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Suppression of the CD8 T cell 
response by human papillomavirus 
type 16 E7 occurs in Langerhans 
cell-depleted mice
K. Jemon1,†, C.-M. Leong1, K. Ly2, S. L. Young2, A. D. McLellan1 & M. H. Hibma2

Human papillomavirus (HPV) is an epitheliotropic virus that is the primary causal agent for cervical 
cancer. Langerhans cells (LC) are skin antigen presenting cells that are reduced in number in HPV-
infected skin. The aim of this study was to understand the immune-modulatory effects of HPV16 E7 on 
LC and on the CD8 T cell response to a skin-expressed antigen. To test this, HPV16 E7 was expressed in 
mouse skin keratinocytes with the model antigen ovalbumin (Ova). Similar to what is observed in HPV-
infected human skin, LC numbers were significantly reduced in E7-expressing mouse skin. This shows 
that expression of the E7 protein alone is sufficient to mediate LC depletion. Expression of E7 with Ova 
in keratinocytes strongly suppressed the Ova-specific CD8+ T cell response in the skin draining lymph 
node. When tested in LC-ablated mice, the CD8 T cell response to skin-expressed Ova in control mice 
was not affected, nor was the T cell response to Ova restored in E7-expressing skin. These data indicate 
a role for E7 in regulation of LC homeostasis in the skin and in suppression of antigen specific CD8 T cell 
expansion, but suggest that these two effects occur independent of each other.

Human papillomavirus (HPV) is an epitheliotropic virus that is the primary etiological agent of cervical cancer1,2. 
The high-risk genotypes 16 and 18 are most prevalent worldwide and are detectable in more than 75% of all cer-
vical tumours3. It has been established that continuous expression of the E6 and E7 oncoproteins is necessary to 
maintain a transformed phenotype during cervical carcinogenesis1. There is an increasing body of evidence that 
E6 and E7 also contribute to HPV evasion of the host immune response4.

HPV infections are very common, especially among sexually active individuals. It is estimated that 50 to 80% 
of sexually active men and women acquire HPV infections throughout their lives5. Although the prevalence of 
HPV is high, the majority of infections do eventually resolve, generally within 2 years. Around 10–20% of the 
HPV-infected individuals fail to clear the virus effectively and remain HPV DNA positive. Individuals with per-
sistent infections with high-risk types have a much greater chance of progression to high-grade CIN and invasive 
carcinoma6,7.

Lesion regression is associated with activation of an adaptive immune response to HPV, with CD8 and CD4 T 
cells likely being the major effector cells mediating the response8. CD8 T cell activation is contingent on presenta-
tion of viral antigens by professional antigen presenting cells (APC) and typically is dependent on three signals: 
APC presentation of peptide with MHCI to the T-cell receptor on the T cell, interaction between co-stimulatory 
molecules on the APC with respective ligands on the T cell, and inflammatory cytokine secretion (including 
IL-12) by the APC9.

Persistence of viral infection is primarily attributed to the absence of an effective immune response that is 
likely contributed to by poor presentation of viral antigens. HPV is non-cytolytic and infection is restricted to 
keratinocytes (KC), both factors that may limit the availability of antigen for presentation to T cells. The profes-
sional APCs resident at the site of HPV infection are Langerhans cells (LC), which, because of their location, are 
considered likely to be important for immune modulation of HPV infection and HPV-induced lesions. However 
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Figure 1.  The number of LC is reduced in HPV16 E7 expressing epidermis. Lang-DTR mice were injected 
intradermally beneath the ear skin with either 1 ×​ 107 K14 E7 Luc/Ova or K14 E7rev Luc/Ova lentivirus 
particles, or treated with PBS. Ten days following transduction, in vivo bioluminescence imaging was carried 
out to measure luciferase gene expression. Representative images show comparable bioluminescence signal 
from K14 E7 Luc/Ova (a) and K14 E7rev Luc/Ova (d) expressing keratinocytes in both groups and no signal 
from the PBS control group (g). Epidermal sheets were prepared from the transduced mouse ear skin and 
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their role in presentation of HPV antigens is challenging to test directly in the immunologically well-defined 
mouse system, as HPV has a strict tropism to humans.

There is evidence supporting HPV interference of antigen presentation. Langerhans cell homeostasis is reg-
ulated in HPV infected lesions, resulting in a net loss of LC at the site of infection10. HPV also interferes with 
antigen presentation and processing machinery11,12, and alters chemokine and cytokine expression by LC13,14.

