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lncScore: alignment-free 
identification of long noncoding 
RNA from assembled novel 
transcripts
Jian Zhao1,2, Xiaofeng Song1 & Kai Wang2,3,4,5

RNA-Seq based transcriptome assembly has been widely used to identify novel lncRNAs. However, 
the best-performing transcript reconstruction methods merely identified 21% of full-length protein-
coding transcripts from H. sapiens. Those partial-length protein-coding transcripts are more likely to 
be classified as lncRNAs due to their incomplete CDS, leading to higher false positive rate for lncRNA 
identification. Furthermore, potential sequencing or assembly error that gain or abolish stop codons 
also complicates ORF-based prediction of lncRNAs. Therefore, it remains a challenge to identify 
lncRNAs from the assembled transcripts, particularly the partial-length ones. Here, we present a 
novel alignment-free tool, lncScore, which uses a logistic regression model with 11 carefully selected 
features. Compared to other state-of-the-art alignment-free tools (e.g. CPAT, CNCI, and PLEK), lncScore 
outperforms them on accurately distinguishing lncRNAs from mRNAs, especially partial-length mRNAs 
in the human and mouse datasets. In addition, lncScore also performed well on transcripts from five 
other species (Zebrafish, Fly, C. elegans, Rat, and Sheep). To speed up the prediction, multithreading 
is implemented within lncScore, and it only took 2 minute to classify 64,756 transcripts and 54 seconds 
to train a new model with 21,000 transcripts with 12 threads, which is much faster than other tools. 
lncScore is available at https://github.com/WGLab/lncScore.

Over the past decades, a large number of studies have revealed that non-coding RNAs are pervasively expressed in 
eukaryotic genome, and that they are not junk RNAs but functional RNA molecules1–7. Beyond the short ncRNAs 
(e.g. miRNA, siRNA, and piRNA), there are growing interests to study the poorly understood, yet the most com-
mon long noncoding RNA (lncRNA) species with a length larger than 200 nt8,9. Although only a small fraction 
of them have been functionally validated, lncRNAs seem to play important roles in various critical biological 
process, such as chromatin remodeling, genomic splicing, transcription, translation, epigenetic regulation, cell 
proliferation and differentiation10–14.

With the development and application of next-generation sequencing techniques, particularly RNA sequenc-
ing (RNA-Seq), an increasing number of lncRNAs have been discovered in eukaryotic organisms ranging from 
nematodes to humans, but there are still a large number of lncRNAs waiting to be found8,15–18. For example, in the 
current GENCODE database, the ratio between the number of protein-coding transcripts and long noncoding 
transcripts is nearly 3:1 for human genome and about 4:1 for mouse genome19. In addition, the scarcity of lncR-
NAs is quite obvious for plant species, most of which have no lncRNA information as shown in PNRD, the latest 
plant non-coding RNA database20. RNA-Seq has now become a very popular means to detect novel transcripts 
with the transcriptome assembly software like StringTie21, and thousands of novel lncRNAs have been identified 
from RNA-seq data22–26. To detect lncRNAs from novel transcripts, the ability for distinguishing coding and long 
non-coding transcripts becomes very important.
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Generally, a simple and rough way to define a candidate transcript to be a lncRNA or not is to check if it 
contains a long open reading frame (ORF), and if not, then it is most likely a lncRNA. NCBI ORF Finder, ORF 
Predictor, ESTScan, and framefinder have been used commonly to identify the ORF27–30. The candidates can also 
be determined as coding or non-coding based on the similarity to known proteins or protein domains (e.g. CPC 
and PORTRAIT methods31,32), since ORF-dependent approach usually has a lower accuracy on the prediction of 
lncRNAs. In terms of sequence conservation across diverse species, lncRNAs exhibit poor conservation compared 
to mRNAs, which could be applied to identifying lncRNA33. PhyloCSF was developed for assessing the coding 
potential of candidates based on this conservation across the species34, whereas iSeeRNA used conservation, 
ORF and nucleotide sequences-based features with SVM to identify long intergenic non-coding RNA35. Besides 
sequence conservation, mRNAs also tend to show better conservation against characterized proteins, therefore 
lncRNA-ID calculates the coding potential using a random forest model based on conservation against character-
ized protein families, ORF and translation scores based on ribosomal coverage36. However, the above approaches 
are based on sequence alignment, either pairwise homology search for similar proteins or multiple alignments 
to calculate the conservation score, which are extremely time-consuming when processing massive-scale RNA 
sequencing data. They are also highly dependent on the species that can be compared and the evolutionary his-
tory, which may be lineage specific37,38. Finally, alignment-based methods do not apply to those lncRNAs overlap-
ping with either the sense or antisense strand of coding genes, which cannot be correctly classified by homology 
searching.

