographed using a
dark-field microscope (Eclipse 80i; Nikon, Tokyo, Japan).
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2.5. Scratch wound-healing assay

We performed an in vitro wound-healing assay as described
previously [22]. Briefly, the HUVECs were seeded at a density of
2� 105 cells/well in 24-well plates precoated with gelatin. The cells
were incubated in serum-free media for 6 h and wounded in a line
across the well using a 200-mL pipette tip, followed by washing
twice with a serum-free medium. The cells were incubated with
different concentrations of gintonin in M199 containing 1% FBS for
20 h. The image of the wounded area was captured, and recovery of
the area was analyzed using an inverted fluorescence microscope
(Axiovert 200; Carl Zeiss AG, Oberkochen, Germany) at a magnifi-
cation of 100�. The cell-free area in three photos each group was
quantified by the software AxioVision (Zeiss; Carl Zeiss AG, Ober-
kochen, Germany). The cell-free area at 20 h was determined as a
percentage of the initial wounded area.

2.6. Tube-formation assay

Tube formation was examined as reported previously with some
modification [9]. The HUVECs were serum starved in M199 con-
taining 1% FBS for 6 h, and seeded at a density of 2�105 cells/well in
24-well plates precoated with growth factor-reduced Matrigel
(250 mL/well). The cells were incubated with gintonin or VEGF in
M199 containing 1% FBS at 37�C. In some experiments, the inhibitors
were added 30 min before the incubation period. After 4 h, tube
formation was examined using an inverted fluorescent microscope
at a magnification of 100�. Tube formation was quantified by
counting the number of branches of the tubes in fields at 4 h.
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Fig. 1. Effect of ginsenosides and gintonin on proliferation and migration of human umbili
growth factor (positive control, 20 ng/mL), ginsenosides Rb1 and Rg1, or gintonin at the in
liferation was examined using a sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phen
the Materials and Methods section. (C, D) Effect of vascular endothelial growth factor (as a
motility of human umbilical-vein endothelial cells was assessed using the modified Boyden
bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner sa
gintonin showed increased proliferation, while (B) those treated with Rb1 and Rg1 did n
manner, while (D) ginsenosides Rb1 and Rg1 did not stimulate cell migration at 10mM and
experiments. *p < 0.05. **p < 0.001 compared with control. Con, control; GT, gintonin; VG
2.7. siRNA

To suppress the expression of LPA receptors in HUVECs, we
transfected the cells with siRNAs of LPA1 and LPA3. In addition,
scrambled siRNA was used as a control (Santa Cruz Biotechnology,
Santa Cruz, CA, USA). After the medium was replaced with serum-
freeM199, siRNAwas added to a final concentration of 50nM siRNA
using Lipofectamine 2000 (Life Technologies, Grand Island, NY,
USA), according to the manufacturer’s instructions.
2.8. VEGF enzyme-linked immunosorbent assay

VEGF was assayed as reported previously with some modifica-
tion [29]. Briefly, the HUVECs were starved in M199 containing 1%
FBS for 6 h, and incubated with M199 containing 1% FBS in the
presence or absence of gintonin at the indicated concentrations for
24 h. The supernatant was collected and concentrated 50-fold at
4�C using Amicon centrifugal filter devices (EMD Millipore, Bill-
erica, MA, USA). The concentrated medium was assayed for VEGF
content using an enzyme-linked-immunosorbent-assay kit (R&D
Systems) according to the manufacturer’s instructions.
2.9. Statistical analysis

Data are expressed as means � standard deviation. Statistical
comparisons between controls and treated experimental groups
were performed using the Student t test. Statistical evaluation was
performed using GraphPad prism, version 5.0 (GraphPad Software,
B

0

50

100

150

200

250

300 Rb1
Rg1

C
el

l p
ro

lif
er

at
io

n 
(%

 o
f C

on
tr

ol
)