The purpose of this study is to determine if expression of HPV16 E7 in basal and suprabasal keratinocytes 
is sufficient to regulate LC homeostasis and function in vivo, and the CD8 T cell response to a skin-expressed 
antigen. We show that, comparable to human infected skin, LC numbers are reduced in E7-expressing mouse 
skin. In addition, co-stimulatory molecule expression on LC from E7-expressing skin is increased. We found that 
HPV16 E7 strongly suppresses antigen specific T cell proliferation to co-expressed ovalbumin (Ova). Perhaps 
surprisingly, depletion of LC from control or E7 expressing skin did not alter the magnitude of the T cell response. 
This suggests that LC are not essential for activation of the T cell response, nor are they required for E7-mediated 
suppression of the T cell response to skin-expressed antigen.

Results
The frequency of LC is decreased in the ear of mice transduced with HPV16 E7.  We wished to 
determine if expression of E7 is sufficient to mediate the reduction in LC observed in human HPV-infected skin. 
To test this E7, or E7 cloned in reverse, and luciferase, regulated by the same K14 promoter region, were expressed 
in Lang-DTR transgenic mouse (without DT treatment) ear skin in vivo. Expression of the transduced genes over 
time was determined by measuring the bioluminescence signal emitted by the luciferase reporter, following injec-
tion of luciferin. Comparable levels of luciferase expression were observed up to day 14 (Supplementary Fig. 1).

Epidermal sheets were harvested from E7 expressing epidermis and control skin transduced with E7 cloned in 
reverse at day 10, and stained with an antibody specific for langerin/CD207. Expression of the transduced genes 
at day 10 was confirmed by measuring the bioluminescence signal (Fig. 1a,d,g). Consistent with what has been 
observed in human skin infected with HPV16, there was a significant decrease (P <​ 0.05, Mann-Whitney U)  
in the number of LC in HPV16 E7 expressing skin when compared with luciferase expressing control epi-
dermis (Fig. 1b,c,e,f,h,i and m). To ensure that expression of luciferase alone did not affect LC number, 
luciferase-expressing ear skin was compared to PBS control skin and LC density was determined to be compara-
ble (Fig. 1m).

To further confirm those data, single-cell suspensions of ear skin cells from Lang-DTR mouse skin (without 
DT treatment) expressing E7 and luciferase, E7rev and luciferase, or a PBS injected control were prepared, cells 
stained with anti-CD207 and the LC enumerated using flow cytometry. The population of cells was gated using 
forward and side scatter, and a single cell gate applied. LCs were additionally identified by green fluorescent 
protein (GFP) positivity (Fig. 1k,l), as the Lang-DTR mice express GFP regulated by the langerin promoter15. In 
agreement with the results from the immunohistochemistry analysis, there were significantly fewer (P <​ 0.05, 
M-W U) CD207+GFP+ LC in E7 and luciferase-expressing epidermis compared to luciferase expressing control 
skin or PBS injected skin (Fig. 1n). Taken together, these results clearly demonstrate that expression of HPV16 E7 
in KC is sufficient to cause a significant reduction in the number of LC resident in the epidermis.

Expression of co-stimulatory molecules on LC from HPV16 E7-transduced skin.  The reduction 
of the quantity of LC in the E7-transduced mice prompted us to investigate the activation status of the remaining 
skin-resident LC. LC that reside in the skin are immature; they typically express low levels of the co-stimulatory 
molecules CD40, CD80, CD83 and CD86, and have the capacity to take up antigen and process antigen. On 
activation, LC migrate from the epidermis to the lymph node, undergoing maturation, and expressing increased 
levels of MHCII and co-stimulatory markers16,17. To test if the activation state of the skin-resident LC is altered 
when E7 is expressed in the epidermis, surface expression of CD40, CD80 and CD83 on the LC purified from 
K14 E7 Luc/Ova and K14 E7rev Luc/Ova transduced skin was measured. Overall, there was a modest increase in 
expression of CD80 (P <​ 0.05, M-W U) on LC harvested from the HPV16 E7 expressing epidermis when com-
pared with skin transduced with the E7 gene in the reverse orientation (Fig. 2), but no change in CD40 or CD83. 
We note that the LC from ear skin transduced with lentiviral vectors also had a modest increase in CD40 and 
CD80 expression (P <​ 0.005: M-W U) relative to ears that had been injected with PBS. Overall, co-stimulatory 
molecule expression was not at a level consistent with the multiple-fold increases typically seen on activated LCs 
from the lymph nodes, indicating only limited activation of LC in E7-transduced skin.

