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Mechanism and comparison of 
needle-type non-thermal direct 
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Purified water supply for human use, agriculture and industry is the major global priority nowadays. 
The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been 
used for purification of wastewater, although the underlying mechanisms of degradation of organic 
pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-
thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the 
treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min 
and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above 
mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also 
employ mass spectroscopy to verify whether only decolorization or also degradation takes place 
after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals 
with all three dyes using reactive molecular dynamics simulations, based on the density functional-
tight binding method. This investigation represents the first report on the degradation of these 
three different dyes by two types of NTP setups, analyzed by various methods, and based on both 
experimental and computational studies.

Due to the growing industrialization, the extensive use of chemicals led to an increase of the amount of unwanted 
pollutants in drinking water sources1–5. Every year Mediterranean olive-growing countries produce around  
30 million m3 of highly toxic olive mill wastewater6. The water in these areas contains various impurities, such 
as heavy metals and organic pollutants - mainly dyes, pesticides, halogenated organic solvents, polychlorinated 
biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs)7. These pollutants are discharged from indus-
tries and wastewater treatment plants to natural water sources. Moreover, some pollutants, namely organic and 
synthetic dyes, are indispensably used not only within the dyeing and textile industries, but also in mechanical 
and electrical industries, such as in the production of solar cells, liquid crystal displays, and lasers8. These organic 
dyes are toxic to both flora and fauna when discharged into the environment, because such dyes absorb and 
reflect sunlight entering water sources, which results in the death of aquatic species, as well as bacteria that are 
used to degrade impurities in the water8–10. Hence, it is essential to degrade or decolorize these dyes before they 
are discharged into the water.
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The large number of organic dye pollutants cannot be effectively mitigated by conventional wastewater deg-
radation methods, because the molecular structures of these dyes are very stable and do not degrade easily. 
Therefore, to solve this problem, alternative methods, so-called advanced oxidation processes (AOPs), were devel-
oped over the previous years11. The most widely investigated AOPs are O3/UV, photo-fenton, photo-catalysis, and 
non-thermal plasma (NTP) methods12. Among these AOPs, the NTP method is studied most frequently because 
of the ability of NTP to generate various types of reactive oxygen and nitrogen species (RONS), such as OH, H, 
HO2, O3, NO, ONOO−, NO2

−, NO3
−, and H2O2, which have high oxidation potentials to react with stable organic 

dye molecules3,13–18.
There exist many different types of NTP devices, and among them DBD reactors are mainly used to degrade 

organic pollutants, such as AR88 acid19, acetone and toluene (by combination of TiO2 and DBD)20, azo dye 
Orange II21 and methyl orange15. Recently a DBD jet was used to degrade methylene blue17. In another work, 
Olszewski et al. studied the impact of pulse-modulated generation of atmospheric pressure plasma on the effi-
ciency of methyl orange decolorization22. Moreover, in a recent review, Magureanu et al.23 focused on the degra-
dation of pharmaceutical compounds in water by NTP, and showed the utility of NTP in wastewater purification. 
However, in only a few studies, more than one dye and more than one NTP source was used to study the dye 
degradation and/or decolorization. Furthermore, so far there are no studies demonstrating both the experimental 
and computational viewpoints on dye degradation.

Hence, in this study we apply two needle-type atmospheric pressure plasma jets (APPJs), i.e., an indirect 
(ID-APPJ) and a direct (D-APPJ) setup, both operating in Ar gas, for the treatment of methylene blue (MB), 
methyl orange (MO) and congo red (CR) dyes, for two different times (i.e., 20 min and 30 min). We investigate 
their decolorization/degradation process using UV-Vis spectroscopy, High-performance liquid chromatogra-
phy (HPLC) as well as a density meter. We also analyze the final degradation products of these three dyes using 
Liquid Chromatography Tandem Mass Spectrometry (LC[QTOF]MSMS). Additionally, we study the interaction 
of OH radicals with the dyes, by means of reactive molecular dynamics (MD) simulations based on the density 
functional-tight binding (DFTB) method24.

Results and Discussion
Dyes degradation/decolorization and energy efficiency of the plasma devices.  The degradation 
of organic dyes, i.e., MB, MO and CR, by the ID-APPJ and D-APPJ setups is a complex process. The schematic 
illustrations of the both plasma sources (ID-APPJ and D-APPJ) and their corresponding optical emission spectra 
(OES), are displayed in Fig. 1. The voltage and current waveforms of both plasma devices are shown in Fig. S1.  
The plasma generates the primary reactive species in the gas phase and/or in the gas-liquid interface. They are 
transported to the liquid layer, which aids in the generation of secondary radicals due to their high reactive 
potential. These primary and secondary reactive species contribute to the breakdown of dye molecules into inter-
mediate products or final stable products. In the present experiment we did not employ any forced stirring, so 
that the mixing in the system is limited to diffusion only. Figure 2 shows the degradation percentages of the MB, 
MO and CR dyes after treatment with the ID-APPJ and D-APPJ, for 20 min and 30 min, as obtained by UV-VIS 
absorption spectroscopy. In fact, we do not know yet for sure whether the process is really degradation or only 
decolorization, which is the visual effect. However, later we will elucidate that it is effectively degradation, and 
therefore, we already call it “degradation” for the sake of clarity.

Figure 1.  Schematic representation of the plasma sources used in this study, and the corresponding optical 
emission spectra, (a) ID-APPJ; (b) OES of ID-APPJ; (c) D-APPJ and (d) OES of D-APPJ.
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The degradation of MB is 71% and 95% after the treatment with ID-APPJ and D-APPJ for 20 min, respec-
tively, while it is 87% and 97% for 30 min of treatment, respectively (see Fig. 2a). In the case of MO and CR, the 
treatment with ID-APPJ and D-APPJ for 20 min resulted in a degradation of 81% and 97% (for MO) and 76% and 
86% (for CR), respectively, whereas these percentages are 92% and 99% (for MO) and 84% and 90% (for CR), for 
30 min of treatment time, respectively (see Fig. 2b,c). Similar trends were also observed by HPLC, and are shown 
in the Supporting Information (Figs S2–S5).

