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ABSTRACT Deciphering the mechanisms underlying the high sensitivity of cells to mechanical microenvironments is crucial
for understanding many physiological and pathological processes, e.g., stem cell differentiation and cancer cell metastasis.
Here, a cytoskeletal tensegrity model is proposed to study the reorientation of polarized cells on a substrate under biaxial cyclic
deformation. The model consists of four bars, representing the longitudinal stress fibers and lateral actin network, and eight
strings, denoting the microfilaments. It is found that the lateral bars in the tensegrity, which have been neglected in most of
the existing models, can play a vital role in regulating the cellular orientation. The steady orientation of cells can be quantitatively
determined by the geometric dimensions and elastic properties of the tensegrity elements, as well as the frequency and biaxial
ratio of the cyclic stretches. It is shown that this tensegrity model can reproduce all available experimental observations. For
example, the dynamics of cell reorientation is captured by an exponential scaling law with a characteristic time that is indepen-
dent of the loading frequency at high frequencies and scales inversely with the square of the strain amplitude. This study sug-
gests that tensegrity type models may be further developed to understand cellular responses to mechanical microenvironments
and provide guidance for engineering delicate cellular mechanosensing systems.
INTRODUCTION
Studies of the active responses of biological cells to external
mechanical stimuli are crucial for understanding stem cell
differentiation, angiogenesis, invasion, and metastasis of
cancer cells (1–4). For example, experiments have shown
that cells align parallel to the stretching direction when
the underpinning substrate is subjected to a static stretch
(5,6). In the case of cyclic loads, cells undergo changes in
both shapes and orientations, depending on the loading con-
ditions (7–12). Under uniaxial cyclic stretches, cells align
perpendicular to the loading direction at frequencies at
~1 Hz (7–9). A few theoretical models based on cytoskeletal
stresses (13) and strains (9,10,14) have been developed to
explain the different orientations of cells in response to
static and dynamic loadings. These models suggest that
polarized cells tend to align in an orientation that allows
them to maintain an optimal stress or strain state. In addi-
tion, the dynamical behavior of focal adhesions (FAs) can
significantly affect cell reorientation. Kong et al. (15) found
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that an adhesion cluster is prone to losing its stability under
high-frequency loading, because the receptors and ligands
do not have enough contact time to form stable bonds due
to the high-speed deformation of the substrate. Chen et al.
(16,17) showed that cyclic loadings induce oscillating
forces on catch bonds in the FAs and destabilize the latter,
thereby reorienting cells toward an orientation with minimal
force oscillations.

In many physiological processes (e.g., heart beating,
pulsating blood vessels, and breathing), cells and their extra-
cellular matrix are exposed to biaxial cyclic deformations.
Jungbauer et al. (11) revealed that the dynamical process
of cell reorientation under cyclic stretches follows an expo-
nential law with a characteristic time that decreases with
increasing stretch frequency and saturates above a threshold
frequency of ~1 Hz. Recently, Livne et al. (12) demonstrated
that cell reorientation under biaxial cyclic stretches can be
quantitatively characterized by two parameters: the biaxial
ratio of cyclic stretches and the elastic anisotropic index
of the cell. The authors showed that their findings are
incompatible with existing stress- (13) or strain-based
(9,10,14) models, and then developed a model based on
the passively stored elastic energy in the cell (12). Chen
et al. (16,17) proposed an alternative theoretical model
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FIGURE 1 (a) Schematics of a polarized cell adhered on a substrate sub-

Cell Reorientation under Cyclic Stretches
based on the stability of FAs to interpret the experimental
data of Livne et al. (12). To date, however, how cellular
alignment is precisely regulated, and what mechanistic prin-
ciples govern the cell’s mechanosensing system, remain
elusive.

Here we propose a cytoskeletal tensegrity model of
cell reorientation on cyclically stretched substrates. Ingber
(18,19) was the first to model the cytoskeleton as a tense-
grity structure. In his theory, cell’s cytoskeletal structure is
modeled as a continuous series of strings, bearing only
tensile forces, and a discontinuous series of bars that can
support both compressive and tensile forces. Using this
methodology, Stamenovi�c and Ingber (20) and Ingber (21)
illustrated how living cells can utilize a tensegrity structure
to respond to mechanical forces at different length scales. In
this article, a planar tensegrity model is proposed to study
the dynamics of cell reorientation on a substrate under
biaxial cyclic stretches. We discuss the common physical
mechanisms underlying the similarity of various cell types
responding to external mechanical stimuli. It is shown that
besides the longitudinal stress fibers (SFs), the lateral actin
network also plays a crucial role in cell orientation. Our
model is capable of reproducing all existing experimental
observations related to cellular orientation dynamics.
jected to biaxial strains εxx and εyy. The polarized cell is oriented at angle q

measured from the x direction. (b) The tensegrity model consists of four

bars, representing the longitudinal SFs and lateral actin network, and eight

strings, denoting the microfilaments. At two ends of bars, the FAs form and

provide traction forces for cell mobility. The polarized direction of cells is

defined as the orientation of SFs that are modeled as long bars. To see this

figure in color, go online.
MATERIALS AND METHODS

Free energy difference of the cellular system
under biaxial stretches

Consider a cell adhering on a substrate subjected to biaxial stretches, as

illustrated in Fig. 1 a. Following the convention adopted in experiments

(11,12), the cell orientation, in the range of 0–90�, is defined as the orien-

tation of cell’s long axis with respect to the horizontal stretching direction.