Con 0.1 1 10VG 10030

**

0

20

40

60

80 Rb1 (μM)
Rg1 (μM)
GT (μg/mL)

M
ig

ra
te

d 
ce

lls
/fi

el
d

01noC 03GV

**
**

**

D

cal-vein endothelial cells. (A, B) Cells were incubated either with vascular endothelial
dicated concentrations in M199 containing 1% fetal bovine serum for 48 h. Cell pro-
ylamino)-carbonyl]-2H-tetrazolium inner salt-based cell-viability assay as described in
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chamber as described in the Materials and Methods section. Results of the sodium 2,3,-
lt assay show that, compared to the untreated control cells, (A) the cells treated with
ot stimulate proliferation. (C) Gintonin stimulate cell migration in a dose-dependent
30mM. The data represent the means � SD of the results of four to six independent

, vascular endothelial growth factor.
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San Diego, CA, USA). We considered p < 0.05 to be statistically
significant.

3. Results

3.1. Effects of gintonin on in vitro proliferation and migration of
HUVECs

Cells treated with gintonin (10e50 mg/mL) showed a dose-
dependent increase in viability by XTT assay; the viability of the
treated cells was twice that of the untreated control cells (Fig. 1A).
The half-maximal effective concentration (EC50) value for cell pro-
liferationwas 32.20� 2.76 mg/mL. Ginsenosides Rb1 and Rg1 had no
effects on cell proliferation (Fig. 1B). VEGF was used as a positive
control (Fig. 1A, B). The proliferation of cells treated with 10 ng/mL
VEGF was approximately 1.7e2-fold of that of the control cells.

Further, we examined the effect of ginsenosides Rb1 and Rg1 and
gintonin on the chemotactic motility using the modified Boyden
chamber. Gintonin stimulated the migration of HUVECs in a
concentration-dependent manner. Treatment with 10 mg/mL and 30
mg/mL gintonin stimulated themigration of HUVECs by up to 40-fold
compared to that of the control cells. The EC50 value for cell
migration was 6.11 � 0.43 mg/mL (Fig. 1C). This value is much lower
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Fig. 2. Effect of gintonin on scratch wound healing, tube formation, and release of vascular
scratched and incubated with either vehicle or gintonin at the indicated concentrations in M
calculated compared to that at 0 h. Gintonin stimulated wound healing in a dose-depende
indicated concentrations in M199 medium containing 1% fetal bovine serum for 4 h on th
Materials and Methods section. Vascular endothelial growth factor (10 ng/mL) was also us
incubated with gintonin at the indicated concentrations for 24 h. The conditioned mediumw
was determined using enzyme-linked immunosorbent assay as described in the Materials a
independent experiments. *p < 0.05. **p < 0.01. ***p < 0.001 compared with untreated c
endothelial growth factor.
than that of cell proliferation by gintonin, which shows that the
migration of HUVECs is much more sensitive to gintonin than pro-
liferation. VEGF (20 ng/mL) stimulated the migration of HUVECs by
four-fold compared to that of the control cells (Fig. 1D). However,
ginsenosides (Rb1 and Rg1) at concentrations of 10mM and 30mM
had no effect on the migration of HUVECs. Thus, gintonin, but not
ginsenosides, stimulated the proliferation andmigration of HUVECs.

3.2. Effects of gintonin on in vitro wound healing and tube
formation of HUVECs

We examined the effect of gintonin on wound healing using
HUVEC monolayers. The remaining cell-free area at 20 h was
calculated as a percentage of the initial wounded area. In the
control cells, the cell-free wound healed very slowly, showing
91.9 � 1.8% of cell-free area at 20 h (Fig. 2A, B). Compared to
the untreated control cells, the cells treated with 10 mg/mL
and 30 mg/mL of gintonin significantly decreased the cell-free
area (75.6 � 2.2% and 12.3 � 2.5%, respectively; Fig. 2B). These
results showed that gintonin stimulated wound closure in
HUVECs.