Considering drawbacks of alignment-based methods, some alignment-free methods have been proposed in 
recent years (Supplementary Table S1). CPAT determined the coding probability of candidates using a logistic 
regression model built with ORF size, ORF coverage, Fickett TESTCODE statistic, and hexamer usage bias39. 
CNCI extracted five features (i.e. the length and S-score of MLCDS, length-percentage, score-distance and 
codon-bias) by profiling adjoining nucleotide triplets and also used SVM to distinguish coding and noncoding 
RNAs40. PLEK distinguished lncRNAs from mRNAs through a computational pipeline based on an improved 
k-mer scheme and SVM algorithm41. LncRNA-MFDL identified lncRNAs by fusing multiple features (i.e. open 
reading frame, k-mer, the secondary structure and the most-like coding domain sequence) and using deep 
learning classification algorithms42. These tools were all tested on full-length testing datasets and proved to 
have a good classification performance. However, it should be noted that transcripts assembled from RNA-seq 
data are not all full-length, because it remains a challenge to reconstruct the full-length transcripts from the 
short reads.

In the previous study about the assessment of transcript reconstruction methods for RNA-seq, it was found 
that the best-performing methods identified merely 21% of full-length protein-coding transcripts from H. sapiens 
and the detection rate was even lower for noncoding RNAs43. It was further found that missing exons severely 
compromised transcript identification, and greater than 60% transcripts in H. sapiens were not identified all of 
their exons. And even for those transcripts of which all exons had been identified, less than 40% of them were 
correctly assembled to a full-length annotated splice variant. So those novel transcripts assembled from RNA-seq 
data are mostly not full-length. Therefore when detecting novel lncRNAs from them, those partial-length 
protein-coding transcripts, in which start or stop codon was not found (or both of them were not found), are 
usually misclassified as lncRNAs due to its incomplete CDS, which would decrease the prediction precision of 
lncRNAs.

In this study, we developed a new powerful alignment-free tool named lncScore using a logistic regres-
sion model. To more effectively distinguish long noncoding transcripts from protein-coding transcripts, espe-
cially partial-length ones, several new features related to exon and the maximum coding subsequence (MCSS) 
were used together with ORF-related features in this tool (totally 11 features). Compared with the existing 
alignment-free tools, lncScore not only performed much better on the human and mouse partial-length data-
sets, but also had a better performance on the full-length datasets. In addition, lncScore also outperformed 
them on data from five other species, using the human or mouse classification model. For speeding up data 
processing, a more efficient multithreading technique was applied in lncScore, resulting in much improved 
performance over CNCI and PLEK. Thus, lncScore is a fast, accurate, stable and robust tool for detecting long 
noncoding RNA.

Materials and Methods
Data description.  High-confidence protein-coding and long noncoding transcripts with the length of  
>​200 nt were downloaded from the human (v.23) and mouse (M6) GENCODE database to build our 
gold-standard datasets. According to the integrity level of coding sequence (CDS), all of the protein-coding 
transcripts are classified into two categories: full-length and partial-length protein-coding transcripts. The 
former are transcripts containing the complete CDS, i.e. initiation codon to termination codon, while ‘par-
tial-length’ is referred to transcripts whose start or stop codon has not been found (or both of them have not 
been found).

In GENCODE, all the transcripts are classified into three levels according to their annotation types, which 
also can be regard as three different confidence levels. Transcripts that were manually annotated and verified 
experimentally by RT-PCR-seq44 are highlighted with level 1. Level 2 indicates manually annotated transcripts. As 
shown in Supplementary Fig. S1, for human datasets, transcripts of level 1 and level 2 were selected respectively to 
build a training dataset and a full-length testing dataset without partial-length protein-coding transcripts, which 
were later used to build a partial-length testing dataset with long noncoding transcripts of level 2. For mouse 
datasets, all of the transcripts of level 1 and part of transcripts of level 2 were used to build the training dataset 
while remaining transcripts of level 2 were used to build the full-length testing dataset (Supplementary Fig. S2). 
The partial-length protein-coding transcripts were also removed from the training and full-length testing datasets 
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and then used to build a partial-length testing dataset. To further evaluate prediction performance on other spe-
cies, transcripts of several other species (Zebrafish, Fruitfly, C. elegans, Rat, and Sheep) were gathered from the 
Ensembl database (release 82), as shown in Supplementary Table S245. All the transcripts used were longer than 
200 nt.

Logistic Regression.  Logistic regression is a supervised learning method and commonly used to model the 
log odds of dichotomous outcome variables as a linear combination of the predictor variables. Particularly, the 
predicted values of this model are probabilities and restricted to (0, 1) through the logistic function. Here, the 
LogisticRegressionCV class from a Python module ‘scikit-learn’ was selected to implements logistic regression as it 
can automatically find out the optimal C in the L2 penalization with built-in cross-validation, and default values 
were used for all the parameters46.