HPV16 E7 suppresses CD8+ T cell response against expressed ovalbumin.  To test the hypothesis 
that E7 expression results in impaired T cell responses to co-expressed antigen, we directly measured the OT-I 
CD8+ T cell proliferative response against Ova co-expressed with HPV16 E7 transduced epidermal KC. Firstly 

stained with anti-CD207-conjugated Alexa-546, to visualize LC. Red stained LC within the transduced area 
of K14 E7 Luc/Ova (b), K14 E7rev Luc/Ova (e) and PBS control groups (h) are shown and enlarged regions 
are depicted in (c), (f) and (i) respectively. Scale bars, 50 μ​m. Individual epidermal LC numbers are shown 
graphically (m), with the median depicted for each group (n =​ 3–4 per group); *P <​ 0.05 (Mann-Whitney U).  
LC numbers in ear skin were confirmed using flow cytometry. The gating strategy used to determine the 
percentage of LCs from ear cell suspensions is shown. Single cell suspensions of epidermal cells were 
distinguished using forward and side scatter (j), a gate applied to single cells (k) and double positive CD207+ 
and GFP+ LC were gated (l). The percentage of LC in the gated population is shown graphically (n), as is the 
mean for each group (n =​ 5/6 per group); *P <​ 0.05 **P <​ 0.01 (Mann-Whitney U).
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we confirmed that comparable amounts of Ova were expressed in equivalent numbers of skin cells transduced 
with either the K14 E7 Luc/Ova or the K14 E7rev Luc/Ova lentivirus by western blot (Fig. 3a). We then measured 
the proliferative response to skin expressed Ova. Evidence of in vivo proliferation of the OT-I T cells was read-
ily detected in response to Ova expressed in non-DT treated LangDTR mice transduced with K14 E7rev Luc/
Ova (Fig. 3b–d). In contrast, when E7 was co-expressed with Luc/Ova, there was a pronounced and significant 
decrease (P <​ 0.01; M-W U test) in Ova-specific CD8+ T cell proliferation. From these data we concluded that 
expression of E7 in basal KC impaired the CD8 T cell response to a co-expressed antigen.

HPV16 E7 down-regulation of the CD8+ T cell response can occur independently of LC.  
Evidence supports LC priming of a CD8+ T cell response in vitro18,19 and in vivo20. However the role of LCs 
in activation of an immune response has been a source of debate, with some workers maintaining that these 
antigen-presenting cells are predominantly tolerogenic21. We therefore wished to establish if LCs contribute to 

