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Platelet clearance via shear-induced unfolding
of a membrane mechanoreceptor
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Mechanisms by which blood cells sense shear stress are poorly characterized. In platelets,

glycoprotein (GP)Ib–IX receptor complex has been long suggested to be a shear sensor and

receptor. Recently, a relatively unstable and mechanosensitive domain in the GPIba subunit of

GPIb–IX was identified. Here we show that binding of its ligand, von Willebrand factor, under

physiological shear stress induces unfolding of this mechanosensory domain (MSD) on the

platelet surface. The unfolded MSD, particularly the juxtamembrane ‘Trigger’ sequence

therein, leads to intracellular signalling and rapid platelet clearance. These results illustrate

the initial molecular event underlying platelet shear sensing and provide a mechanism linking

GPIb–IX to platelet clearance. Our results have implications on the mechanism of platelet

activation, and on the pathophysiology of von Willebrand disease and related thrombocy-

topenic disorders. The mechanosensation via receptor unfolding may be applicable for many

other cell adhesion receptors.
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T
he platelet, the primary blood cell involved in haemostasis
and thrombosis, senses and responds to shear force
generated by blood flow. Particularly, von Willebrand

factor (VWF) in the plasma and glycoprotein (GP)Ib–IX–V
complex on the platelet surface have long been recognized as a
major ligand–receptor pair for shear sensing and reception1.
VWF is a multi-domain multimeric protein, containing in its A1
domain a binding site for the GPIba subunit of GPIb–IX–V2,3.
Under static or normal flow conditions, A1 is shielded in VWF
and prevented from binding to GPIba and the platelet. On
immobilization or under elevated shear stress, VWF undergoes a
multitude of morphological changes, thereby exposing A1 for
GPIba binding4,5. How VWF responds to elevated shear stress
has been under scrutiny6. However, the mechanism by which
platelets sense and react to flow shear through GPIb–IX–V,
particularly the initial shear-induced event that induces platelet
signalling, has remained elusive.

GPIb–IX–V is uniquely but abundantly expressed in platelets.
GPIba is covalently linked to GPIbb through disulfides, and
together they associate tightly with GPIX to form the GPIb–IX
complex7,8. Weakly associated with GPIb–IX, GPV is not
required for complex expression, VWF binding or signalling9,10.
GPIba contains an N-terminal ligand-binding domain (LBD) for
A1 of VWF3. GPIb–IX has been implicated in the genesis,
activation and clearance of platelets11–13. However, how this
complex mediates these many functions remains unclear, partly
due to the uncertainty about its mode of signalling. In GPIb–IX,
its LBD is separated from the rest of complex and the cell
membrane by a long and extended macroglycopeptide region
(Fig. 1a). It is not clear how ligand binding to the LBD transmits a
signal, through the macroglycopeptide region and other
membrane-proximal parts of GPIb–IX, into the platelet.
Recently, a relatively unstable and mechanosensory domain
(MSD) was identified between the macroglycopeptide region and
the transmembrane domain of GPIba (ref. 14). Optical tweezer-
controlled pulling of recombinant A1 on the engaged GPIb–IX
induced unfolding of the MSD, employing an unfolding force
B10–20 pN (ref. 14). This unfolding force is significantly lower
than the drag force exerted on a platelet under physiological shear
in the vasculature15.

Here we report that VWF engagement with GPIba under
physiological shear stress induces MSD unfolding on the platelet
and signalling into the platelet. The assessment of signalling, in
conjunction with earlier reports, suggests that it leads to platelet
clearance. Our findings have mechanistic implications on the
interplay between shear and platelets, as well as that between
platelet activation and clearance.

Results
Physiological shear and ligand binding induce GPIb signalling.
To test whether GPIb–IX can respond to physiological shear
stress and induce signalling in the platelet, we first sought to
establish in the lab an experimental system in which VWF
binding to GPIba and shear stress within the physiological range
(0–25 dyn cm� 2) could be achieved. Since many conditions
under which VWF is induced to bind GPIba are complicated and
may contain elements of shear beyond the physiological range,
botrocetin, a snake venom C-type lectin that induces binding of
plasma VWF to platelets in the absence of shear through its
simultaneous interactions with the A1 of VWF and the LBD of
GPIba16, was used in this study (Fig. 1a; Supplementary Fig. 1).
Citrated human platelet-rich plasma (PRP, B200 k platelets per
ml) was incubated with 1mg ml� 1 botrocetin, and treated with a
variable but uniform shear stress in a cone-plate viscometer for
1–5 min (Supplementary Fig. 1). Platelets were then collected and

analysed by flow cytometry. Since large-scale platelet aggregates
would hamper flow analysis, calcium was not added to
citrated PRP to minimize platelet aggregation, although
VWF-agglutinated platelets were detectable (Supplementary
Fig. 1d,e)17. Diluting PRP to 20 k platelets per ml by normal
plasma (1:9, v/v) produced similar results (Fig. 1; Supplementary
Fig. 2). Consistent with earlier reports18,19, only the combined
treatment of botrocetin and shear stress (botrocetin/shear), but
not either alone, induced significant shear-dependent increases in
the intracellular calcium level and surface expression of P-selectin
(Fig. 1; Supplementary Fig. 2). Without extracellular calcium,
little activation of integrin aIIbb3 was observed as expected in
botrocetin/shear-treated platelets (Fig. 1)17,19–21. Importantly,
botrocetin/shear also induced significant exposure of b-galactose
as evidenced by increased Erythrina cristagalli lectin (ECL)
binding (Fig. 1). When PRP was pretreated with Arg-Gly-Asp-Ser
peptide and recalcified to 1 mM calcium, botrocetin/shear
treatment induced comparable levels of platelet signalling,
including increased ECL binding (Supplementary Fig. 3).