Sequence features.  As an alignment-free method, only those features that can be directly calculated 
from transcript sequences can be selected. In order to more accurately distinguish lncRNAs from partial-length 
protein-coding transcripts without prejudice to the classification between lncRNAs and the full-length 
protein-coding transcripts, totally 11 powerful features were selected in lncScore (Table 1), and they are derived 
from 3 different groups (e.g. exon, maximum coding subsequences, and ORF).

Exon features.  Features used in previous alignment-free methods are all derived from the whole tran-
script sequences, so they would be easily influenced by the incompleteness of transcripts, particularly 
the partial-length protein-coding transcripts. And, in previous study, it was found that the full-length 
protein-coding transcripts merely accounts for 21% of all the assembled protein-coding transcripts. Thus, 
we introduced exon features to the identification of lncRNAs, and only the largest one in each transcript 
was selected as the representative exon feature. Exon features, as a kind of transcript local features, were less 
affected by the missing of start or stop codon (or both). In addition, it was found that most of the transcript 
assembly methods are able to identify more than 70% of coding exons43. Therefore, we introduced exon fea-
tures to the identification of lncRNAs, and only the largest one in each transcript was selected as the represent-
ative exon feature.

The location information of exons in each transcript was extracted from the GTF/GFF format files down-
loaded from GENCODE and ENSEMBL database. GC-content is the proportion of G and C in all bases of a 
sequence. It has been shown that gene coding regions have a higher GC-content than noncoding sequences47. The 
GC-content was calculated for all the exons in the same transcript, and the maximum one was defined as the exon 
GC-content. In-frame hexamer frequencies was firstly used to locate coding regions by Claverie et al. in 199748, 
and it was proved to be a powerful feature to discriminating coding transcripts from noncoding transcripts due to 
the dependence between adjacent amino acids in the proteins39. Here, besides the hexamer score, we also defined 
a hexamer score distance as an extend feature to further distinguish coding regions from noncoding regions. 
Hexamer score distance was defined as follows:

= ∑
−=Hexamer score distance

S S( )
2 (1)

i m i1
3

where Si is the hexamer score of the ith reading frame, and Sm is the maximum one of them. A nucleotide sequence 
was scanned three times to generate three forward reading frames, thus the range of i is from 1 to 3. Hexamer 
score and distance were calculated for each exon in a transcript, and then the maximum hexamer score and dis-
tance were defined as the exon hexamer score and distance, respectively.

Maximum Coding Subsequence.  For partial-length protein-coding transcripts, the missing of start or stop 
codon would directly influence the CDS prediction based on ORF, because ORF is defined as the longest open 
reading frame and highly related to the start and stop codons. Therefore, the incomplete CDS should be predicted 
by a method independent of the tart/stop codon. Here, we defined the maximum coding subsequence (MCSS) 
for partial-length protein-coding transcripts. The MCSS is identified for each transcript sequences by three steps: 
(1) scanning each transcript to generate three reading frames by beginning with different nucleotides in the first 
triplet; (2) predicting of the MCSS in each of the three reading frames by applying a modified method based on 
Kadane’s Algorithm49; (3) comparing the coding score of each candidate MCSS from the three reading frames, 
and defining the maximum one as the best MCSS of the transcript. The procedure of the modified method in step 
2 is shown as follows:

Feature Group

Exon MCSS ORF

Features (Acronym)

Hexamer Score (HS) Length (L) Length (L) & Coverage (C)

Hexamer Score Distance (HSD)
Coding Score (CS) Fickett Score (FS)

Coding Score Percentage(CSP)
Hexamer Score (HS)

GC-content (GC-c) Hexamer Score Distance (HSD)

Table 1.   Features used in lncScore. MCSS is the abbreviation of maximum coding subsequence.
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where hi is the ith hexamer in the reading frame, and F(hi) and F’(hi) is the frequency of hi in CDS and noncoding 
sequences, respectively. For those hexamers not included in any CDS regions, their F(h) are zeros and they are 
commonly beginning with a stop codon (e.g. TAG, TAA, TGA), whereas all kinds of hexamers can be found in 
noncoding sequences, so their F’(h) are all greater than zero.

Besides the coding score, the length and the coding score percentage were also calculated for the best MCSS of 
the candidate transcript. The coding score percentage was defined as follows:

=
∑ =

coding score percentage S
S (3)

m
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where Si is the coding score of the MCSS from the ith reading frame, and Sm is the maximum one of them.

ORF.  Although the accuracy of the ORF prediction for the partial-length protein-coding transcripts is much 
lower than that for the full-length ones, several ORF features were also selected to ensure a good performance of 
lncScore on the classification between lncRNAs and full-length protein-coding transcripts. Here, we extracted 
six ORF-related features: ORF length, ORF coverage, ORF fickett score, ORF hexamer score and distance. For 
each transcript, the putative ORF is defined as the longest one of all possible open reading frame in its three 
forward frames. ORF length is the length of the putative ORF and has been widely used as a fundamental feature 
to distinguish lncRNA from mRNA. ORF coverage is defined as the ratio of ORF length to transcript length 
and is commonly used as a complementary feature to the ORF length. Fickett score was at first used to identify 
protein-coding regions50, and then was proved to have a good performance for the classification of protein-coding 
and noncoding transcripts39. ORF hexamer score and distance is similar to exon hexamer score and distance.