Figure 2.  Co-stimulatory marker expression on LC from K14 E7 expressing mouse skin is increased. 
Lang-DTR mice were injected i.d. beneath the ear skin with 5 ×​ 106 K14 E7 Luc or K14 E7rev Luc lentivirus 
particles, or with PBS. Ten days following transduction, epidermal ear suspensions were prepared and analyzed 
by flow cytometry. (a) The gating strategy applied to identify the single, CD207, GFP positive cells that were 
analysed for co-stimulatory molecule expression. (b) Surface expression of CD40, CD80, and CD83 on LC was 
analyzed. Representative histograms are shown for a minimum of 5 mice in each group. The shaded histograms 
correspond to isotype control staining. (c) The geometric mean fluorescence intensity (MFI) of CD40, CD80, 
and CD83. Lines show the median for at least 5 mice per group. *P <​ 0.05; **P <​ 0.01 (Mann-Whitney U).
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Figure 3.  The in vivo T cell proliferative response to Ova in the draining lymph node is reduced in mice 
expressing K14 E7 in the epidermis. Lang-DTR mice were injected i.d. beneath the ear skin with 1 ×​ 107 
K14 E7 Luc/Ova, or K14 E7rev Luc/Ova lentivirus particles, or PBS. Seven days post transduction, 4 ×​ 106 
CFSE-labelled CD45.1 OT-I cells were adoptively transferred into each mouse intravenously. Five days after 
transfer, ear skin was harvested and expression of the Ova in the epidermis, and the actin loading control, 
was determined by western blot. Densitometry was carried out to quantify the amount of protein for each 
of the bands. The density relative to the loading control is shown for triplicate samples (a). The cervical 
draining lymph nodes were recovered, and analysed by flow cytometry to determine the proliferation of 
the CFSE-labelled CD45.1, CD8+ OT-I T cells. The gating strategy used to identify those cells is shown in 
(b). Representative dot plots of proliferating CFSE-labelled OT-1 T cells are shown for each group (c). The 
percentage (mean ±​ SEM) (d) and absolute number (mean ±​ SEM) (e) of CD45.1 OT-I proliferating cells are 
shown. n =​ 5; *P <​ 0.05, **P <​ 0.005 (Mann-Whitney U).
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Figure 4.  Suppression of the T cell in vivo proliferative response to Ova co-expressed with E7 in the skin of 
the Lang-DTR mouse is not restored when LC are depleted. The experimental outline is shown schematically 
(a). To confirm depletion LCs and retention of CD103+, Langerin+ DCs following DT treatment, epidermal 
sheets stained for CD207 (red), and tissue sections were stained with CD103 (green), CD207 (red), and DAPI. 
(b); Scale bars, 50 μ​m. Cervical-draining lymph nodes were recovered five days after CFSE-labelled OT-1 cells 
were adoptively transferred into mice. Single cell suspensions were analysed by flow cytometry for CFSE-
labelled CD45.1 OT-I T-cell proliferation. The gating strategy used to identify CD45.1+, CD8+ single cells 
is shown (c). Representative dot plots are shown for each group (d). The percentage (mean ±​ SEM) (e) and 
absolute numbers (mean ±​ SEM) (e) of CD45.1 OT-I proliferating cells are shown. n =​ 5; ns, not significant 
(Mann-Whitney U).
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activation of the CD8 T cell response to Ova expressed in KC, and to determine if LCs contribute to the suppres-
sion of the Ova response that we observed when E7 was co-expressed with Ova in KC.

To address this, we administered DT to the Lang-DTR transgenic mouse, to selectively deplete langerin pos-
itive cells15,22,23. At the 1 μ​g DT dose used here, rapid depletion of LC and langerin positive DCs occurs. The DC 
subsets are gradually restored after day 5, whereas the LCs are not fully restored until 6 weeks after treatment15. 
Lang-DTR mice (5 mice/group) were treated with DT 6 days prior to lentivirus transduction or left untreated, 
as outlined in the Fig. 4a. Immunofluorescence staining of ear skin (sheets and skin sections) for langerin pos-
itive cells was carried out at day 6 post-DT treatment to determine if LCs and/or dermal DC had repopulated 
the ear skin. We readily found CD207+CD103+ dermal dendritic cells at day 6, but the epidermis remained 
devoid of the CD207+ langerin positive cells at that time (Fig. 4b). We also examined sectioned ear skin at day 18 
(Supplementary Fig. 2) and similarly did not detect LC in the epidermis, but could detect langerin positive cells 
in the dermis at that time.

DT treated LangDTR mice were transduced either with K14 E7 Luc/Ova or K14 E7rev Luc/Ova lentivirus, 
or injected with PBS only. Seven days post-transduction, when LC remained depleted but langerin+ dermal DC 
restored, CFSE-labelled CD45.1 OT-I cells were adoptively transferred into the mice. Cervical lymph nodes were 
harvested 5 days later and pooled, and the proliferation of the transferred live, CD8+​ CFSE-labelled CD45.1 OT-I 
cells (Fig. 4c) was measured.

Consistent with our other data, there was robust proliferation of OT-I transgenic cells from the ear-draining 
lymph nodes of mice transduced with K14 E7rev Luc/Ova (Fig. 4d,e). LCs did not appear to be necessary for the 
CD8 T cell response to Ova, as depletion of LCs prior to transduction did not alter the magnitude of the prolif-
erative response. Similarly, these experiments confirmed our data showing that there was a significant decrease 
in Ova-specific CD8+ T cell proliferation in mice transduced with K14 E7 Luc/Ova. Again, LC depletion did not 
significantly alter, and did not restore, the proliferative response to that of the E7rev lentiviral transduced skin. 
These results indicate that LC depletion did not alter the CD8+ T cell response to Ova expressed in skin KC and 
furthermore did not restore the CD8+ T cell response in mice transduced with E7 and Ova.