Spontaneous binding of VWF to GPIba also occurs in many
patients with type 2B von Willebrand disease (VWD)22. Plasma
from a type 2B VWD patient who carried a mutant VWF
(p.V1316M) gene was mixed 9:1 (v/v) with citrated PRP from
healthy donors to a platelet count of 20 kml� 1 before undergoing
uniform shear of 13 and 18 dyn cm� 2. Compared with those
without shear, VWF.V1316M-bound platelets that underwent the
uniform shear treatment displayed significant exposure of
b-galactose, increase in intracellular calcium and expression of
P-selectin, the extents of which were comparable to those
observed in botrocetin/shear-treated platelets (Fig. 1c;
Supplementary Fig. 4). These results suggest that the molecular
basis for the botrocetin/shear-induced effects in the platelet may
be the same as that for VWF.V1316M/shear-induced ones, and
thus pathologically relevant.

Botrocetin enhances force-induced unfolding of MSD. An
optical tweezer system was utilized to assess the effect of
botrocetin in modulating the force-induced unfolding of MSD in
full-length GPIb–IX. In this system14, recombinant human
GPIb–IX in which the GPIX cytoplasmic domain was
biotinylated was immobilized on a streptavidin bead held by a
fixed micropipette, and recombinant A1 (VWF residues
Asp1261–Pro1466) on another controlled by the optical laser
trap. Recombinant A1 could bind the LBD and platelets
spontaneously3,14. In each recorded contact-retraction cycle, the
trapped A1-coated bead was moved into contact with the GPIb–
IX-coated bead and then pulled away. On thousands of contact-
retraction cycles under various pulling conditions, the lifetimes
and unbinding forces of the A1/GPIb–IX bond were recorded
(Fig. 2a,b). The addition of 1mg ml� 1 botrocetin to the system
markedly increased both the bond lifetime and the unbinding
force, consistent with previous reports that botrocetin enhances
the association between A1 and LBD16,23. With an increased
unbinding force in the presence of botrocetin, an MSD-unfolding
event was observed in 68% of recorded force-extension pulling
curves, which was significantly 419% occurrence rate in the
absence of botrocetin (Fig. 2c). On the other hand, the MSD-
unfolding force and extension was not altered by botrocetin
(Fig. 2d). Overall, these results suggest that botrocetin-facilitated
pulling of VWF on GPIb–IX induced MSD unfolding much more
frequently, but to the same extent of unfolding.

Shear and ligand induce MSD unfolding on the platelet.
In addition to platelet signalling, botrocetin/shear induced a
shear-dependent decrease of GPIba expression on the platelet
surface (Fig. 3a,b). The addition of 5 mM EDTA or 10 mM
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GM6001, a broad-spectrum metalloprotease inhibitor, before
botrocetin/shear prevented the decrease, suggesting that such
decrease was due to metalloprotease-mediated shedding of GPIba
(ref. 24). GPIba is continuously shed in the platelet primarily by
ADAM17 and the shedding can be upregulated when the
metalloprotease becomes activated24,25. Botrocetin/shear did not
reduce the expression levels of other ADAM17 substrates on the
platelet, such as proTNF-a and GPV26,27 (Fig. 3c,d), suggesting
that botrocetin/shear induced GPIba shedding via a mechanism
that does not involve the activation of ADAM17 or other
metalloproteases.

To test whether botrocetin/shear increases accessibility of the
ADAM17 cleavage site in GPIba, which is located in the MSD
(Fig. 3e), fluorescein isothiocyanate (FITC)-conjugated mono-
clonal antibodies 5G6, WM23 and RAM.1 were mixed separately
with PRP before botrocetin/shear. Whereas 5G6 binds directly the
ADAM17 cleavage site (GPIba residues 461–470), WM23 binds
an epitope in the macroglycopeptide region distal to the
cleavage site28–30. RAM.1 binds the nearby GPIbb, which is not
sheddable31. To simplify data interpretation, EDTA was included
in the experiment to keep constant the GPIba expression on the
platelet. After botrocetin/shear, platelets were immediately fixed
and antibody association measured by flow cytometry.
Botrocetin/shear induced significantly more 5G6 binding to the

platelet, but little increase of WM23 or RAM.1 binding (Fig. 3f–i).
Since 5G6 exhibits similar binding affinities for the isolated
epitope peptide and the intact GPIb–IX30, the observed increase
in 5G6 binding reflects an increased exposure of the ADAM17
cleavage site, consistent with the unfolding of MSD under these
conditions.

Postulating that on unfolding of MSD its disposition in
GPIb–IX may be altered, we monitored the position of MSD
relative to nearby GPIbb on the platelet using fluorescein-
conjugated 5G6 (F-5G6), fluorescein-conjugated WM23
(F-WM23), and nonfluorescent quencher-conjugated RAM.1
(Q-RAM.1) in the botrocetin/shear study. Binding of RAM.1
does not interfere with that of 5G6 (Supplementary Fig. 5a). In
the absence of shear, fluorescence of the bound F-5G6, but not
that of the bound F-WM23, was quenched by the bound
Q-RAM.1, indicating the occurrence of specific fluorescence
quenching between F-5G6 and Q-RAM.1 (Fig. 3j; Supplementary
Fig. 5b). On botrocetin/shear treatment in EDTA, additional
quenching of F-5G6 fluorescence by Q-RAM.1 was observed
despite increased binding of F-5G6 to GPIb–IX in platelets
(Fig. 3k). These results indicate a spatial change between MSD
and juxtaposed GPIbb (Supplementary Fig. 5c), providing
additional evidence for botrocetin/shear-induced deformation of
MSD on the platelet.
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Figure 1 | Botrocetin and physiological shear induce GPIb–IX signalling in human platelets. (a) A cartoon of GPIb–IX complex illustrating botrocetin

(Bc)-facilitated interaction of A1 domain of VWF with the ligand-binding domain (LBD) in GPIba. The macroglycopeptide region (MR), the mechanosensory

domain (MSD) and transmembrane domain (TMD) in GPIba are also marked. (b) Representative flow histograms illustrating the effects of botrocetin

and/or 18 dyn cm� 2 shear on the exposure of b-galactose (measured by binding of FITC-labelled ECL), intracellular calcium level (monitored by Fura-2

fluorescence), expression of P-selectin (binding of anti-P-selectin antibody) and activation of integrin aIIbb3 (binding of PAC-1 antibody). Fresh human PRP

(20 k platelets per ml) was mixed with or without 1mg ml� 1 botrocetin and subjected to various uniform shear stresses. Platelets were then collected and

analysed by flow cytometry for noted indicators of platelet signalling. Top row: with 1 mg ml� 1 botrocetin (þBc); bottom row: without botrocetin (� Bc).