We model the cell structure as a planar tensegrity structure consisting of

four bars and eight strings (see Fig. 1 b). The direction of cell’s long axis

corresponds to the orientation of SFs (10,12) that are modeled as long

bars in the tensegrity. Experiments have shown that the SFs often align

parallel to each other within a polarized cell adhering on a substrate (12),

and there exists an actin filament network that spans these separated SFs

and interconnects them (22). The actin network, acting as the lateral support

of the cytoskeletal structure, is modeled as short bars perpendicular to the

SF orientation. The strings denote the microfilaments, ensuring the integrity

of the whole cellular structure. At the ends of the bars, FAs form as a result

of integrin assembly at the cell-substrate interface, providing traction forces

for cell mobility. Due to the relatively large deformation in the SFs, the long

bars in the tensegrity are assumed to have either linear or nonlinear elastic

properties in this study.

In this tensegrity model of a cell, the total potential energy Ue includes

the elastic energies of the bars, strings, and FAs. It has been demonstrated

that a pulling force can strengthen the integrin-mediated FAs of cells (23).

Here, we use a thermodynamic model to describe the mechanosensitivity of

FAs. The work term Uf ¼ �fpullDl represents the loss in free energy of FAs

under loading, where Dl is the stretch of FAs and fpull is the pulling force

induced by the substrate deformation, and this term is identified as an

important constituent of the thermodynamic state of FAs (24). Thus,

when the substrate is stretched, the variation in the free energy of the

cellular system, DU, consists of those values associated with the elastic

energies of tensegrity elements and FAs, as well as the work done by the

applied force, which can be written as
DU ¼
X2

i¼ 1

2wiLi þ
X8

j¼ 1

W
ðstÞ
j þ 2

X2

i¼ 1

kfaDl
2
i

� 2Df1DLx0 � 2Df2DLy0 ;

(1)
where wi and Li are the strain energy density per unit initial length and the

initial length of the ith bar, with the subscripts 1 and 2 standing for the x0
and y0 directions, respectively; WðstÞ
j is the elastic energy of the jth string;

kfa ¼ EA=l is the spring constant of FAs, with E, A, and l being the Young’s

modulus, cross-sectional area, and characteristic size of each FA, respec-

tively; Dli and Dfi ¼ kfaDli are the changes in lengths and traction forces

of FAs, respectively; and DLx0 and DLy0 are the length changes of the ten-

segrity structures along the corresponding directions. The stiffness of

microfilaments, modeled as strings, is much smaller than that of SFs,

because both microfilaments and SFs are composed of actin filaments

and the former has a much smaller cross-sectional area. Thus, we will

neglect the contribution of strings, W
ðstÞ
j , to the free energy in this study.

The strain energy density wi of the ith bar depends on its constitutive rela-

tion and strain. The lateral support of the cytoskeleton, modeled as short

bars, is assumed to be linear elastic, and the strain energy density of the

short bar is given as w2 ¼ C2ε
2
2=2 ¼ E2Aε

2
2=2, where C2 ¼ E2A, E2 is the

Young’s modulus, and ε2 is the strain. The strain energy density w1 of

the linear or nonlinear long bars (i.e., SFs) will be formulated below.

In the existing stress- and strain-based models (9,10,13,14), the SFs have

been assumed to obey a linear elastic constitutive relation. These models

can qualitatively predict different cellular orientations under static and cy-

clic stretches. Besser and Schwarz (25) investigated cellular behaviors
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under different substrate stiffnesses by using a linear Kelvin-Voigt model of

SFs, consisting of a dashpot and a harmonic spring connected in parallel.

Besides these linear models, Lazopoulos and Parentis (26) and Lazopoulos

and Stamenovi�c (27) developed a nonlinear elastic model of SFs to study

cell reorientation under uniaxial stretch. Using this model, they explained

the experimental observation (28) that for uniaxial cyclic stretches, the

SFs in normal cells were perpendicular to the stretching direction but

aligned along the tensile direction when the cells were treated with Rho in-

hibition. They also discussed the experimental phenomenon (29) that two

distinct directions of SFs coexisted in the cells under uniaxial cyclic

stretches.

These previous studies suggested that both linear and nonlinear models

of SFs can capture some features of cellular response to external loadings.