An in vitro tube-formation assay of HUVECs was examined to
investigate the effect of compounds on the remodeling of
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endothelial cells. Gintonin stimulated tube formation at 1e50 mg/
mL (Fig. 2C). The maximum effects of gintonin were observed at
10 mg/mL and 30 mg/mL. In addition, a positive control, VEGF
(10 ng/mL), stimulated tube formation in HUVECs. VEGF acts on
vascular endothelial cells as a chemotactic and mitogenic factor.
To determine whether gintonin stimulates the release of VEGF,
we performed VEGF assay in the conditioned media of HUVECs
incubated with gintonin at different concentrations or LPA.
Treatment with 30 mg/mL gintonin stimulated the release of
VEGF by HUVECs by 1.85 � 0.12-fold compared to that by the
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3.3. Gintonin-mediated migration and tube formation of HUVECs
are partially mediated by the activation of LPA receptor

To study whether the LPA receptor is involved in gintonin-
induced cell proliferation, migration, and tube formation, we
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with Ki16425 slightly decreased the cell proliferation induced by
50 mg/mL of gintonin (Fig. 3A). However, Ki16425 partially
attenuated the gintonin-induced migration of HUVECs by 33%
and 17% at 10 mg/mL and 30 mg/mL of gintonin, respectively
(Fig. 3B). In addition, to further clarify the role of the LPA receptor
on gintonin-induced HUVEC migration, LPA1 and 3 in HUVECs
were silenced with siRNA. In the LPA-receptor silenced HUVECs,
Fig. 4. A Rho kinase inhibitor attenuates gintonin-induced proliferation, migration, and tu
inhibitor, Y-27632 (10mM), for 30 min, and then incubated with gintonin at different concent
5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt assay. Cell proliferation was exam
carbonyl]-2H-tetrazolium inner salt-based cell-viability assay as described in the Materials
(10 mg/mL and 30 mg/mL) in the presence or absence of the Rho kinase inhibitor, Y-27632 (10m
the modified Boyden chamber as described in the Materials and Methods section. (C) Rho ki
incubated with gintonin (30 mg/mL) for another 4 h. The data represent the means � SD of t
control (gintonin 0 mg/ml). #p < 0.05. ##p < 0.001 compared to without Y-27632. Con, con
the gintonin-induced migration decreased by w30% compared to
that in HUVECs transfected with control siRNA (Fig. 3C). More-
over, pretreatment of HUVECs with Ki16425 attenuated the
gintonin-induced tube formation by approximately 24% (Fig. 3D).
These results showed that gintonin-induced migration and tube
formation of HUVECs are at least partially mediated by the acti-
vation of LPA receptors.
be formation. (A) Cells were incubated in the presence or absence of the Rho kinase
rations for another 48 h before the sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-
ined using a sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-
and Methods section. (B) For the migration assay, cells were incubated with gintonin
M), for 70 min. Migration of human umbilical-vein endothelial cells was assessed using
nase inhibitor, Y-27632 (10mM), for 30 min on the plates coated with Matrigel, and then
he results of four to 12 independent experiments. *p < 0.001 compared with untreated
trol; GT, gintonin.



S.-H. Hwang et al / Gintonin effects on HUVECs 331
3.4. Gintonin-mediated in vitro proliferation, migration, and tube
formation of HUVECs are partially mediated by the activation of Rho
kinase

Rho kinase is one of the downstream signaling molecules of
LPA-receptor activation involved in the migration of HUVECs. To
investigate the involvement of Rho kinase signaling in gintonin-
induced cellular events, we used the Rho kinase inhibitor, Y-
27632. Incubation of HUVECs with Y-27632 decreased the cell
viability induced by 1e50 mg/mL of gintonin by 10e28% (Fig. 4A). Y-
27632 decreased the migration of HUVECs induced by 10 mg/mL
and 30 mg/mL of gintonin by 13% and 30%, respectively (Fig. 4B). In
addition, Y-27632 decreased the tube formation in HUVECs induced
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by 30 mg/mL of gintonin by 38% (Fig. 4C). These results support the
fact that gintonin-induced proliferation, migration, and tube for-
mation of HUVECs are partially mediated by the activation of Rho
kinase.