Blue histogram: under no shear; red: under 18 dyn cm� 2 shear; grey: negative control. (c) Quantificative plots of platelet signalling, as either percentage of

cells with noted positive signals in Supplementary Fig. 2b (top row) or median fluorescence intensity (MFI) of the entire cell population (bottom row),

versus shear stress in the presence (filled squares) and absence (open squares) of botrocetin. Data are plotted as mean±s.d. (n¼ 3). *Po0.05, **Po0.01,

***Po0.005. Plots also include data points that were obtained from mixing type 2B VWD patient plasma (pV1316M, red diamonds) or normal plasma

(green) with healthy donor platelets (1:9 v/v) under no or noted shear stress.
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GPIb–IX with unfolded MSD exhibits constitutive signalling.
We have previously identified a mutant GPIba, designated
GPIbaD, in which a significant portion of the MSD (residues
443–471) is removed, leaving the remaining MSD residues
unfolded14 (Fig. 4a,b). Nevertheless, GPIbaD assembly with
GPIbb and GPIX, and its interaction with A1 are wild type (WT)-
like14 (Supplementary Fig. 6). Here we tested whether GPIbaD,
mimicking unfolded MSD, affects GPIb–IX signalling using the
filopodia assay. In this assay, platelets or transfected cells
expressing GPIb–IX are placed onto a VWF-coated surface in
the presence of botrocetin and EDTA, the filopodia formation in
the attached cell depends on the VWF/GPIb–IX engagement
and is an effective indicator of GPIb–IX signalling32–34. Inducible
expression of WT GPIba and mutant GPIbaD, along with GPIbb
and GPIX, was engineered in transfected Chinese hamster ovary
(CHO) cells such that, on doxycycline induction, GPIba and
GPIbaD were expressed at comparable levels (Fig. 4c). Both cells
attached to the VWF surface in a botrocetin- and doxycycline-
dependent manner (Fig. 4d). Confocal microscopic analysis
of the attached cells revealed that, in accordance with earlier
reports32–34, filopodia in CHO cells expressing GPIba formed
mostly at the bottom in contact with VWF (Fig. 4e). In
comparison, filopodia in CHO cells expressing mutant GPIbaD
formed over the entire cell surface, including where there was no
VWF (Fig. 4e,f). Adding anti-Ibb monoclonal antibody RAM.1,
which inhibits the filopodia formation in platelets or cells
expressing WT GPIb–IX without affecting VWF binding
to GPIb–IX34,35, inhibited the filopodia formation in CHO cells
expressing GPIbaD (Fig. 4g,h, Supplementary Fig. 7). Overall,
these results suggest that GPIbaD could induce cellular signalling
independent of VWF binding and that the signalling propagates
through the nearby GPIbb subunit.

Shear and ligand induce clearance signals in mice. Botrocetin’s
facilitation of the VWF/GPIb–IX interaction is not species-
dependent16, making it possible to assess the function of
botrocetin-mediated GPIb–IX signalling in animals. Consistent
with earlier reports that infusion of botrocetin induces rapid
clearance of platelets and associated VWF in pigs, dogs and
rats36,37, intravenous injection of botrocetin (5 mg g� 1 of body
weight) into WT C57BL/6J mice induced within an hour a
precipitous 80% drop in platelet count, which gradually recovered
in 3 days (Fig. 5a,b). In a separate experiment, citrated murine
PRP obtained from C57BL/6J mice underwent the uniform shear
treatment in the absence and presence of 2 mg ml� 1 botrocetin.
Afterwards, the platelets were collected for either flow analysis as
described above or clearance study with intravenous infusion into
a recipient mouse (Fig. 5c). Botrocetin/shear, but not shear alone,
induced the same GPIb–IX-mediated signals in murine platelets
as those in human platelets (Fig. 5d; Supplementary Fig. 8).
Moreover, all botrocetin/shear-treated platelets were cleared in
mice within an hour of infusion (Fig. 5e). In contrast, shear-
treated platelets were cleared gradually as endogenous ones. It is
important to note that infusion of botrocetin itself into mice, at
the amount used in the in vitro shear treatment (B0.05 mg g� 1),
could not induce any significant clearance of platelets
(Supplementary Fig. 9). Overall, these results indicate that
botrocetin/shear-mediated GPIb–IX signalling causes platelet
clearance.

Exposed trigger sequence in GPIba induces platelet clearance.
When MSD becomes unfolded on shear-mediated mechanical
pulling, residues in the MSD are expected to adopt an extended
conformation, at B3–4 Å per residue14. According to a recent
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model of GPIb–IX8,38, the height of GPIbb/GPIX extracellular
domains is B30 Å. Thus, on unfolding MSD residues in direct
contact with GPIbb/GPIX are likely to be B10 residues
immediately preceding the transmembrane domain (that is,
residues 473–483, termed Trigger), which are retained in GPIbaD
(Fig. 4a). Since GPIbaD can induce signalling without ligand
binding and shear pulling, it is conceivable that the Trigger
sequence in an unfolded and extended conformation is sufficient
to trigger GPIb–IX signalling and platelet clearance. Consistently,
whereas most residues in the MSD are not conserved across
species, many residues in the Trigger sequence are (Fig. 4a).