Performance Assessment.  Overall accuracy (ACC), sensitivity (Sn), specificity (Sp), positive predictive 
value (PPV), negative predictive value (NPV) and Matthew’s correlation coefficient (MCC) were used to measure 
the performance of the lncScore51,52. Receiver operating characteristic (ROC) curve was used to visualize the 
performance of the binary classifier, and area under the curve (AUC) is used to summarize its performance as a 
single number. All the performance values were calculated using R with the ROCR package53.

CPAT, CNCI and PLEK setting.  lncScore was benchmarked against three other classification programs: 
CPAT (version 1.2.2), CNCI (version 2) and PLEK (version 1.2), which were installed locally and executed with 
default parameters. It is worth noting that the ORF coverage is replaced by the transcript length in the CPAT ver-
sion 1.2.2. In addition, the coding score provided by CNCI is not the probability obtained from the classification 
model, but a value derived from the S-score of the best MLCDS. Hence, the AUC is not calculated for the CNCI 
method.

Results
Performance on the partial-length testing datasets.  The features used in lncScore can be classified 
into three groups: exon, ORF, and MCSS (maximum coding subsequence). To evaluate the discriminative power 
of each feature group, different classification models were created using a single group or multiple groups of 
features respectively with human and mouse training dataset. The classification performance of each model was 
then evaluated using ROC curve for the partial-length testing dataset of human and mouse. Figure 1A,B show 
the performance of lncScore using three groups of features independently or in combination. Each single group 
of features is able to make a distinction between lncRNAs and partial-length mRNAs. Exon and ORF feature 
groups are the most distinguishing feature group for human and mouse partial-length testing datasets, respec-
tively. Compared with their performance on the full-length testing datasets, there is a notable decrease of the 
AUC for the ORF and MCSS feature groups.

The performance of features in each group was evaluated separately using AUC on the partial-length testing 
dataset and was shown in the Table 2, in which a significant decline can be observed for the performance of 
lncScore with most features when compared with its performance on the full-length testing dataset. For example, 
the AUC of ORF length, the best distinguishing feature for the full-length testing dataset, dropped from 97.06%, 
97.51% to 83.41%, 83.70% for human and mouse partial-length testing datasets, respectively. In particular, ORF 
coverage shows a stronger classification ability for partial-length testing datasets than full-length testing datasets, 
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which may be due to the missing of 3′​ or/and 5′​ UTRs in the partial-length protein-coding transcripts. The exon 
hexamer score shows a better performance than ORF length and MCSS coding score on the partial-length testing 
datasets, whereas the latter two features outperform the exon hexamer score and are the best two distinguishing 
features on the full-length testing datasets. Among all the features, ORF coverage has the highest performance on 
the mouse partial-length testing dataset, while exon hexamer score performs best on the human partial-length 
testing dataset, which is consistent with the previous results on the performances of feature groups.

As shown in Fig. 1A,B, combined feature groups shows a better performance than any single feature group 
within it, and the combination of all the three groups of features leads to the best performance. To further con-
firm the above results, 10 cross-validations were performed on the training dataset with a single or combined 
feature group and then the ROC curve was used to measure its classification ability. The result shown in the 
Supplementary Fig. S3 is similar to that in the Fig. 1. Thus, all the features in the three groups are selected to train 
the logistic regression models for lncScore. During the training, lncScore presented a 10 cross-validation accuracy 
of 93.92% and 95.84% on training datasets of human and mouse, respectively. When evaluating the trained model 
with the human partial-length testing datasets, lncScore correctly predicted 94.67% lncRNAs and 84.15% mRNAs 
with the default cutoff score 0.5654. Similarly, lncScore showed an accuracy of 94.08% on lncRNAs and 88.39% on 
mRNAs for the mouse partial-length testing dataset with the default cutoff score 0.4567.

Figure 1.  ROC curves of different feature groups on the full- and partial-length testing datasets. 