Discussion
It has previously been reported that LC numbers are reduced in HPV16 infected skin, which was proposed to 
contribute to evasion of immunity by the virus24–26. Here we show that expression of E7 oncoprotein of HPV16 
results in reduced LC density in the epidermis, activation of residual LC, and suppression of draining lymph node 
T cell proliferation to co-expressed antigen in the skin. Importantly, our data show that expression of HPV16 E7, 
in the absence of other HPV16 proteins, is sufficient to cause these effects.

Expression of the adhesion molecule E-cadherin on both KC and LC is required for retention of LC within 
the epithelium27,28. Expression of E-cadherin on the basal and suprabasal KC in HPV-infected biopsy specimens 
is significantly decreased when compared to normal tissue and directly correlates with reduced LC number25,29. 
E-cadherin expression is down-regulated on HPV16 E730,31 or E625 expressing human and mouse (data not 
shown) KC in vitro, and co-expression of these proteins further reduces E-cadherin expression32. E7-induced 
down-regulation of E-cadherin may contribute to the reduced LC density we observe in this study.

We have previously examined LC density in the K14 E7 transgenic mouse and found that there was an overall 
increase in the number of LC in K14 E7 mouse skin, and that the LCs were at least partially activated33. We pro-
pose that LC density and activation status differs between these two models as a result of secondary effects of the 
skin microenvironment that are consequential of E7 expression. Long-term expression of E7 in the K14 E7 trans-
genic mouse causes skin hyperplasia and chronic inflammation. These characteristics are shared by high-grade 
HPV lesions in humans34, in which increased numbers of LC are typically found. In contrast, there is no evidence 
of inflammation or hyperplasia when E7 is expressed in the lentivirus model. Chronically inflamed mouse skin is 
populated by short-term LCs that differentiate from infiltrating Gr-1+ macrophages35, which would account for 
the overall increase in LC number in the skin that was observed in the K14 E7 transgenic mouse. In contrast, the 
overall reduction in LCs in the E7 transduced skin is suggestive of the loss of the long-term LCs. The difference 
in LC regulation in the two models therefore could be accounted for if long-term but not short-term LC are reg-
ulated by E7 expression in the skin.

LCs in the skin maintain skin-resident regulatory T cells (Treg)36, mediating tolerance. Treg maintenance 
by LCs is dependent on MHCII and is associated with somewhat increased expression of CD86 but no change 
in CD80 or CD8337. Although we did not measure CD86 in this study, CD86 is increased on LCs in the K14 E7 
mouse, and peripheral CD8 T cell suppression is mediated by Tregs in that model38. In the human, residual LCs 
can be found in patches in HPV6/11-infected tissue and frequently co-localise with Treg24, suggestive of a role for 
LCs in Treg maintenance.

Here we show that E7 expression impairs the CD8 T cell response. The almost complete ablation of CD8 T 
cell proliferation to antigen co-expressed with E7 in epidermal KC is consistent with T cell suppression observed 
in the K14 E7 transgenic mouse. In that model the suppression is sufficient to prevent rejection K14 E7 mouse 
skin when transplanted onto a syngeneic immune competent mouse39,40. Several regulatory effects of E7 may 
contribute to the ablation of the T cell response to antigen co-expressed with E7 in the skin. CD8 T cell activa-
tion requires peptide to be presented with MHC I, which engages with the T cell receptor. HPV16 E7 represses 
the MHC I promoter, and reduces transporters of antigenic peptides (TAP) 1 and low molecular weight protein 
(LMP) 2 promoter activity to a lesser degree41. Reduced expression of MHC I12,42, TAP1 and TAP2, and pro-
teosome subunits LMP2 and LMP7 has been confirmed in lesions from patients with cervical carcinoma11,12. 
HPV16 E7 also modulates chemokines crucial for the induction of the antiviral CD8 T cell response43. Monocyte 
chemoattractant protein 1 (MCP1), important for infiltration of immune cells to the site of infection, is decreased 
in the HPV-infected cells14, and interleukin 8 (IL-8), a potent chemoattractant for T lymphocytes and neutrophils, 
is down-regulated by E713.
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Depending on their environment, LC antigen presentation can generate activating or tolerising T cell 
responses44. LC have the capacity to migrate to the lymph node and to cross-present skin antigens in vitro, acti-
vating CD8 T cell responses20, and are able to prime CD4 T cells45. We predicted that loss of many of the LC 
in HPV infected skin would reduce the likelihood of LC priming of T cells, thereby contributing to evasion of 
immunity by the virus. However our work shows that LC are non-essential for activation of the lymph node CD8 
T cell response to skin expressed antigen, and that any remaining LC in E7 expressing epidermis are dispensable 
for the observed suppression of CD8 T cell responses in the lymph node.