Linear SF models usually make it easier to derive analytical solutions

(9,10,13,14,16,17). To reveal the general mechanisms underlying cell reor-

ientation, we will first consider linear elastic SFs with the Young’s modulus

E1. In this case, the elastic energy of a long bar is expressed as

W1 ¼ w1L1 ¼ K1DL
2
1=2, where the spring constant K1 ¼ E1A=L1 and

DL1 ¼ L1ε1 with ε1 being the strain. Noting that DLx0 ¼ DL1 þ 2Dl1 and

DLy0 ¼ DL2 þ 2Dl2, Eq. 1 becomes

DU ¼ 1

2

X2

i¼ 1

�
2Ki þ kfa

�
DL2

i �
1

2
kfa

h
ðLx0εx0x0 Þ2þ

�
Ly0εy0y0

�2i
;

(2)

where Lx0 ¼ L1 þ 2l1 and Ly0 ¼ L2 þ 2l2 are the initial lengths of the ten-

segrity along the x0 and y0 directions, and εx0x0 and εy0y0 are the corresponding
strains. The effects of material nonlinearity of SFs will be discussed in the

sequel.
Dynamics of stress fibers

An SF is comprised of a bundle of actin filaments connected by binding pro-

teins (a-actinin), c-titin proteins, and motors (myosin II), as illustrated in

Fig. 2 a. The length change of SFs results from both the passive movement

of actin filaments and the action of myosin II motors.

First, consider the dynamics of an SF without an active contribution from

myosin II motors. The SF consists of repeated sarcomere-like units, whose
FIGURE 2 Schematics of a single SF links to the substrate: (a) only via

two FAs and (b) via multiple distributed anchors along the actin bundles. As

shown in (a), an SF is composed of sarcomeric units in series, including

actin filaments, myosin II motors, c-titin, and cross-linker (a-actinin) pro-

teins. The myosin II motors provide the contractive force, and the c-titin

proteins connect the adjacent units. To see this figure in color, go online.
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growth and contraction are driven by actin polymerization and depolymer-

ization, respectively. The actin polymerization rate depends on the resis-

tance force f0 acting on the filament. Following the elastic Brownian

ratcheting model (30,31), one has the relation

dDLu

dt
¼ Vþ exp

�
� f0d

kBT

�
� V�; (3)

where DLu is the length change of a sarcomere unit; Vþ and V� are the free

polymerization and depolymerization velocities of actins, respectively; d is

the size of a single actin; kB is the Boltzmann constant; and T is the temper-

ature. Before stretching, one has dDLu=dt ¼ 0 in equilibrium, with

f0 ¼ ðkBT=dÞlnðVþ=V�Þ.
When the sarcomere is subjected to an external force fpull, its length

change is expressed as

dDLu

dt
¼ Vþ exp

�
fpull � f0 � KuDLu

kBT
d

�
� V�

¼ V�

�
exp

�
fpull � KuDLu

kBT
d

�
� 1

�
; (4)

where Ku is the spring constant of a sarcomere arising from the elasticity of

c-titin proteins that connect the adjacent units. Here the sarcomere is first

assumed to be linear elastic, and the effects of nonlinearity will be ad-

dressed shortly. The analytical solution of Eq. 4 is

DLuðtÞ ¼ fpull
Ku

þ kBT

Kud
log

�
1�

�
1� exp

�
� fpulld

kBT

��

� exp

�
� t

tact

�	
;

(5)

where tact ¼ ðKudV�=kBTÞ�1 is a characteristic time for actin binding/

unbinding. The Young’s modulus E1 of SFs in endothelial cells is experi-

mentally measured from 5 to 15 kPa (32), and that of SFs in fibroblasts

is estimated as 5 kPa (33). The sarcomere length Lu is ~1 mm (16,34),

and its elastic constant Ku ¼ E1A=Lu is estimated in the range of

0.1–1 pN=nm with cross-sectional area A ¼ 0:1 mm2. Using d ¼ 2:7 nm

and V� ¼ 2:2 nm=s (31), the relaxation time tact is estimated to be

1–10 s. If t > > tact, Eq. 5 becomes

DLuðtÞ ¼ fpull
Ku

� kBT

Kud

�
1� exp

�
� fpulld

kBT

��
exp

�
� t

tact

�
:

(6)

This equation indicates that the SF behaves like a viscoelastic material. Its

viscous property stems from actin binding and unbinding, and the associ-

ated viscosity hact ¼ Kutact ¼ kBT=ðdV�Þ is estimated to be in the order

of 1.0 pN,s=nm.

Next, consider the active contractility of a sarcomere arising from the ac-

tivity of myosin II motor proteins. Let fmyo denote the force applied on the

actin filament by molecular motors with contracting velocity Vmyo.