Exon MCSS ORF

HS HSD GC-c CS L CSP L C FS HS HSD

HP 90.19 87.44 73.91 88.61 87.30 89.22 83.41 88.59 79.67 87.16 80.85

HF 90.92 87.59 81.67 96.45 96.19 95.16 97.06 85.44 81.87 90.48 84.84

MP 91.13 89.15 75.67 89.63 89.00 91.73 83.70 92.67 79.23 89.08 80.79

MF 92.47 89.85 83.50 96.94 97.06 96.51 97.51 89.66 81.40 92.99 85.13

Table 2.  The area under ROC curve (%) of each single feature. The performance of each single feature from 
three different feature groups (e.g. ORF, exon, MCSS) was evaluated using AUC on the Partial Testing Datasets 
(HP & MP) and the Full Testing Datasets (HF & MF) of human and mouse species. The full name of the 
abbreviation of each feature was shown in the Table 1.
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Performance on the full-length testing datasets.  Next, we evaluated the classification performance of 
lncScore on the full-length testing datasets. Figure 1C,D show the ROC curve of the models trained with one or 
multiple groups of features for the human and mouse full-length testing datasets. Each one of the three feature 
groups is capable of distinguishing lncRNAs from full-length mRNAs, and the ORF feature group has the best 
discriminative power both for human and mouse full-length testing datasets. According to the Table 2, the length 
in the ORF feature group has the strongest distinguishing ability for the full-length testing datasets, and the next 
best distinguishing feature is the coding score of MCSS, whose AUC is very close to that of ORF length and their 
difference is only about 0.005.

Combination of any two groups of features results in better performance than using a single feature group, 
and combination of the three feature groups can leads to the best performance, which is similar to the results on 
the partial-length testing datasets and further supports our rationale to use all 11 features. When evaluating the 
trained models with testing datasets, lncScore correctly predicted 94.67% lncRNAs and 95.56% mRNAs for the 
human full-length testing dataset with the default cutoff score 0.5654. Similarly, lncScore showed an accuracy of 
94.08% on lncRNAs and 97.35% on mRNAs for the mouse full-length testing dataset with the default cutoff score 
0.4567.

Performance comparison on the partial-length testing datasets.  We compared lncScore with other 
tools on the human and mouse partial-length testing datasets, and ROC curves of them are shown in Fig. 2A,B. 
lncScore has the best AUC, which is much higher than that of the other tools for both human and mouse data-
sets. The plateau observed for the PLEK (Fig. 2A,C) is mainly due to the overlapping lncRNAs between the 
PLEK training dataset and the human (full- and partial-length) testing datasets, which accounts for 73.69% of 
lncRNAs in the human testing datasets. Compared with their ROC curves on the full-length testing datasets 
(Fig. 2C,D), there is obvious performance degradation on the partial-length testing datasets for all the tools, espe-
cially the PLEK. The AUC of CPAT, PLEK and lncScore for the partial-length testing datasets of human (mouse) is 
7.63% (6.34%), 14.20% (21.78%) and 3.13% (2.42%) lower than that for the full-length testing datasets of human 
(mouse). The performance degradation is mainly due to the CDS incompleteness of partial-length protein coding 
transcripts, as the two kind of testing datasets share the same lncRNAs.

Table 3 shows the four assessment indexes (e.g. accuracy, sensitivity, specificity and MCC) of each tested tools 
on the partial-length testing datasets. It is similar to the results on the full-length testing datasets that lncScore 
has the best accuracy, sensitivity, NPV and MCC, while PLEK and CNCI has the best specificity respectively for 
the human and mouse datasets, as shown in Table 3. The specificity of each tools for the partial-length testing 

Figure 2.  ROC curves of different tools on the full- and partial-length testing datasets. 
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dataset is same to that for the full-length testing datasets, because these two testing datasets share the same long 
noncoding transcripts for human and mouse. However, except the specificity, the other three indexes for the 
partial-length testing dataset are all lower than those for the full-length testing dataset, which was mainly due to 
that the incompleteness of partial-length coding transcripts make them more difficult to identify. For the human 
partial-length testing dataset, the accuracy of lncScore (89.12%) is 5.09%, 8.61% and 25.98% higher than that 
of CPAT, CNCI and PELK, respectively. For the mouse partial-length testing dataset, the accuracy of lncScore 
(89.92%) is 10.88%, 13.45% and 39.85% higher than that of CPAT, CNCI and PELK, respectively. These results 
suggest that lncScore is a reasonably efficient tool for the classification of partial-length coding transcripts and 
long noncoding transcripts.

Performance comparison on the full-length testing datasets.  Further, we compared lncScore with 
other three tools (e.g. CPAT, CNCI and PLEK) on the human and mouse full-length testing datasets. As shown 
in Table 3, lncScore had the best accuracy, sensitivity, NPV and MCC for both human and mouse full-length 
testing datasets. PLEK had the best PPV and specificity on the human dataset, whereas its other four assessment 
indexes were lower than those of the other tools. Furthermore, indexes of PLEK were all lower than those of the 
other tools on the mouse datasets. Compared with CPAT and lncScore, although CNCI had a higher PPV and 
specificity, its other four indexes were lower. The results above showed the practical classification performance of 
each tools when using their default cutoffs. To evaluate performances at all cutoff points, AUC was then used to 
measure the overall performance of each tools.