In an earlier study, a chimeric protein called interleukin-4
receptor (IL4R)-Iba, in which the extracellular domain of human
GPIba (residues 1–472) was replaced with that of the a-subunit
of IL4R, was constructed39. IL4R-Iba, like GPIbaD, contains the
Trigger sequence but not the rest of MSD (Fig. 6a). In the absence
of folded MSD, the Trigger sequence should be unfolded on the
IL4R-Iba transgenic (IL4R-IbaTg) platelet. To ascertain whether
there is constitutive GPIb–IX signalling in IL4R-IbaTg platelets,
washed platelets were obtained from whole blood of WT C57BL/6J
and IL4R-IbaTg mice, and analysed without botrocetin/shear
treatment for aforementioned indicators of GPIb–IX signalling.
Microscopic images of these platelets revealed that B40% of
IL4R-IbaTg platelets exhibited filopodia in the absence of bound
GPIba ligand, markedly higher than o10% positive rate for WT
ones (Fig. 6b,c). Similarly, compared with WT, IL4R-IbaTg
platelets displayed significantly higher intracellular calcium
concentration, and small but reproducibly higher surface
P-selectin expression level (Fig. 6d; Supplementary Fig. 10a).
IL4R-IbaTg platelets exhibited similar ECL binding level to the
WT (Fig. 6d). Since the replacement of the heavily glycosylated
extracellular domain of GPIba with that of IL4R would likely
result in a reduction of the overall glycosylation level on the IL4R-
IbaTg platelet, it may be difficult to interpret the ECL binding

level and correlate it solely with the exposure of b-galactose.
Overall, because IL4R-Iba cannot bind VWF or other GPIba
ligands, these results support the presence of constitutive
GPIb–IX signalling in IL4R-IbaTg platelets. Finally, IL4R-IbaTg
mice have a significantly lower platelet count than WT
mice39 (Supplementary Fig. 10b). On infusion, a significant
portion of IL4R-IbaTg platelets (B40%), but not WT ones, were
cleared within an hour of infusion (Fig. 6e,f). IL4R-IbaTg
platelets were cleared at a faster rate than WT (Fig. 6g,h). Overall,
these results suggest that the unfolded Trigger sequence on the
surface of IL4R-IbaTg platelets induces ligand-free GPIb–IX
signalling and platelet clearance.

Discussion
It has been recognized for decades that shear flow or stirring is
required for initiating GPIb–IX-mediated signalling and activa-
tion in platelets, but the molecular mechanism underlying the
shear requirement has remained unclear1. In this study, we have
illustrated the initial molecular event platelets undertake in
response to shear stress, and provided the evidence
demonstrating the juxtamembrane domain in GPIba as a MSD.
Binding of VWF under physiological shear induced MSD-
unfolding and intracellular signalling events in the platelet. In
addition, mutations that unfolded the MSD, and the
juxtamembrane Trigger sequence therein, induced ligand-free
GPIb–IX signalling and platelet clearance. On the basis of these
results, we propose a ‘trigger’ model of GPIb–IX signalling
(Fig. 7) that can explain the shear requirement; in the resting
platelet, the MSD including the Trigger sequence is folded. Ligand
binding to the LBD under shear stress exerts a pulling force on
GPIb–IX and induces unfolding of MSD. Consequently, the
Trigger sequence becomes extended and presumably exposed
to nearby GPIbb and GPIX extracellular domains, setting off
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GPIb–IX signalling into the cell. Downstream signals include the
increase of intracellular calcium, increased surface expression of
P-selectin, filopodia formation and glycan changes.

Thrombocytopenia is a common symptom in type 2B VWD
patients22,40, which was recapitulated recently in a VWF
transgenic murine model41. In these type 2B VWD mice,
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macrophages are involved in clearing the VWF-bound platelets41.
Similarly, thrombocytopenia is quickly induced in animals
on injection of botrocetin36,37 (Fig. 5), but the underlying
molecular mechanism has remained unclear. In this study, we
show for the first time that botrocetin/VWF or type 2B VWF
under physiological shear can induce exposure of b-galactose on
the platelet (Fig. 1). The exposed b-galactose has been suggested
to mediate platelet clearance during sepsis or after cold
storage through its interaction with the Ashwell–Morell
receptor13,42. Relatedly, cold storage induces surface expression
of neuraminidases on the platelet surface43. It was reported
recently that many anti-LBD antibodies that cause
Fc-independent platelet clearance in mice induce surface

expression of neuraminidases and exposure of b-galactose44. In
a separate study of anti-LBD antibodies, the exposure of N-acetyl-
glucosamine was also implicated to mediate platelet clearance by
macrophages45. Since macrophages can uptake platelets
displaying altered glycans45,46, it is conceivable that MSD-
unfolding-induced alteration of platelet glycans may help to
mediate fast clearance of platelets in type 2B VWD patients. It is
not clear how GPIb–IX signalling leads to the exposure of
b-galactose or other glycan changes. One possibility is that
GPIb–IX signalling leads to granule release, through which
neuraminidases are translocated from the lysosome to the plasma
membrane. Consistently, more P-selectin was detected on the
platelet surface following botrocetin/VWF or type 2B VWF
treatment under shear (Figs 1 and 5). It is noteworthy that the
extent of P-selectin expression here was significantly smaller than
that induced by thrombin activation, suggesting that GPIb–IX-
induced granule release is of limited scale.

A critical feature of the ‘trigger’ model is that a pulling force,
rather than a conformational change in the LBD, is transmitted
through the long macroglycopeptide region (Fig. 7). Thus,
whether the bound ligand can sustain the pulling to efficiently
induce MSD unfolding (for example, unbinding force of the
LBD/ligand complex4unfolding force of MSD), instead of
inducing LBD to adopt a specific conformation47,48, may
determine the onset of GPIb–IX signalling. In this study, we
demonstrated in the optical tweezer experiment that botrocetin
increased the unbinding force between A1 and GPIb–IX (Fig. 2).
Consistently, it takes much longer time for a rolling platelet under
fluid shear to detach from immobilized A1 domain bearing the
V1316M mutation than from the WT A1 (ref. 49). On binding,
botrocetin/VWF and VWF.V1316M may induce different
conformations of LBD, both increased the unbinding force,
induced the same signals in platelets and induced platelet
clearance (Figs 1 and 5). Likewise, many monoclonal anti-LBD
antibodies do not share a common epitope and they probably do
not bind LBD as VWF does, they nonetheless are capable of
inducing GPIb–IX signalling and platelet clearance in an Fc-
independent manner12,44,45,50–52. Considering the very similar
effects induced by botrocetin/VWF and anti-LBD antibodies44,
including the time course of platelet clearance following injection
(Fig. 5b), it is tempting to speculate that, like botrocetin/VWF,
these anti-LBD antibodies bind LBD with unbinding forces that
are sufficient to induce MSD unfolding.