3.5. Gintonin-induced migration of HUVECs is mediated by the
activation of COX-2, NF-kB, and c-Jun N-terminal kinase

COX-2 and NF-kB regulate the release and the level of VEGF
expression [30]. In addition, COX-2 plays a role in VEGF-induced
proliferation of HUVECs via the activation of c-Jun N-terminal ki-
nase (JNK) [31]. To determine whether COX-2, NF-kB, and JNK
signaling are involved in the gintonin-induced migration of
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HUVECs, we examined the effects of NS-398, a COX-2 inhibitor,
BAY11-7085, an NF-kB inhibitor, and SP600125, a JNK inhibitor, on
the migration of HUVECs using the modified Boyden-chamber
assay. Treatment with NS-398 decreased the migration of
HUVECs induced by 10 mg/mL and 30 mg/mL of gintonin by 13% and
30%, respectively (Fig. 5A). BAY11-7085 and SP600125 completely
inhibited the migration of HUVECs induced by 10 mg/mL and 30 mg/
mL of gintonin (Fig. 5B, C). These results indicate that gintonin-
mediated migration of HUVECs involves the activation of COX-2/
NF-kB and JNK signaling.

4. Discussion

Angiogenesis is a multistep process that involves the activation
of receptors on the endothelial cells by growth factors, destruction
of the basement membrane by proteases secreted from endothelial
cells, proliferation and migration of endothelial cells, and tube
formation by endothelial cells [11,32]. Fibroblast growth factor,
VEGF, platelet-derived growth factor, and transforming growth
factors are the main angiogenic factors [33]. In addition, LPA
stimulates proliferation, migration, mitogen-activated-protein-ki-
nase phosphorylation, Rho activation, and Ca2þ mobilization
through the activation of LPA1/3 receptors in HUVECs, which show
angiogenic effects [22,34e36]. Lipid molecules, like LPA and S1P,
exert their effects indirectly and through the release of peptides,
such as transforming growth factor [37] and VEGF [25,38].

In a previous study, we showed that gintonin is a novel LPAe
ginseng protein complex derived from ginseng [20]. Ginseng and
LPA have angiogenic effects [9,11,22], and gintonin contains
approximately 9.5% of LPA [20]; therefore, we examined the in vitro
effects of gintonin on HUVECs. Similar to LPA, gintonin induced
Ca2þ mobilization in rat B103 neuroblastoma cells transfected with
LPA-receptor subtypes in our previous study [20]. Our previous
study showed that gintonin stimulates bromodeoxyuridine incor-
poration, migration, and extracellular-related-kinase (ERK) phos-
phorylation in a dose-dependent manner in HUVECs [20]. Pertussis
toxin (PTX) completely blocked the gintonin-stimulated migration
and ERK phosphorylation [20].

In this study, we found that, while gintonin stimulated the
proliferation and migration of HUVECs, which are essential steps
for angiogenesis, ginsenosides Rb1 and Rg1 did not affect these
processes (Fig. 1). The in vitro tube-formation assay for angio-
genesis showed that gintonin (10 mg/mL and 30 mg/mL) stimulated
the formation of capillary-like tubes on a Matrigel matrix (Fig. 2C).
The activation of LPA receptor and Rho kinase is involved in
gintonin-stimulated migration of HUVECs. These effects of ginto-
nin are very similar to those of LPA observed in previous studies
[22,34e36].