Figure 2C,D shows the ROC curves of CPAT, PLEK and lncScore, in which lncScore also performs the 
best. PLEK presented a comparable AUC to CPAT for the human full-length testing dataset, whereas it per-
formed poorly on the mouse full-length testing dataset. Overall, lncScore also showed the best performance on 
the full-length testing datasets, besides the partial-length testing datasets. These results indicate that lncScore 
enhanced the ability to distinguish lncRNAs from partial-length protein-coding transcripts without sacrificing 
the classification performance on the full-length transcripts. Instead, lncScore is slightly more effective than other 
tools to classify lncRNAs and full-length protein-coding transcripts.

Performance in cross-species prediction.  To evaluate the cross-species predictive power of lncScore, we 
evaluated lncScore on five other species (e.g. Zebrafish, Fruitfly, C. elegans, Rat, and Sheep) datasets. These species 
were selected for testing, because their data sets contain well annotated lncRNAs in the Ensemble database. The 
lncScore models built by human and mouse training datasets were tested individually on these species, and then 
their performances were measured by comparing with that of three other alignment-free predictors (e.g. CPAT, 
CNCI, and PLEK). In particular, CPAT has four pre-trained models for human, mouse, fly, and zebrafish, respec-
tively, so we tried to use the specific model (if available) when testing on a specific species. In general, lncScore 
presents a better performance than other predictors in cross-species predictions (Table 4). More importantly, the 
mouse model of lncScore even performs better than the CPAT models trained for zebrafish and fly, when tested 
on zebrafish and fly.

To more objectively assess the performance of lncScore in cross-species prediction, we preformed 10-fold 
cross validation on datasets for each species with the same features and logistic regression model used in lncScore 
and then compared their performances with that of lncScore. As shown in Table 4, 10-fold cross validation pre-
sents the best classification performance on all the five species, and lncScore performs very closely to the 10-fold 
cross validation for most of the species, except for sheep, which is a much less well annotated species compared 
to other model organisms. However, when removing the ORF length from the feature group, new human models 
of lncScore shows an ACC of 92.19% and an AUC of 96.63% for sheep, while the mean ACC and AUC of 10-fold 
cross validation on the sheep dataset are 92.71% and 96.96%, respectively. All of these results demonstrate that 
lncScore can be used to analyze the transcriptome data of other species, and the predictive performance is more 
influenced by features used in models rather than the training datasets themselves.

Partial-length testing dataset Full-length testing dataset

CPAT CNCI PLEK lncScore CPAT CNCI PLEK lncScore

Human

Accuracy 84.03 80.51 63.14 89.12 94.41 92.20 90.61 95.21

Sensitivity 76.19 65.40 31.76 84.15 94.97 89.00 85.96 95.56

PPV 92.12 96.46 94.83 94.61 95.46 98.16 98.62 96.64

Specificity 92.75 97.33 98.07 94.67 92.75 97.33 98.07 94.67

NPV 77.78 71.65 56.36 84.29 92.00 84.64 81.31 92.99

MCC 69.41 65.36 39.07 78.85 87.59 84.55 81.96 89.93

Mouse

Accuracy 79.04 76.47 50.07 89.92 94.65 92.83 83.67 96.46

Sensitivity 72.88 69.24 35.34 88.39 94.19 91.56 81.17 97.35

PPV 97.97 98.05 90.91 97.61 98.39 98.48 95.75 97.78

Specificity 95.88 96.23 90.35 94.08 95.88 96.23 90.35 94.08

NPV 56.40 63.37 33.82 74.78 86.05 80.98 64.18 92.99

MCC 61.15 58.02 25.21 77.27 84.21 83.52 65.47 91.10

Table 3.   Performance (%) comparison on the partial- and full-length testing dataset. The default cutoff of 
CPAT, PLEK, and lncScore is shown in Fig. 4, and the default cutoff of CNCI is 0.



www.nature.com/scientificreports/

8Scientific Reports | 6:34838 | DOI: 10.1038/srep34838

Computational speed.  The total computing time of CPAT, CNCI, PLEK and lncScore was measured on the 
human full-length testing dataset, containing 64,756 transcripts. All these tested tools were run on the same node 
with two 2.67 GHz Intel X5650 processors, 80 GB memory and Linux operating system. It took CPAT, CNCI, 
PLEK and lncScore 3.17 m, 2321.86 m, 148.12 m and 21.61 m to process the data with a single thread. However, 
CNCI, PLEK and lncScore can also be run in a multi-threading manner, and when using 12 threads, the data 
processing took them 334.54 m, 24.40 m and 2.01 m. These results show that even with 12 threads, CNCI and 
PLEK are still slower than CPAT and single-threaded lncScore. CPAT is nearly 7-fold faster than single-threaded 
lncScore, whereas 12-threaded lncScore is approximately 1.5-fold faster than CPAT. Thus, lncScore is especially 
suitable to process large data sets derived from RNA-Seq.