CHO cells expressing GPIbaD and IL4R-IbaTg platelets, both
of which contain a constitutively extended Trigger sequence in
their respective mutant GPIb–IX complexes, exhibited GPIb–IX
signalling in the absence of bound ligands (Figs 4 and 6). Without
ligand binding, no pulling force is exerted on GPIb–IX in these
cells, yet similar GPIb–IX signalling, in terms of filopodia
formation, intracellular calcium concentration and P-selectin
expression, as well as accelerated clearance in vivo, was observed
for these cells compared with botrocetin/shear- and type 2B

P-selectin

β-galactose

[Ca2+]

Platelet clearance

Physiological
shear

LBD

PlateletMSDIbα

IX Ibβ

Bc

VWF
A1

Figure 7 | The trigger model of GPIb–IX signalling and platelet clearance.

In the resting platelet (top), the MSD in GPIb–IX is folded. Plasma VWF

does not interact with GPIb–IX on the platelet. In the presence of botrocetin

(Bc) and physiological shear, VWF binds to the LBD in GPIb–IX and pulls on

the complex to cause unfolding of MSD and the Trigger sequence therein.

Consequently, it induces increase in the intracellular calcium level,

expression of P-selectin and exposure of b-galactose on the platelet

surface, leading to rapid clearance of platelets.

Figure 6 | IL4R-IbaTg platelets exhibit ligand-free GPIb–IX signalling and fast clearance. (a) Schemes of MSD-unfolding mutant GPIbaD and IL4R-Iba.

Both proteins contain the Trigger sequence without the adjoining MSD residues. (b) Confocal fluorescence images of fixed washed platelets from

C57BL/6J (WT, left) and IL4R-IbaTg mice (right). White arrowheads mark the filopodia extrusions. Scale bar, 10mm. (c) Quantificative comparison of

filopodia observed in the platelets. Platelets from 15 view fields (B80–110 platelets per view field) were visually examined and counted. (d) Quantificative

comparison of the exposure of b-galactose (measured by binding of FITC-labelled ECL), intracellular calcium level (monitored by Fura-2 fluorescence) and

expression of P-selectin (binding of anti-P-selectin antibody) of the fixed washed platelets obtained from sex- and age-matched mice (n¼ 8 in each group).

Data were quantified from the median fluorescence intensity of all the platelets (using the same gating as in Supplementary Fig. 1e). (e) Illustration of the

clearance study of WT and IL4R-IbaTg platelets in WT mice. (f) Clearance traces of WT and IL4R-IbaTg platelets, expressed as the percentage of CSFE-

labelled platelets in total population. (g) Illustration of the survival study of WT and IL4R-IbaTg platelets. Circulating platelets were labelled with

fluorophore-labelled anti-GPIX antibody. (h) Clearance of these labelled platelets was monitored over time. Data are shown as mean±s.d. *Po0.05;

**Po0.01; ***Po0.001; NS, no statistical difference.
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VWF/shear-treated ones. It is noteworthy that the extent of
GPIb–IX signalling in IL4R-IbaTg platelets appeared lower than
that in botrocetin/shear-treated ones, which is consistent with the
extent of clearance in vivo (Figs 1 and 6). The reason for the
difference is not clear. One possibility is that the signals in
botrocetin/shear-treated platelets were synchronized and thus
appeared larger at the time of measurement. Another possibility
is that botrocetin-associated VWF or type 2B VWF can induce
additional effects such as the direct uptake by macrophages41.
Overall, our results suggest that the extension or unfolding of the
Trigger sequence may be the key step in setting off GPIb–IX
signalling, even without a pulling force involved. How the Trigger
sequence induces GPIb–IX signalling remains to be elucidated.
One possibility is that the extended and exposed Trigger sequence
initiates signalling by making contact with the nearby GPIbb
extracellular domains8,53, as RAM.1 could inhibit constitutive
filopodia formation in CHO cells expressing GPIbaD (Fig. 4g,h).
These results also suggest that the extension of the Trigger
sequence may be achieved not only by ligand/shear-induced
unfolding of the MSD but also by proteolytic cleavage of the
MSD. Shedding of GPIba is a physiological process that occurs
continuously on the surface of circulating platelets, releases the
extracellular domain of GPIba also known as glycocalicin into the
plasma, and is largely mediated by ADAM17 (refs 25,54). It also
occurs during storage of platelets in blood banks55–57. A tight
correlation between GPIba shedding and the severity of platelet
storage lesion, particularly the post-transfusion survival of
stored platelets, is well documented58,59. Consistently, specific
inhibition of GPIba shedding during platelet storage by
exogenous inhibitors significantly reduced the fast clearance of
senescent platelets in transfused mice56–61, thereby establishing a
causal–effect relationship between GPIba shedding and platelet
clearance. However, the underlying molecular mechanism is not
clear. The ADAM17 cleavage site in GPIba is at the Gly464–
Val465 peptide bond24, a few residues N terminal to the Trigger
sequence (Fig. 4a). Thus, it is conceivable that GPIba shedding
leaves the remnant of the GPIba extracellular domain, which
includes the Trigger sequence, exposed and extended on the
platelet surface in a similar manner as that on the IL4R-IbaTg
platelet, thereby inducing GPIb–IX signalling and leading
to platelet clearance.