Following Hill’s law (35), one has

fmyo ¼ fs

�
1� Vmyo

Vs

�
¼ fs � hmyoVmyo; (7)

where Vs is the zero-load velocity of the motor, which is ~0.3 mm=s (36); fs
is the stall force estimated to be hundreds of piconewtons, which is provided

by tens of myosin motors with a few pN per myosin head (37);

and hmyo ¼ fs=Vs represents the viscosity of motor movements
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(~1 pN,s=nm), which is comparable to the viscosity hact due to actin bind-

ing/unbinding.

Noting the contracting velocity Vmyo ¼ �dDLu=dt, the length change of a

sarcomere can be described by differential equation

�
hact þ hmyo

� dDLu

dt
þ KuDLu ¼ fpull � fs; (8)

with the initial condition DLu j t¼0 ¼ 0. The solution to Eq. 8 is

DLuðtÞ ¼ fpull � fs
Ku

�
1� exp

�
� t

tu

��
; (9)

where tu ¼ hu=Ku denotes the characteristic time of a sarcomere relaxation

with hu ¼ hact þ hmyo being the viscosity coefficient. Because an SF is

composed of sarcomeric units in series, its elasticity and viscosity coeffi-

cients are K1 ¼ Ku=Nu and h1 ¼ hu=Nu, respectively, where Nu is the num-

ber of sarcomeres in the SF. Therefore, as observed in the experiment of

Kumar et al. (38), the SFs can be described by a viscoelastic model, consist-

ing of a spring of stiffness K1, a dashpot of effective viscosity h1, and a

contractive stall force fs. Based on the above analysis, the characteristic

relaxation time t1 ¼ h1=K1 of an SF is estimated to be in the range

of 1–10 s.
Effects of distributed anchors of stress fibers

It is worth mentioning that in cells, an SF may link to the substrate via mul-

tiple distributed anchors along the actin bundles (39), as illustrated in

Fig. 2 b. Here, we compare the expression for the free energy of an SF

anchored by multiple distributed anchors with that for an SF anchored

only by two focal adhesions, as in our tensegrity model.

Suppose that the deformation of each sarcomere-like unit in an SF is ho-

mogeneous. Analogous to the derivation of the free energy difference of a

whole SF, the free energy difference of each sarcomere-like unit after the

stretch can be described by

DUu ¼ 1

2
ð2Ku þ kanchorÞDL2

u �
1

2
kanchorðL0εx0x0 Þ2; (10)

where kanchor is the spring constant of a linked anchor, and L0 is the initial

distance between two neighboring anchors on the substrate. The free energy

difference of an SF is the summation of all sarcomere units

DU1 ¼ NuDUu

¼ 1

2
ð2Ku þ kanchorÞNuDL

2
u �

1

2
kanchorNuðL0εx0x0 Þ2:

(11)

Note that the initial length between two anchors at the SF ends is

Lx0 ¼ NuL0. Using the relation K1 ¼ Ku=Nu, Eq. 11 is reexpressed as
DU1 ¼ 1

2

�
2K1 þ kanchor

Nu

�
DL2

1 �
kanchor
2Nu

ðLx0εx0x0 Þ2: (12)

In our tensegrity model, the SF is linked to the substrate via two FAs. As

described in the previous section, the free energy change of the SF due to

stretch can be written as

DU1 ¼ 1

2

�
2K1 þ kfa

�
DL2

1 �
1

2
kfaðLx0εx0x0 Þ2: (13)

It can be seen that Eqs. 12 and 13 have the same form when kanchor ¼ Nukfa.

If the Young’s moduli of the anchors and FAs are the same, the relation
kanchor ¼ Nukfa holds for lanchor ¼ lfa=Nu. Because the sizes of the anchors

ðlanchorÞ and FAs ðlfaÞ are ~0.1 mm (40) and a few micrometers (41), respec-

tively, and Nu ¼ 50 (16), one might expect that lanchorflfa=Nu and in turn,

kanchorfNukfa. In this case, the free energy change of an SF with multiple

distributed anchors would be comparable to that of an SF supported by

two FAs. Therefore, our conclusions from the tensegrity model should

hold approximately even when the SFs are supported by multiple distrib-

uted anchors.
RESULTS AND DISCUSSION

Steady cellular orientations under biaxial static
stretches

We first examine the case when the substrate is subjected to
a biaxial static stretch. As shown in Fig. 1 b, the strains in
the x and y directions are denoted as εxx ¼ ε0 and
εyy ¼ �nεxx, respectively, where ε0 is the strain amplitude
and n is the biaxial ratio. The strains in the x0 and y0

directions are εx0x0 ¼ εxxðcos2q� n sin2 qÞ and εy0y0 ¼
εxxðsin2q� n cos2qÞ, respectively. Using the force balance
and displacement constraint conditions, the length
changes of bars in the longitudinal and lateral directions
are DL1 ¼ kfaLx0εx0x0=ðkfa þ 2K1Þ and DL2 ¼ kfaLy0εy0y0=
ðkfa þ 2K2Þ, respectively. The free energy change DU in
Eq. 2 is