The role of LC in the activation of the immune response to skin-expressed antigen remains controversial46. 
Based on in vitro data, evidence strongly supports the ability of LC to cross-present antigen to T cells to acti-
vate the immune response47. More recently, several groups have shown that cross-presentation of skin-expressed 
antigen can occur in the absence of skin LC48. Langerin+ CD103+ dermal DCs are considered the key cells that 
cross-present antigens expressed by keratinocytes48,49. In HPV-infected lesions, dermal DCs are more concen-
trated immediately beneath the epidermis along the dermo-epidermal junction50. The requirement for der-
mal DCs in presentation of HPV antigens in vivo has not yet been demonstrated, however the lack of effect of 
LC-depletion on T cell proliferation in our study does implicate these cells in presentation of skin-expressed anti-
gen to lymph node T cells. If that is the case, the suppressive effects of E7 are likely to extend to cells that are in the 
local microenvironment but are not in direct contact with the E7-expressing KC. The density and distribution of 
the dermal dendritic cells is reduced in patients with persistent HPV-induced anogenital lesions51, indicating that 
dDC may be modulated by HPV. If this is an E7-mediated effect, the loss of dermal DC potentially may contribute 
to the T cell suppression we observed, and this may impair immunity to HPV.

Collectively, our observations show that expression of the HPV16 E7 protein in KC is sufficient to reduce 
the number of LC in the epidermis. Although we speculate that LC depletion may contribute to suppression of 
the immune response to HPV, we provide clear evidence that LC are not required to suppress antigen specific 
CD8 T cell responses in the skin draining lymph nodes. These data suggest that E7 instead may regulate the 
dermal cross-presenting APC, the CD103+ (mouse) or CLEC9a+ (human) langerin positive dermal dendritic 
cells, which may result in tolerogenic antigen presentation in the draining lymph nodes52. The altered activation 
status of the remaining LCs may have other effects, such as maintenance of skin resident Tregs. It will be critical to 
determine how antigen presentation occurs in HPV infection, as its regulation may determine viral persistence, 
the activation of an effective immune response and ultimately viral clearance. The ability to develop therapeutic 
interventions to trigger regression therefore could hinge on interventions that interfere with regulation by HPV 
of skin APCs.

Materials and Methods
Construction and production of lentiviral vectors.  All genetic modifications were approved by 
the University of Otago Institutional Biosafety Committee and the New Zealand Environmental Protection 
Agency. Methods were carried out in accordance with the approved guidelines. The lentiviral transfer vector, 
pRRLSIN-cPPT-PGK-GFP-WPRE (hereafter pRRL-PGK-GFP), was provided by Dr. S. Hughes, Department 
of Biochemistry, University of Otago and is described in Follenzi et al.53. pRRL-K14-GFP was generated by 
replacing the PGK promoter with the 2.1 kb K14 promoter (expressed in basal and suprabasal keratinocytes54,55) 
following digestion with BamH1 and Xho1. The 1.6 kb Luc gene was amplified by PCR from pGL3 luciferase 
reporter vector (Promega) using the primer pair F-5′​-CGCGGATCCATGGAAGACGCCAAAAAC-3′​ and 
R-5′​ GCGTGTCGACTTACACGGCGATCTTTCC-3′​. pRRL-K14-GFP (linearized with BamH1 and Sal1) 
was ligated with the Luc gene to generate pRRL-K14-Luc. An HPV16 E7-IRES fragment was ligated into 
pRRL-K14-Luc linearized with BamH1 and BglII, to generate pRRL-K14-E7-IRES-Luc (Fig. 5a). To con-
struct its counterpart negative control, pRRL-K14-E7rev-IRES-Luc, E7 was cloned in the reverse orienta-
tion (E7rev). E7rev-IRES was generated by PCR (primer F-5′​-GCAGATCTAATACCAAAGACTCTTGT-3′​ 