Under physiological flow conditions, VWF in the plasma does
not bind the platelet, with its A1 domain somehow shielded from
binding to GPIba (ref. 62). Under elevated shear stress, VWF
undergoes a conformational change and assumes a high-affinity
state for GPIba (ref. 6). Thus, it is thought that the ligand/
receptor pair of VWF/GPIba responds primarily to elevated shear
stress and is particularly useful in mediating platelet adhesion and
thrombus formation under those conditions, in which the GPIba
association with filamin in the cytoplasm also plays a role63.
In this study, we demonstrated that physiological shear stress is
sufficient to induce MSD unfolding and platelet signalling
through GPIb–IX. Elevated or complex shear conditions were
avoided in this study and only shear stress within the
physiological range was applied (Figs 1 and 3). Moreover,
botrocetin instead of ristocetin was used to induce VWF binding
of GPIba, since previous studies suggested that, compared with
botrocetin, ristocetin-induced binding mimics more closely the
VWF/GPIba interaction under elevated shear conditions and it
induces additional effects in the platelet through GPIb–IX and
other receptors33,64. In the case of CHO cell adhesion to
immobilized VWF (Fig. 4), the adhered cell may generate
contractile force through the cytoskeleton and exerts it on the
ligated VWF/GPIba pair65. The strength of such contractile force
imposed on a single VWF/GPIba pair is not clear, but it may
conceivably be sufficient to induce MSD unfolding on the surface

of adhered cells. Our results suggest that with separate MSDs
VWF and GPIb–IX may respond to shear via distinct
mechanisms. Under circumstances in which VWF binds GPIba
in normal blood flow, such as type 2B VWD22, VWF binding
may induce MSD unfolding and GPIb–IX-transduced signalling
in the platelet and lead to thrombocytopenia as discussed above.
Other mechanosensory elements in VWF might not participate in
this process, because CHO cells expressing mutant GPIbaD and
IL4R-IbaTg platelets can signal in the absence of ligand/shear
(Figs 4 and 6). It remains to be determined whether and how
GPIb–IX responds to ligand binding under elevated shear stress,
whether or how it responds act in concert with ligands and
intracellular signalling molecules, particularly the
mechanosensory elements therein. Overall, defining a role of
GPIb–IX in inducing platelet signalling under physiological shear
provides a foundation for future investigations of interplays
between platelets, plasma and vessels under diverse shear flow
conditions.

Many cell adhesion receptors are known force sensors. They
often contain a LBD that is located distal to the cell membrane
and linked to the transmembrane domain via a long repeating
sequence and/or a heavily glycosylated region. In a Notch
receptor, distal ligand binding and pulling induces unfolding of
the juxtamembrane negative regulatory region, leading to
exposure and proteolysis of the shedding cleavage site66.
Shedding of the extracellular domain of Notch is a necessary
step in Notch signalling, which proceeds with another cleavage of
its transmembrane domain and relocation of its intracellular
domain into the nucleus67. Although GPIba bears little
resemblance to Notch in sequence, structure or function, the
‘trigger’ model of GPIb–IX signalling is remarkably similar in two
key aspects. First, the signal of ligand binding is transmitted as a
mechanical force through a polypeptide sequence over a long
distance. Second, the pulling force induces unfolding of a
juxtamembrane MSD that effectively transduces the force
information into a conformational change. It therefore seems
reasonable to propose that receptor mechanosensing and
unfolding may be an evolutionarily conserved and fundamental
signalling mechanism used by cells to transmit information across
the cell membrane.

Methods
Human subjects. Citrated whole blood was drawn from healthy volunteers
according to an approved protocol, in which all volunteers gave written informed
consent. The collected whole blood was used to prepare PRP and plasma.
Experiments involving fresh human platelets were performed in accordance with
experimental protocols approved by the Institutional Review Board of Emory
University (IRB#00006228). Plasma of a type 2B VWD patient was obtained in
accordance with established protocols approved by the Institutional Review Board
of University of Colorado Denver Anschutz Medical Campus (IRB#09-0816).

Mice. C57BL/6J mice were purchased from Jackson Laboratories. IL4R-IbaTg
mice on the C57BL/6J genetic background have been described39. Six- to eight-
week-old mice were used in all experiments except those involving IL4R-IbaTg.
Both sexes of age-matched littermates were generally used for the study. We did
not involve statistical analyses in which a pre-specified effect size was used, and
were generally blinded to the group allocation. Siblings were randomly and
alternatively selected for different treatments. The number of animals used in each
experiment was indicated in each figure, given that phenotypes were reproducible.
No specific inclusion/exclusion criteria were applied from the analysis. All
experiments involving mice were performed in accordance with the protocols
approved by the Institutional Animal Care and Use Committees (IACUC) of
Emory University and University of North Carolina.

Materials. DMEM, L-glutamine, penicillin/streptomycin and non-essential amino
acids were purchased from Mediatech (Manassas, VA, USA). Antibiotic G418 and
lipofectamine 2000 were purchased from Life Technologies (Grand Island, NY,
USA). Fetal bovine serum was purchased from Hyclone, Logan, UT, USA, hybri-
doma cloning factor from PAA, Etobicoke, Canada and hypoxanthine supplement
from Sigma-Aldrich, St Louis, MO, USA. Human VWF, free of factor VIII, was
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purchased from Haematologic Technologies, Inc (Essex Junction, VT, USA).
Puromycin, doxycycline, snake venom from Bothrops jararaca and monoclonal
anti-VWF antibody 1A11 (cat# SAB1402960) were from Sigma-Aldrich. Mono-
clonal antibody 5G6 and RAM.1 have been described before28,31. GM6001 was
from Millipore (Billerica, MA, USA). Fluorescently conjugated ECL (cat# E3453-
19C) was purchased from USBiological (Swampscott, MA, USA); phycoerythrin
(PE)-labelled anti-P-selectin antibody (cat# 304906) and PAC-1 antibody (cat#
362802) were purchased from Biolegend (San Diego, CA, USA). QSY7 carboxylic
acid succinimidyl ester (QSY7-NHS) and 5/6-carboxyfluorescein succinimidyl ester
(CFSE) were purchased from Invitrogen (Carlsbad, CA, USA). WT and mutant
GPIb–IX complexes in which the cytoplasmic domain of GPIX was biotinylated
have been described14.