Discussion
The high-throughput RNA-Seq technology has been widely applied to identify novel lncRNAs. As shown in 
Fig. 3, the general workflow can be divided into three major steps – transcriptome assembly, known transcript 
exclusion, and lncRNA prediction. It should be noted that incomplete assembled protein-coding transcripts 
account for 80% or more of the protein-coding transcripts reconstructed by transcriptome assembly tools and the 
integrity extent of assembled noncoding transcripts is even worse, because it remains a challenge to reconstruct 
the full-length transcripts using RNA-seq reads43,54. In the incomplete assembled novel transcripts, incomplete 
protein-coding transcripts are more incorrectly sorted than incomplete noncoding transcripts. And in the incom-
plete protein-coding transcripts, the partial-length ones with a fragmentary CDS are more easily misclassified 
as noncoding transcripts than those containing a complete CDS, which is the key point to distinguish lncRNAs 
from mRNAs. However, most of the tools available to distinguish lncRNA and mRNA paid less attention to the 
incomplete transcripts, and only CNCI was tested on a simulated incomplete transcript data set. Protein-coding 
transcripts used in all of the tools, except for lncRNA-ID, were all selected from RefSeq55, which only contains 
full-length transcripts. Therefore, it is necessary to develop a tool that can efficiently distinguish long noncoding 
transcripts from the partial-length protein-coding transcripts, not just the full-length protein-coding transcripts.

To establish such a tool, long noncoding transcripts and partial-length protein-coding transcripts were 
selected from GENCODE, and full-length protein-coding transcripts were also selected. GENCODE is known to 
have the most complete human and mouse lncRNA annotation to date, and its set of full-length protein-coding 
transcripts is very similar to RefSeq. In order to distinguish lncRNAs from partial-length mRNAs, several new 
features were introduced to lncScore, and most of them are unrelated to ORF, such as exon and MCSS features. 
In all of the features, as shown in the Table 2, exon hexamer score distance shows the most stable performance 
and exon hexamer score next, whereas exon GC-content shows a significant change. This is largely due to that 
the hexamer score and distance varies little for exons contained in the CDS of protein-coding transcripts, while 

Zebrafish Fruitfly C. elegans Rat Sheep

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CPAT* 78.51 82.54 95.52 98.36 * * * * * *

CPATH 78.66 83.17 92.80 98.36 97.55 99.66 89.25 94.22 77.58 88.03

CPATM 78.29 82.54 94.44 98.37 96.53 99.69 89.72 94.23 79.99 87.70

CNCI 69.49 77.66 86.08 95.00 64.33 83.89 81.32 88.70 84.77 85.33

PLEK 62.32 70.46 82.19 89.90 75.98 95.27 83.23 89.80 66.55 69.90

lncScoreH 79.25 84.95 95.54 98.67 96.41 99.33 89.28 94.41 84.77 94.28

lncScoreM 79.84 85.43 96.44 98.88 97.28 99.35 89.27 94.54 82.20 93.73

10_CV 79.91 86.97 96.66 98.64 98.23 99.21 89.41 93.80 92.78 96.96

Table 4.  The overall ACC and AUC (%) of CPAT, CNCI, PLEK, lncScore, and 10-fold cross validation on 
5 other species datasets. CPAT* represents CPAT models for zebrafish and fly. CPATH and CPATM stand for 
CPAT models for human and mouse, respectively. lncScoreH and lncScoreM refer to the models of lncScore 
respectively for human and mouse. 10_CV is the abbreviation of 10-fold cross validation.

Figure 3.  Work flow for identification of novel lncRNAs using RNA-seq data. 
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GC-content varies more widely. MCSS coding score and its percent show a better performance than most of the 
other features on either the full-length or partial-length datasets, indicating their robust distinguishing ability. 
The missing of start/stop codons in the partial-length protein-coding transcript made it harder to accurately pre-
dict the ORF. For example, the prediction accuracy of ORF (28.36%) on the human partial-length protein-coding 
transcripts is much lower than that (94.64%) on full-length ones. So it was supposed that the ORF-related features 
would have a worse performance than ORF-unrelated features on the partial-length datasets, however, in fact, 
the former yield a comparable performance with the latter, particularly the ORF coverage. Furthermore, the 
combination of ORF-related features show a better performance than other two ORF-unrelated feature groups 
(Fig. 1B). In addition, ORF-related features are known to have great classification performance for the full-length 
transcripts (Fig. 1C,D), thus four existing ORF features and a new one (hexamer score distance) were selected in 
lncScore.