Figure 5.  Schematic representation of lentiviral vectors used in the study. Linear maps of the insertion 
sequences encoding E7 or E7-rev and luciferase (a), or ovalbumin (b), are shown.
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and R-5′​-GCGGATCCTTTTTAACCTCGACTAAA-3′​) and ligated into pRRL-K14-Luc (linearized with 
BamH1) to generate pRRL-K14-E7rev-IRES-Luc (Fig. 5a). The 1.1 kb Ova gene was amplified by PCR 
from pAC-Ova-neo (kind gift from Dr. M. Bevan, University of Washington, Seattle, WA, USA) using  
F-5′​-ATGGATCCATGGGCTCCATCGGCGCA-3′​ and R-5′​-CGTCGTCGACTTAAGGGGAAACACATCT-3′​ 
and cloned into pRRL-K14-E7-IRES-Luc and K14-E7rev-IRES-Luc, linearized with BamH1 and Sal1 to gen-
erate pRRL-K14-E7-IRES-Ova and pRRL-K14-E7rev-IRES-Ova, respectively (Fig. 5b). Replication deficient 
lentiviruses were produced following transient co-transfection of 293TT cells with the pRRL-K14 transfer vec-
tors described above, the packaging plasmids pMDLg/pRRE, pRSV Rev and the VSVG plasmid (obtained from 
Addgene, Cambridge, MA, USA). Supernatant was collected from cells 48 h and 72 h post transfection, filtered 
through 0.45 μ​m filter, then centrifuged at 70 000 ×​ g for 2 h. Virus titer determination was performed using a 
real-time quantitative PCR (qPCR) as described in Barde et al. (2010).

Mice and lentivirus transduction.  Animal experiments were approved by the University of Otago Animal 
Ethics Committee (Approval Number: AEC41/10). Methods were carried out in accordance with the approved 
guidelines. Lang-DTR56 and CD45.1 ×​ OT-I (hereafter; CD45.1 OT-I) mice used in this study were bred and 
maintained under specific pathogen-free conditions in the Hercus Taieri Research Unit (HTRU), University of 
Otago, New Zealand. Mice were anaesthetised with a mixture of Domitor (1 mg/kg), Ketamine (75 mg/kg) and 
Atropine (0.05 mg/kg) and revived with Antisedan (1 mg/kg). A total of 1 ×​ 107 lentivirus particles (1:1 mix of 
5 ×​ 106 K14 Luc and 5 ×​ 106 K14 Ova lentivirus particles) in 20 μ​l in PBS were injected intradermally (i.d.) into 
each ear pinna. In experiments where luciferase expression only was measured, a total volume of 20 μ​l containing 
5 ×​ 106 K14 E7 Luc or K14 E7rev Luc lentivirus particles was injected i.d. into the ear.

Preparation of epidermal sheets.  Ears were split into dorsal and ventral halves, and skin was floated on 
3.8% ammonium thiocyanate (ATC, Sigma–Aldrich) in 100 mM sodium phosphate for 20 min at 37 °C. After 
20 min, epidermal and dermal sheets were separated using thin curved forceps.

Western blotting of epidermal sheets.  Epidermal sheets were placed in a Dounce homogenizer and 
disrupted in 50 mM Tris-HCl (pH 7.4), 1% Nonidet P-40, 0.25% sodium deoxycholate, 0.15 M NaCl, 1 mM EGTA 
and protease inhibitors. Cell lysates were collected and centrifuged at 10,000 ×​ g for 5 min. The protein concen-
tration of the sample was determined using a Bradford BCA Quantification Kit (Pierce, Thermo Fisher Scientific) 
according to manufacturer’s instructions. An equal quantity of protein for each sample was loaded onto a 4–12% 
polyacrylamide gradient gel (ThermoFisher Scientific, MA, USA), and following electrophoresis samples were 
blotted onto nitrocellulose using an iBlot Dry Blotting System (ThermoFisher Scientific, MA, USA), as per the 
manufacturer’s protocol. The membrane was blocked in 5% bovine serum albumin (BSA) and 0.05% Tween-20, 
in TBS (TTBS) overnight at 4 °C with agitation, then incubated with rabbit anti-Ova antibody (Sigma-Aldrich, 
MO, USA), or goat anti-actin antibody (C-11, Santa Cruz Biotechnology Inc., TX, USA) diluted in 0.3% BSA in 
TTBS for 2 h at RT, with agitation. Following further washing, the membrane was incubated with goat anti-rabbit 
IRDye 800CW or donkey anti-goat IRDye 680RD (LI-COR Biosciences, NE, USA) in 0.3% BSA in TTBS at 
RT for 60 min. The membrane was washed and then imaged using the Odyssey Clx Imaging System (LI-COR 
Biosciences, NE, USA).