Purification of botrocetin. Botrocetin was purified from Bothrops jararaca venom
(Sigma) largely as described23. In brief, the lyophilized venom was dissolved in
0.01 M Tris–HCl, 0.15 M NaCl, pH 7.4 (TS buffer), and fractionated by 60–80%
ammonium sulfate precipitation at 22 �C. The precipitate was dissolved in TS
buffer and dialysed against the same buffer at 4 �C overnight. After elution from a
diethylaminoethyl cellulose column via a linear gradient of 0.15–0.4 M NaCl, the
botrocetin-containing fractions were concentrated and further purified by gel
filtration chromatography using a Superdex 200 column pre-equilibrated with TS
buffer. The botrocetin activity was assayed for its ability to induce VWF binding to
immobilized human GPIb–IX35. Fractions with peak activities were concentrated
using an Amicon ultracentrifugal filter with ultracel-3 membrane and stored at
� 80 �C. The concentration was measured by the absorbance using an extinction
coefficient of 2.985 ml mg� 1 cm� 1.

Uniform shear assay. Freshly prepared human or murine PRP, supplemented
with plasma to a count of 0.2–5� 105 platelets per ml, was mixed gently with
1 mg ml� 1 botrocetin or other noted additives, incubated at room temperature for
10 min, and transferred to the stationary plate surface of a CAP2000þ cone-plate
viscometer (Brookfield Engineering Laboratories, Middleboro, MA, USA). Primary
shear rate varied from 0 to 25 dyn cm� 2 (0–2,533 s� 1). After shear treatment of
1–2 min at room temperature, B50ml of PRP mixture was collected gently, treated
with desired monoclonal antibodies or noted detecting agents for 10 min, washed
with modified Tyrode’s buffer when desired, and fixed by the addition of 200 ml 4%
paraformaldehyde (PFA). For the measurement of MSD extension, 5G6 and other
noted antibodies were added to the PRP mixture at 0.5 mg ml� 1 concentration
before shear treatment. After shear, the mixture was collected and immediately
fixed with 4% PFA.

Flow cytometry analysis. Fixed platelets were analysed on a BD FACS Canto II
flow cytometer using FlowJo software. Median fluorescence intensity of each cell
population (10,000 cells) was obtained for quantification and comparison. The
forward-/side-scattered light (FSC/SSC) voltages were set at 199/400, respectively.
The same gating (shown in Supplementary Fig. 1e) was applied to all the platelet
samples analysed in this study. For plasma VWF binding, platelets in PRP were
incubated with a rabbit anti-VWF polyclonal antibody and 1 mg ml� 1 botrocetin
for 10 min at 20 �C, then fixed with 4% PFA before flow analysis. As a negative
control, the platelet in PRP was incubated with secondary antibody and analysed in
parallel. For the measurement of intracellular calcium influx, the sample treated
with only solvent was used as the negative control.

Laser optical tweezer measurement. Single-molecule force measurement was
performed as described14. In brief, streptavidin-coated beads were incubated for
10 min with 1 nM biotin–DNA handle nitrilotriacetic acid in Tris-buffered saline
(150 mM NaCl, 10 mM Tris–HCl, 5 mM NiCl2, pH 7.5). The beads were washed
and incubated with 100 pM recombinant hexahistidine-tagged A1 domain
(VWF residues Asp1261–Pro1466) for 15 min before the experiment. Recombinant
GPIb–IX complex in which the GPIX cytoplasmic tail was biotinylated was coupled
with the streptavidin-coated beads by incubating the beads with 20 ml cell lysate
containing biotinylated GPIb–IX for 10 min and washed with Tris-buffered saline
containing 1% Triton X-100. The single-molecule pulling experiments were
performed using an analytical minioptical tweezer apparatus14,68 in the presence
and absence of 1 mg ml� 1 botrocetin. Force and bead-to-bead distance were
recorded at 200 Hz. When appropriate, the force-extension data were fitted to the
worm-like chain model. The lifetime of bond as a function of force was estimated
using the Dudko–Hummer–Szabo equation.

Preparation of conjugated antibodies. Purified 5G6 and RAM.1 were conjugated
with CFSE and QSY7-NHS, respectively, following the manufacturer’s instruction.
In brief, 1 mg antibody in the reaction buffer (2 mg ml� 1 in 0.1 M sodium phos-
phate, 150 mM NaCl, pH 7.4) was added to B10 mg of reactive dye dissolved in
anhydrous dimethylsulphoxide in a glass vial, and incubated in the dark for 1 h at
room temperature. After the reaction, unconjugated dye was separated from
labelled antibody on a PD-10 desalting column (GE Healthcare). Labelled anti-
bodies were stored at � 20 �C, and their concentrations estimated using a Pierce
BCA protein assay kit (Life Technologies).

Fluorescence resonance energy transfer measurement. Fluorescein-conjugated
5G6 (F-5G6) was mixed with either unconjugated RAM.1 or QSY7-conjugated
RAM.1 (Q-RAM.1) at 1:5 mass ratio, and then added to the PRP mixture con-
taining 1 mg ml� 1 botrocetin. The final 5G6 concentration was 0.5 mg ml� 1. Each
mixture underwent uniform shear treatment as described above before being
analysed by flow cytometry. The median fluorescence intensity value of each
sample is considered as F, with that of platelet treated with F-5G6 and unlabelled
RAM.1 as F0.