Then, we ranked features in the order of importance to the classification performance of lncScore on each test-
ing datasets. The feature with the largest classification performance on each testing datasets was sorted at the first 
position, and then the feature with the biggest performance improvement (or the smallest performance decline) 
to the model with features sorted before it was ranked next. As shown in Supplementary Fig. S4, it is obvious 
that some features (e.g. ORF length, MCSS length, and MCSS coding score) significantly result in performance 
degradation on the partial-length testing datasets, while fewer features cause a slight performance decline on the 
full-length testing datasets. It can be seen that there is always an exon feature ranked in the first three features 
for each testing datasets. And for all the testing datasets, there are always two ORF features, one Exon feature, 
and one MCSS feature in the first four features, which proves that features derived from ORF, exon, and MCSS 
are complementary to each other. ORF length ranks first on the full-length testing datasets and ranks last on the 
partial-length testing datasets, which is due to the degradation of the ORF prediction accuracy for partial-length 
protein-coding transcripts. All of the exon features improved the performance on the mouse testing datasets, 
while exon GC-content improved the performance and the remaining two exon features degraded the perfor-
mance on the human full-length testing datasets, which is contrary to that on the human partial-length testing 
dataset. All of these results suggest that exon features is a very useful feature for the identification of lncRNAs 
and is commentary to ORF-related features. Through sorting features, it can be seen that features make different 
contributions to lncScore on different kinds (partial- or full-length) of testing datasets. By using all of the features, 
lncScore shows a good performance on both the partial- and full-length testing datasets.

With the increasing number of annotated lncRNAs in GENCODE, the classifier would need to be updated, so 
the performance of building a new model is critical. Furthermore, with more and more novel lncRNAs discov-
ered, new classifiers may need to be built for other species. In previous tools (e.g. CONC, CPC, CNCI, PLEK), 
support vector machine with a radial basis functional kernel (SVM-RBF) was widely used to build classifiers; 
however, using grid search to find the best parameter c and g for an optimal SVM-RBF model is very time con-
suming, particularly with a larger training dataset. In contrast, logistic regression (LR) model used is easier and 
faster to update and build, as shown in Supplementary Table S3, and it is generally more interpretable than SVM. 
We compared the modeling time for a LR model with that for a SVM-RBF model on the training datasets of 
human and mouse, and the result shows that the LR model cost less time than the SVM-RBF model. In addition, 
we also compared the classification performance (AUC) of logistic regression models and SVM-RBF models on 
the testing datasets, and the results showed that the AUC of logistic regression models are all larger than that 
of SVM-RBF models (Supplementary Table S4)56. Besides SVM-RBF, we also compared LR with an ensemble 
classifier – libD3C57. As shown in Supplementary Table S5, LR is slightly better than libD3C on the classification 
performance, but it is much faster than libD3C to build and test model. Therefore, logistic regression was selected 
to build lncScore model.

To optimize the execution performance for large-scale transcriptome data from RNA-seq, the multiprocess-
ing module in Python’s standard library was used in lncScore to implement multithreading. CNCI and PLEK 
can also run in multi-threading manner, and in their programs, the same number of transcripts was assigned to 
each thread. However, CNCI and PLEK with 12 threads were only about 7 and 6 times (not 12 times) faster than 
with a single thread for the human full-length testing dataset, respectively, because tasks in each thread cannot 
be accomplished simultaneously and the total computing time depends on the finally completed thread. It was 
found that the running time of each thread mainly depends on the total length of the assigned transcripts. Thus, 
in our program, transcripts that were assigned to each thread have the same total transcripts length. Then, for the 
same datasets mentioned above, 12-threaded lncScore is nearly 11 times faster than single-threaded one and the 
running time decreases exponentially with the number of threads normally (Supplementary Fig. S5).

To have a better trade-off between sensitivity and specificity, the cutoff score with the best accuracy against 
the full-length testing datasets was selected as the optimal one, with which lncScore outperformed other tools on 
all of the testing datasets. Moreover, when using the cutoff score with the best accuracy against the partial-length 
testing datasets, lncScore also showed a better performance than other tools (Supplementary Table S6). Compared 
with the default cutoff score, the new one derived from partial-length testing datasets leads to a higher sensi-
tivity and NPV on all of the testing datasets, which means that lncScore can predict lncRNAs more precisely. 
Furthermore, we analyzed the cutoff score’s effect trend and extent to the overall accuracy of lncScore, and the 
same thing was also done for CPAT and PLEK. As shown in Fig. 4, the accuracy of lncScore changes slightly over 
a considerable range of cutoff score on all of the testing datasets, except for the mouse partial-length one, however, 
on which lncScore still performed better than other tools. CPAT presents a similar performance with lncScore on 
the human testing datasets, whereas it performs worse on mouse testing datasets. For PLEK, its accuracy changes 
dramatically with the cutoff score. These results suggested that lncScore is a stable and robust classifier, whose 
performance is relatively less affected by the cutoff score.
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Conclusion
In conclusion, with 11 exon-, MCSS-, and ORF-related features, we developed a novel alignment-free tool – 
lncScore – using a logistic regression model. Compared with existing alignment-free tools (e.g. CPAT, CNCI, 
and PLEK), lncScore showed much better performance on the human and mouse partial-length testing datasets. 
In addition, it also showed improved performance on the full-length testing datasets of human, mouse and five 
other species. lncScore can be run in a multithreaded manner, with much faster than competing approaches. 
Thus, lncScore is a fast, accurate, stable and robust tool for distinguishing protein-coding and long noncoding 
transcripts from RNA-seq data for many species.
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