DU ¼ � kfaK1

kfa þ 2K1

L2
x0ε

2
x0x0 �

kfaK2

kfa þ 2K2

L2
y0ε

2
y0y0 : (14)

Experiments have shown that the Young’s modulus of FAs is

~5.5 kPa (41), and that of SFs is in the range 5–15 kPa (32).
For convenience, we assume FAs, long and short bars in the
tensegrity, have the same Young’s modulus E. Similar anal-
ysis can be made when their Young’s moduli are different
without changing the main conclusions. The characteristic
size of FAs falls in the range of a few micrometers
(12,41), and the bars in the tensegrity are approximately
tens of micrometers in length (10,12). Hence, it is known
from the relation K ¼ EA=L that kfa > >K1 and
kfa > >K2. Thus, Eq. 14 can be simplified as

DU ¼ �K1L
2
x0ε

2
0

�
cos2q� n sin2 q

�2
� K2L

2
y0ε

2
0

�
sin2 q� n cos2 q

�2
: (15)

From vDU=vq ¼ 0, we obtain three possible steady-state
orientations: two limiting values q ¼ 0 and p=2, and one in-

termediate value cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððx2 þ nx1Þ=ðð1þ nÞðx1 þ x2ÞÞÞ

p
,

where x1 ¼ K1L
2
x0 and x2 ¼ K2L

2
y0 . Among the three solu-

tions, there is only one stable state with minimum free en-

ergy. The steady cell orientation is determined to be q ¼ 0

when x1 > x2 and q ¼ p=2 otherwise. Because the bar in
the polarized direction is longer than that in the lateral direc-
tion, we have x1 > x2, and thus, the cell will align with the

stretching direction (i.e., q ¼ 0), in agreement with experi-
mental results (5,6).
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FIGURE 3 Steady cell orientation q as a function of the normalized fre-

quency u=u1 at three values of n under biaxial cyclic loads. The curve can

be divided into two regimes, corresponding to qt ¼ 90+ (solid line) and

qf ¼ cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððxx0x0n� xy0y0 Þ=ðð1þ nÞðxx0x0 � xy0y0 ÞÞÞ

p
(dashed line), respec-

tively.

Xu et al.
Steady cellular orientations under biaxial cyclic
stretches

In the following subsections, we investigate the response of
cells to biaxial cyclic strains with εxx ¼ 0:5 ε0ð1� cos utÞ
and εyy ¼ �nεxx, where ε0 and u are the strain amplitude
and frequency, respectively. In the longitudinal direction,
the force balance and displacement constraint conditions
are h1dDL1=dt þ K1DL1 ¼ kfaDl1 and DL1 þ 2Dl1 ¼
Lx0εx0x0 , respectively. Then the dynamics of SFs can be
described by

2h1

dDL1

dt
þ �

2K1 þ kfa
�
DL1 ¼ kfaLx0εx0x0 : (16)

The solution to above is

DL1 ¼
"

kfa
kfa þ 2K1

� kfa
�
cos ut þ u

�
u1 sin ut þ e�u1tu2

�
u2

1

��
kfa þ 2K1

�ð1þ u2=u2
1Þ

#
Lx0εx0x0 ;

(17)

where u1 ¼ ðkfa þ 2K1Þ=2h1 is the characteristic frequency
of the system in the x0 direction. Note that DL2 can be easily

calculated by using the force balance and displacement
constraint conditions in the y0 direction. Because the term
expð�u1tÞ approaches zero when t/N, the free energy
change DU per period T is

DU ¼ 1

T

Z T

0

DUðtÞdt

¼ xx0x0ε
2
0

�
cos2 q� n sin2 q

�2
� xy0y0ε

2
0

�
sin2 q� n cos2 q

�2
; (18)

where

xx0x0 ¼
1

16
kfaL

2
x0

"
4kfa

kfa þ 2K1

� 3� kfa
��

kfa þ 2K1

�
1þ ðu=u1Þ2

#

¼ 1

16
kfaL

2
x0

"
1� 1

1þ ðu=u1Þ2
#
;

; (19)

xy0y0 ¼
3
K2L

2
0 : (20)
8 y

In Eq. 19, we have assumed kfa > >K1 because the SF length
L1 is much larger than the FA size l1. From vDU=vq ¼ 0, one

finds three possible steady-state orientations: q ¼ 0, p=2, and

qf ¼ cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxx0x0n� xy0y0 Þ=ðð1þ nÞðxx0x0 � xy0y0 ÞÞ

p
. Mini-

mizingDU among the three possible states leads to the stable

orientation q in a wide range of normalized frequency u=u1,
as shown in Fig. 3. When the frequency is low, we find
1482 Biophysical Journal 111, 1478–1486, October 4, 2016
q ¼ p=2, meaning that the cell is perpendicular to the stretch-
ing direction. As the frequency increases, the stable orienta-
tion becomes qf , which depends on the biaxial ratio n, the

elastic constants, and geometric sizes of the cellular elements.
When u>u1, the SFs cannot follow the rapidly changing

strain, because the rate of their length change is limited by
the rates of actin binding/unbinding and the viscosity of mo-
lecular motors. If u is much higher than u1, one has
xx0x0 ¼ kfaL