Construction of inducible CHO cells expressing GPIb–IX. The CHO K1 cell line
was purchased from American Type Culture Collection (Manassas, VA, USA,
cat# CCL-61). The Tet-on 3G inducible expression system was purchased from
Clontech (Mountain View, CA, USA) and stable CHO cell lines were established
following the manufacturer’s instruction. In brief, the Tet3G transactivator was
transfected into CHO cells using Lipofectamine 2000. Stable clones underwent
selection in culture media containing 500mg ml� 1 G418 and maintained in that
with 100 mg ml� 1. Individual CHO/Tet3G clones were screened for top induction
using a firefly luciferase reporter under the Tet-inducible promoter in the presence
and absence of 2 mg ml� 1 doxycycline. The CHO/Tet3Gþ cells were transfected
with expression vectors in which transcription of GPIb–IX genes was under the
control of Tet-inducible promoter14. Positive stable cells were sorted repeatedly for
positive surface expression of GPIb–IX on induction of 2 mg ml� 1 doxycycline14.
To verify the induced expression level of GPIb–IX, sorted cells were amplified,
induced with doxycycline, collected (100,000 cells per 100 ml) and incubated with
0.5 mg ml� 1 monoclonal antibody WM23 in cold PBS. The stained cells were
washed, incubated with allophycocyanin (APC)-labelled goat anti-mouse antibody
and measured by flow cytometry using a BD Canto II FACS instrument8,69.

Fluorescence microscopy of filopodia formation. For CHO cells, glass slide was
coated with human VWF at 10 mg ml� 1 in PBS at 4 �C overnight and blocked with
1% bovine serum albumin in PBS for 1 h at 22 �C. CHO cells were induced for
GPIb–IX expression in culture media containing 2 mg ml� 1 doxycycline for 1 day.
The cells were then pelleted and resuspended at 1� 106 cells per ml in modified
Tyrode’s buffer (134 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM KCl, 1 mM MgCl2,
5 mM glucose, 12 mM NaHCO3, 20 mM HEPES, pH 7.35) containing 5 mM
EDTA. Adhesion of CHO cells to the VWF-coated glass slide was performed
largely as described34. In brief, CHO cells were placed on VWF-coated slides in the
presence or absence of 1 mg ml� 1 botrocetin for 30 min at 37 �C. The adherent cells
on the slide were washed with PBS buffer, fixed with 4% PFA for 10 min,
permeabilized with 0.1% Triton X-100 for 15 min and stained with 2 mg ml� 1

TRITC-conjugated phalloidin for 30 min. For platelets, fresh washed platelets were
prepared in modified Tyrode’s buffer to a platelet count of 5� 106 ml� 1. The
platelets were gently mixed with equal volume of 4% PFA for 30 min at 37 �C. The
fixed samples were applied onto an uncoated glass surface and incubated for
another 30 min at 37 �C. The liquid buffer was carefully replaced by staining buffer
containing 2 mg ml� 1 TRITC-conjugated phalloidin and 0.1% Triton X-100 in PBS
via a vacuum pump and stained for 30 min. Cell images were acquired on a super-
resolution DeltaVision OMX imaging system (GE Healthcare). Z-stack imaging
was performed at 0.125 mm per step and three-dimensional reconstruction using
IMARIS software (Bitplane).

Botrocetin-induced platelet clearance in mice. A single dose of botrocetin
dissolved in PBS or PBS was injected intravenously into 6-week-old C57BL/6J
mice. Before injection, 1 h after injection and every 24 h thereafter, a small blood
sample was collected from the animal and platelet count was measured using a
CBC counter.

Clearance of in vitro sheared platelets in mice. C57BL/6J mice, under isoflurane
anaesthesia, were bled from the retro-orbital plexus into sodium citrate buffer. PRP
was obtained by centrifugation at 300g for 10 min, and platelets isolated at 1,000g
for 5 min. Platelet-poor plasma was kept. Platelets were stained with 2 mg ml� 1

CFSE in Tyrode’s buffer containing 0.02 U ml� 1 apyrase and 0.1 mg ml� 1 PGI2 for
30 min. After staining, platelets were washed once, suspended in platelet-poor
plasma with or without 2 mg ml� 1 botrocetin to B5� 105ml� 1, and underwent
the treatment of uniform shear (18 dyn cm� 2) as described above. After shear,
platelets were collected and analysed for signalling indicators by flow cytometry as
described above. Instead of PAC-1, antibody JON/A was used to detect the
activation of mouse aIIbb3. Alternatively, after shear platelets were collected and
directly infused into recipient C57BL/6J mice (B1� 108 platelets per mouse).
After 1 h and every 24 h thereafter, a small blood sample was collected from
recipient mice, labelled with anti-CD41 antibody and analysed by flow cytometry.
The percentage of infused platelets was calculated as the ratio of CFSEþCD41þ

platelets versus CFSE�CD41þ platelets.

Clearance of IL4R-IbaTg platelets. Six- to forty-week-old male mice were used in
this study. Platelets from C57BL/6J or IL4R-IbaTg mice were isolated in modified
Tyrode’s buffer, stained with CFSE as described above, washed once and pooled to
1.5� 106ml� 1. Platelets were infused right away into recipient C57BL/6J mice
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(1.5� 108 platelets per 10 g body weight). After 1 h and every 24 h thereafter, blood
was drawn from recipient mice and infused platelets were counted as described
above. To measure endogenous survival of IL4R-IbaTg platelets, a single intrave-
nous injection of 5 mg AlexaFluor 488-conjugated anti-GPIX antibody (clone
Xia.B4, Emfret analytics) in 100ml PBS was administered at t¼ 0. Whole blood was
drawn after every 24 h, diluted and incubated with a PE-conjugated anti-CD41
antibody (MWReg30, BD Biosciences) for 10 min at room temperature. The ratio
of AlexaFluor 488-positive platelets to PE-positive ones was determined.

Statistical analysis. Data are expressed as mean±s.d. An unpaired or paired two-
tailed Student’s t-test analysis was performed for statistical analyses. Sample size
ranged from 3 to 9 as indicated. Differences were considered statistically significant
when Po0.05. The Mann–Whitney test was performed to test the variation
similarity between groups that are being statistically compared and all the tested
groups showed similar variations. All analyses were performed using GraphPad
Prism software (version 6.0).

Data availability. The data that support the findings of this study are available in
the manuscript and from the corresponding author on request.
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