LPA-receptor subtypes exert their roles by coupling with
different types of G proteins, such as Ga12/13, Gai/o, and Gaq11
[21,39]. LPA receptors coupled with Ga12/13 are involved in Rho
activation and morphological change [40]. Ca2þ mobilization
through LPA-receptor activation is mediated mainly by Gaq11 and
Gai/o, followed by phospholipase C activation, Ca2þ release from
intracellular organelles, or influx of Ca2þ into cells. Depending on
the cellular system, the specific LPA-receptor subtypes or G pro-
teins are expressed and activated to different extents. HUVECs
predominantly express LPA1 and LPA3 [22]. LPA1 can effectively
couple with Gai/o and Ga12/13 than with Gaq11 [21,23,39],
whereas LPA3 can mainly couple with Gaq11 [21,23,39]. Our results
showed that gintonin-induced migration was decreased by the
LPA1/3 receptor antagonist, Ki16425, and silencing LPA1/3 with
siRNA; thus, the activation of LPA1/3 receptor may be involved in
gintonin-induced migration (Fig. 5D). The inhibition of gintonin-
induced migration and ERK phosphorylation in HUVECs by PTX
suggested that these effects of gintonin on HUVECs are mediated
through LPA receptors coupled with the PTX-sensitive G protein
Gai/o [20]. Thus, gintonin might mainly stimulate the migration of
HUVECs through the activation of the LPA-receptor subtype LPA1
coupled with Gai/o (Fig. 5D). The inhibition of gintonin-induced
migration by a Rho kinase inhibitor indicated the possible
involvement of Ga12/13.

LPA upregulates VEGF via the transactivation of epidermal
growth factor receptor, and the activation of COX-2 and NF-kB in
cancer cells, as well as in HUVECs [25]. Treatment of HUVECs with
VEGF induces the expression of COX-2 [31]. COX-2 expression
induced by VEGF was accompanied with cell proliferation, and was
inhibited by the JNK inhibitor, SP600125, which indicated that COX-
2 plays a key role in VEGF-induced wound healing via p38/JNK
activation [31]. VEGF seems to stimulate autotaxin, which is the
chemotactic-motility factor, and produces LPA from lysophospha-
tidylcholine [41]. Although gintonin and LPA itself can suppress the
autotaxin activity by negative feedback [42,43], the overexpression
of VEGF can play a role as a potent mitogenic factor in certain types
of cells like endothelial cells by positive feedback with autotaxin
[41,44].

Our results confirmed that gintonin also stimulates VEGF release
in HUVECs, which indicates that gintonin-induced proliferation and
migration could also be due to gintonin-stimulated VEGF release
(Fig. 2D). We could observe a decrease in gintonin-induced
migration by the COX-2 inhibitor (Fig. 5A). In addition, the NF-kB
inhibitor and JNK inhibitor potently suppressed gintonin-induced
migration (Fig. 5B, C). Our data suggest that gintonin might exert
its angiogenic effect via LPA-receptor activation coupled with G
proteins Gai/o and Ga12/13 (Fig. 5D). The gintonin-stimulated
migration of HUVECs seems to be dependent on the expression of
COX-2 and NF-kB. The gintonin-stimulated VEGF release might be
due to the activation of COX-2 and NF-kB, which are downstream
signaling pathways in the activation of LPA receptors by LPA. The
VEGF released can activate the VEGF receptor and stimulate the
migration of HUVECs via JNK activation. JNK might activate COX-2
for further enhanced cell migration and proliferation similar to
that observed previously in endothelial cells [31].

In conclusion, our study showed that gintonin stimulated
in vitro proliferation, migration, VEGF release, and tube formation
of HUVECs. In addition, our results also indicated that LPA-
receptor activation and Rho kinase activation, and VEGF, COX-2,
NF-kB, and JNK might be coupled to the angiogenic effects of
gintonin. In a future study, if we show that gintonin can exhibit
in vivo angiogenic and wound-healing effects, gintonin can be a
potential therapeutic candidate for angiogenesis and wound
healing.
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