2
x0=16 and qf approaches a constant at a given

biaxial ratio (see Fig. 3). Letting b ¼ xx0x0=ðxx0x0 � xy0y0 Þ
leads to the relation cos2qf ¼ ½ðn� 1Þbþ 1�=ð1þ nÞ, which
is identical to the expression used by Livne et al. (12) to fit
their experimental data. Their experimental results sug-
gested b ¼ 1.13, corresponding to K2L

2
y0 ¼ 0:02kfaL

2
x0 in

this tensegrity model. Because kfa > >K2 and Lx0 >Ly0 , it
seems reasonable that the effective longitudinal stiffness
kfaL

2
x0 is much larger than the effective lateral stiffness

K2L
2
y0 . If the effect of the lateral stiffness is omitted, one ob-

tains b¼ 1 and cos2qf ¼ n=ð1þ nÞ, which is identical to the
predictions from the minimal strain model (9,10,14). Fig. 3
also shows that if n ¼ 0, the cell will always align perpen-
dicular to the stretching direction, in consistency with exper-
imental observations of cell orientations on a substrate
under pure uniaxial stretch (9). Fig. 4 plots the steady cell
orientation as a function of biaxial ratio n under different
values of K2L

2
y0 . It can be seen that a little change in K2L

2
y0

can significantly affect the final cellular orientation. There-
fore, K2L

2
y0 , which is much smaller than kfaL

2
x0 and has been

neglected in most of the existing models (9,10,13–16), can
play a significant role in determining cell orientation.
Effect of substrate stiffness on steady cellular
orientations

To account for the effect of substrate stiffness, we use an
effective elastic constant ðkefffa Þ�1 ¼ k�1

fa þ k�1
sub of FAs to



FIGURE 4 Steady cell orientation q as a function of the biaxial ratio n at

four values of effective stiffness K2L
2
y0 under cyclic loads. The theoretical

results fit well with the experimental data of Livne et al. (12) at

K2L
2
y0 ¼ 0:02kfaL

2
x0 . To see this figure in color, go online.
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describe the elasticity of FA-substrate system, where ksub de-
notes the elastic stiffness of the substrate. The parameter kfa
in the expression of xx0x0 is replaced by kefffa . For a very soft
substrate, the term kefffa =ðkefffa þ 2K1Þ in Eq. 19 is very small,
and xx0x0 and DU are negative. In this case, the cell prefers
q ¼ 0, as in the case of a static stretch. When the substrate
is stiff, kefffa is dominated by the elasticity of FAs, and the
cell prefers the orientation qf under biaxial cyclic stretches
and q ¼ p=2 under uniaxial cyclic stretches at high fre-
quencies, as discussed above. This result is in accord with
recent experiments of Tondon and Kaunas (42), who
observed that cells align perpendicular to the stretch direc-
tion on a stiff substrate but parallel to the stretch direction
on a very soft substrate. It is worth noting that if the
substrate is very soft, the characteristic frequency
u1 ¼ ðkefffa þ 2K1Þ=2h1 of the cell-substrate system will be
small, indicating that the system becomes obtuse to dynamic
loads.
FIGURE 5 Rotational dynamics of cell reorientation at different fre-

quencies under cyclic loads. The two curves under high frequencies of

u=u1 ¼ 5 and 10 are identical. The arrow means the characteristic time

tR of cell rotation decreases with increasing the frequency and saturates

at a high frequency. The time is scaled by the parameter b ¼ 8hR=KfaL
2
x0 .

Here, we take n ¼ 0.25 and ε0 ¼ 10%. To see this figure in color, go online.
Rotational dynamics of cell reorientation

From a phenomenological point of view, the rotational
dynamics of cell orientations can be described as
dq=dt ¼ �dDU=hRdq (12,13), where hR denotes the viscous
coefficient. Using the expression of DU in Eq. 18, one
obtains

dq

dt
¼ 2ð1þ nÞε20

hR

sinð2qÞ�xx0x0�cos2 q� n sin2 q
�

þ xy0y0
�
sin2 q� n cos2 q

�

; (21)

which can be rewritten as

dq

dt
¼ 2ð1þ nÞε20

hR

sinð2qÞ�ð1þ nÞ�xx0x0 � xy0y0
�
cos2qþ xy0y0

� nxx0x0


:

(22)
With the notation b ¼ xx0x0=ðxx0x0 � xy0y0 Þ, the above equation
becomes

dq

dt
¼ 2ð1þ nÞxx0x0ε20

hR

sinð2qÞ
�ð1þ nÞcos2q� 1

b
þ 1� n

�
:

(23)

Under high loading frequencies, xx0x0 approaches a constant.
If we let x 0 0 ¼ 3K=8b, Eq. 23 is exactly the same as the
x x

equation used by Livne et al. (12) to fit their experimental
data. It is interesting to note that Livne et al. (12) modeled
the cell as a two-dimensional anisotropic continuum, with
parameters K and b depending on cell’s anisotropic elastic
constants, while we treat it here as a discretized tensegrity
structure, yet the two models predict the same results of
cell reorientation at high frequencies. Moreover, our model
can also predict the dynamics of cell reorientation in the
cases of lower frequencies and static stretches, which have
not been addressed in the model of Livne et al. (12).

For five representative frequencies, Fig. 5 plots the cell
orientation as a function of time. When the frequency is
low (e.g., u=u1 ¼ 0:25 or 0.5), the orientation angle first in-
creases and then approaches qt ¼ 900. As the frequency in-
creases, the cell rotates toward the orientation angle qf . For
higher frequencies (e.g., u=u1 ¼ 5 and 10), qf becomes a
constant and the rotational process is almost independent
of u=u1. It can be seen from Fig. 5 that the characteristic
time of cell rotation decreases with increasing frequency
and saturates beyond a threshold frequency, in agreement
with experimental observations (11).

Multiplying Eq. 22 by sinð2qÞ on both sides leads to

dcos2q

dt
¼ �2ð1þ nÞε20

hR

�ð1� nÞ�xx0x0 þ xy0y0
�

þ ð1þ nÞ�xx0x0 � xy0y0
�
cos 2q


þ o
�
cos22q

�
:

(24)
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Neglecting the quadratic and higher-order terms of cos 2q,
we obtain an analytical solution

cos2q ¼ cos2qþ �
cos2q0 � cos2q

�
expð�t=tRÞ; (25)

where q0 is the cell orientation at the onset of stretching, q is
the stable orientation, and tR is the characteristic time of
rotational dynamics

tR ¼ hR

2ð1þ nÞ2�xx0x0 � xy0y0
�
ε
2
0

: (26)

Equation 25 provides a concise description of the dy-
namics of cell reorientation on a stretched substrate, which
has been used previously to fit the dynamics of cell
orientation in experiments (11). As mentioned in Materials
and Methods, the characteristic frequency u1 ¼
ðKfa þ 2K1Þ=2h1 falls in the range of 0.1–1 Hz. At a rela-
tively high frequency (e.g., 1 Hz), the parameter xx0x0 is
essentially a constant and hence the characteristic time
tR does not change with frequency, in agreement with
Fig. 5. It can be seen from Eq. 26 that the characteristic
time tR is inversely proportional to ε

2
0. By comparing

this prediction with the experimental data in Jungbauer
et al. (11), it is found that Eq. 26 works well when the
applied strain is relatively large (e.g., ε0 > 6%) but not
for very small strains (see Fig. 6). This is because in the
latter case, there exist a number of molecular noises
(e.g., experimental fluctuations) that could drown out the
external signal. Equation 26 also suggests that tR de-
creases with the biaxial ratio n and scales with the term
ð1þ nÞ�2. This finding suggests a novel, to our knowl-
edge, route to quantitatively regulate the dynamics of
cellular mechanosensing system through simple physical
factors, such as the frequency, amplitude, or biaxial ratio
of applied dynamic loads.
FIGURE 6 Characteristic time tR as a function of the strain amplitude

ε0 under cyclic loads. The theoretical model (solid line) fits with the

experimental data (dots) in Jungbauer et al. (11) when the strain ampli-

tude is relatively large.
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Effects of SF nonlinearity

We next discuss the effects of constitutive nonlinearity of
SFs. We use a nonlinear constitutive model, in which the
strain energy density function w1 is expressed as

w1 ¼ 1

2
C11ε

2
1 þ

1

2
C12ε

4
1; (27)

where C11 and C12 are two elastic coefficients. It follows
that the force in an SF under strain ε1 is
F1 ¼ vw=vε1 ¼ C11ε1 þ 2C12ε

3
1.