Epidermal ear sheet staining and LC enumeration.  Epidermal sheets were separated and fixed in ace-
tone for 15 min at RT, transferred to wells of a 24-well plate, washed in 1 ml of TBS containing 0.05% Tween for 
10 min, then blocked in 1 ml of TBS containing 1% BSA for 5 min at RT. Sheets were incubated with an Alexa-546 
labeled anti-CD207 antibody (Dendritics) diluted in TBS containing 1% BSA for overnight at 4 °C. Sheets were 
washed twice in TBS for 20 min on a shaking platform at RT, mounted with SlowFade Gold (Invitrogen) on slides 
and examined using a BX51 (Olympus, France) fluorescence microscope. At least six fields (at 200 fold magni-
fication) within the transduced area were randomly selected and the LC enumerated. All measurements were 
recorded using ImageJ (http://rsbweb.nih.gov/ij) software.

Ablation of langerin-expressing cells in vivo.  LCs were ablated from mouse epidermis by i.p. injection 
with 1 μ​g of diphtheria toxin (DT) (Sigma-Aldrich, St Louis, MA, USA) in 100 μ​l PBS 6 days prior immunization15.

In vivo T cell proliferation assay.  Cells were harvested from the spleen and lymph nodes of donor CD45.1 
x OT-I F1 mice, red blood cells lysed. The remaining cells were labeled with 0.625 μ​M CFSE (Sigma, MA, USA) 
in PBS for 8 min at 37 °C, then washed and resuspended in PBS. CFSE-labeled cells (4 ×​ 106) were adoptively 
transferred intravenously (i.v.) into the tail vain of each recipient mouse seven days following lentiviral vec-
tor injection. Five days later, cervical lymph nodes were harvested and single cell suspensions were prepared. 
The total lymphocyte number was determined using a Z2 Coulter Counter Cell and Particle Counter (Beckman 
Coulter, CA, USA). Cells were washed, incubated with allophycocyanin (APC)-conjugated anti-CD8a mAb (BD 
Pharmingen, San Jose, CA, USA) and PerCP-conjugated anti-CD45.1 antibody, washed again and resuspended 
in 0.5 ml FACS buffer (1% BSA and 0.1% sodium azide in PBS). Propidium iodide (PI; 1 μ​g/ml) was added to 
samples prior to analysis by flow cytometry.

Processing of skin tissue for flow cytometry.  Epidermal sheets were transferred into a 50 ml tube con-
taining 20 ml cDMEM and incubated in 37 °C with agitation for 30 min. Cells that were released from the tissue 
were filtered through a 70 μ​m cell strainer, centrifuged at 450 ×​ g for 5 min at 4 °C, washed and resuspended 
at 1 ×​ 106 cells/ml in FACS buffer. The cells were incubated with anti-Fc (clone 2.4G2, BD Biosciences) then 
with APC/Cy7-conjugated anti-CD40 (Biolegend, San Diego, CA, USA), Pacific Blue-conjugated anti-CD80 

http://rsbweb.nih.gov/ij
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(Biolegend) and APC-conjugated anti-CD83 antibodies (Biolegend). The cells were fixed and permeabilized using 
a Fix & Perm kit (Invitrogen, MD, USA), according to manufacturer’s instructions, and incubated with 0.5 μ​g/ml 
of PE-conjugated anti-CD207 antibody (Dendritics, Lyon, France). Cells were washed twice and resuspended in 
FACS buffer prior to flow cytometric analysis.

Flow cytometric analysis.  The cells were analyzed on FACScalibur or FACSfortessa flow cytometers 
(Becton Dickinson, CA, USA). Lymphocytes were gated on forward scatter (FSC) and side scatter (SSC), and PI 
positive (dead) cells were excluded from analysis. Unlabelled cells, PI-treated unlabelled cells and single-labelled 
cells for each fluorescence channel were used to adjust the channel voltages and compensate for the spectral over-
lap between the fluorochromes. FlowJo version 9.5 (Treestar Inc, CA, USA) was for data analysis.

Statistical analysis.  Comparisons between experimental groups were carried out using a Mann-Whitney U 
(M-W U) test (Prism 5.0; GraphPad Software, CA, USA). P <​ 0.05 was considered statistically significant.
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