In the case of biaxial static stretches, the force balance
and displacement constraint conditions give the relation

4C12ε
3
1 þ

�
2C11 þ b1

�
ε1 � ð2þ b1Þεx0x0 ¼ 0; (28)

where b1 ¼ L1=l1, C11 ¼ C11=EA, and C12 ¼ C12=EA. The
solution of ε1 can be solved from Eq. 28, and thereby we
derive the total energy difference DU in Eq. 1 with the
effects of nonlinearity. As discussed above, the ratio b1 be-
tween the sizes of SFs and FAs is in the range of 10–100.
Here, we take b1 ¼ 100, n ¼ 0:25, ε0 ¼ 0:1, Lx0 ¼ 100 mm,
and Ly0 ¼ 20 mm. Fig. 7 plots the steady-state orientation
with respect to the elastic constantC12 under several represen-
tativevalues ofC11. It canbe seen that ifC11 ¼ 1, the cellswill
align along the stretching direction, in agreement with rele-
vant experiments (5,6) and the predictions of our linearmodel.
WhenC11 ismuch smaller than unity (e.g.,C11 ¼ 0:01 or 0.1),
the steady-state orientation will be perpendicular to the
stretching direction for smallC12 and parallel to the stretching
direction for large C12. This is because for a smaller value of
C11, the nonlinearity of SFs will become stronger with the
increase in C12. Therefore, the strong nonlinearity in the
constitutive relation of SFs may affect the final cellular
orientation.

In the case of biaxial cyclic stretches, one can numeri-
cally solve the force balance and displacement constraint
FIGURE 7 Steady-state orientation q with respect to the normalized

coefficient C12 under biaxial static stretches. Here, we take b1 ¼ 100,

n ¼ 0.25, ε0 ¼ 0.1, Lx0 ¼ 100 mm, and Ly0 ¼ 20 mm.
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conditions accounting for the effects of SF nonlinearity. The
obtained steady-state orientation depends on the elastic and
viscous parameters and the sizes of SFs, as well as the
loading frequency. For example, we can consider the
situation with a high loading frequency u. In this case, as
demonstrated by De et al. (13), the cells cannot follow the
time-dependent strain and only respond to the time average
of the sinusoidally varying strain. Assuming L1 > > l1 and
L2 > > l2, the normalized free energy change DU ¼
DU=EA per period is estimated as

DU ¼ 3

8
ε
2
0L1

�
C11 � 2

��
cos2q� n sin2 q

�2
þ 105

384
C12L1ε

4
0

�
cos2q� n sin2 q

�4
þ 3

8
ε
2
0L2

�
C2 � 2

��
sin2 q� n cos2 q

�2
: (29)

From vU=vq ¼ 0, one can obtain three possible cellular ori-
entations, q ¼ 0, p=2, and qf , among which the last one
satisfies

35C12L1ε
2
0f

3
�
qf
�þ 24

�
C11L1 � 2L1 þ C2L2 � 2L2

�
f
�
qf
�

� 24
�
C2 � 2

�ðn� 1ÞL2 ¼ 0

(30)

with f ðqÞ ¼ n� ð1þ nÞcos2 q. If the cellular longitudinal
size is much larger than its lateral size ðL1 > >L2Þ,
Eq. 30 reduces to 35C12ε

2
0f

3ðqf Þ þ 24ðC11 � 2Þf ðqf Þ ¼ 0,

leading to solutions cos2q
ð1Þ
f ¼ n=ð1þ nÞ and cos2q

ð2Þ
f ¼

ðn� gÞ=ð1þ nÞ with g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24ð2� C11Þ=35C12

q
=ε0. The

value of q
ð1Þ
f is identical to the orientation predicted by the

minimal strain model (9,10,14). Because q
ð2Þ
f > q

ð1Þ
f , the

steady-state orientation may be larger than that predicted
by the minimal strain model. This conclusion is in agree-
ment with the results of the experiments of Livne et al. (12).
CONCLUSIONS

A cytoskeletal tensegrity model has been proposed to
describe the rotational dynamics of polarized cells on a
substrate subjected to either static or cyclic stretches. The
dynamic response of SFs to cyclic stretches is limited by
the actin binding/unbinding rates and the intrinsic viscosity
of molecular motors. Due to this mechanism, the mechani-
cal response of cells is sensitive to the frequency of cyclic
loads. Interestingly, the lateral constituent of cytoskeleton
is shown to play a vital role in determining the final cell
orientation. The steady cellular orientations are quantita-
tively determined by not only the geometrical dimensions
and elastic properties of cellular elements but also the fre-
quency and biaxial ratio of cyclic stretches. Then, we
demonstrate that the dynamic process of cell reorientation
follows an exponential law with a characteristic time that
scales inversely with the square of the strain amplitude, de-
creases with the cyclic frequency, and saturates beyond a
threshold frequency. Furthermore, we showed that the
nonlinearity in the constitutive relation of SFs may affect
the final cellular orientation in some extreme situations.
The predictions of our tensegrity model are in broad agree-
ment with many different types of experimental phenomena.

Recently, it is found that within a confluent cell layer
where the cell geometry is affected by neighboring cells,
cells align and migrate along the direction of maximal prin-
cipal stress (43,44). It may be possible to describe such
confluent cell layer as a large-scale assembly of tensegrity
structures. In this sense, this model could be extended to
study the collective alignment and movement of cells within
a confluent monolayer. Our study thus suggests a strong
potential of using tensegrity type models to capture the
essential mechanisms of cellular mechanosensing in various
mechanical environments.
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