It is thus clear that the same plasma source cannot degrade all the dyes to the same extent. Additionally, the 
D-APPJ provides a stronger action in the degradation of all three dyes, compared to the ID-APPJ (see Fig. 2), 
which might be expected, because a direct source can provide more (short-living) reactive species to the solution. 
It should be mentioned that there is a difference in applied powers of both plasma sources, i.e., 0.2 W for the 
ID-APPJ and 0.4 W for the D-APPJ (see section 3.1), which might also explain the stronger action of the latter. 
However, because of the different powers used, it is also important to know which of the plasma devices is more 
energy efficient for the degradation of the dyes.

Figure 3 illustrates the energy efficiency (g/kWh) of the ID-APPJ and D-APPJ setups, operated for 20 min and 
30 min treatment of the dyes. The energy efficiency of the ID-APPJ setup for 20 min treatment of MB, MO and CR 
is 4.3, 4.9 and 4.5 g/kWh, respectively, while it is lower in the case of the D-APPJ setup, i.e., 2.8, 2.9 and 2.6 g/kWh,  
respectively (see Fig. 3a). For a 30 min treatment of MB, MO and CR, the energy efficiency is calculated to be 
3.4, 3.6 and 3.3 g/kWh, respectively, for the ID-APPJ setup, whereas it is only 1.99, 1.98 and 1.8 g/kWh in the 
case of the D-APPJ setup (see Fig. 3b). Thus, for both treatment times, the energy efficiency is higher for the 
ID-APPJ setup than for the D-APPJ, despite the fact that the degradation was greater for the D-APPJ setup. This 
is explained because the power in the D-APPJ setup is twice as high as in the ID-APPJ setup, while the % degra-
dation was not twice as high (cf. Fig. 2).

Density of the dyes in the solution after plasma treatment.  We measured the density of the solu-
tions at 20 °C (see Fig. 4). The density of the control (i.e., untreated) MB is 0.99827 g/cm3, and after the treat-
ment with ID-APPJ for 20 and 30 min, it slightly increases to 0.99829 and 0.99831 g/cm3, respectively. When 
the D-APPJ is applied for 20 and 30 min, the density of MB increases much more to 0.99845 and 0.99853 g/cm3, 
respectively. The same trend is seen for the density of MO. For CR, the D-APPJ also gives a increase in density, 
but the difference with the ID-APPJ effect is smaller (see Fig. 4). Thus, the density of the dyes increases after the 
treatment with plasma and the change in density is more pronounced for the D-APPJ compared to the ID-APPJ. 
Moreover, in both plasma sources the density of the dyes increases with increasing treatment time.

Figure 2.  Degradation percentages obtained by UV-Vis spectroscopy for (a) MB, (b) MO and (c) CR, after 
treatment with ID-APPJ and D-APPJ for 20 min and 30 min.
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The increase in density can be due to the formation of some additional products or due to the intermolecular 
interactions between the degraded products. Thus, to analyze the degraded products, we performed LC[QTOF]
MSMS after 30 min treatment with the D-APPJ setup, since the maximum degradation and the most pronounced 
increase in density of the dyes was observed at this condition.

MS analysis for dyes degradation after plasma treatment.  We performed liquid chromatography 
(LC) separation for the MB, MO, and CR dye solutions, before and after 30 min treatment with the D-APPJ setup, 
and the subsequent TOF-MS spectra, taken from the same retention times before and after treatment, for the 
three different dyes are illustrated in Figs 5, 6 and 7. The results shown in Fig. 2 above indicate that the wastewater 
is significantly decolorized or degraded after 30 min irradiation with the D-APPJ setup. The current analysis helps 
us to understand whether the dyes are effectively degraded into small components or whether it is just a decol-
orization effect. For this purpose, we first checked the TOF-MS of the MB control sample from 50 to 2000 m/z 
(mass/charge) and observed the main peak at 284 m/z, that may belong to [C16H18N3S+ +​ H]+, as displayed in 
Fig. 5(a). However, after the treatment with D-APPJ, this peak has almost disappeared. Instead, a peak at 421 m/z, 
along with some small other peaks, appears after the plasma treatment. The peak at 421 m/z might correspond 
to [C16H15N6O6S+ +​ H]+, which might be generated from the reaction of reactive oxygen and nitrogen species 
(RONS) with the MB dye, resulting in nitration of MB (see Fig. 5b). The intensity of the newly generated peak at 
421 m/z is around 104, whereas the control peak at 284 m/z has an intensity of 106 (i.e., 100 times higher, see Fig. 5).  
This newly generated product in the MB solution (after the D-APPJ treatment) is the reason for the slight increase 
in mass density of the MB solution from 0.99827 to 0.99853 g/cm3, as we see that the intensity of the new product 
is not high. Therefore, the change in density is only about 0.00026 g/cm3. From the TOF-MS data, we can conclude 
that the degradation of MB, as seen by absorption and HPLC spectroscopy (see Fig. 2 and Fig. S2), is really due to 
the degradation of the MB dye, and not only due to the decolorization.

We also performed TOF-MS analysis of the MO solution before and after treatment with the D-APPJ for 
30 min (see Fig. 6). We again checked the peaks from 50 to 2000 m/z for the control MO solution and found 
the main peaks at 306 and 328 m/z (with intensities of 106), which may belong to [C14H14N3O3

−S +​ H]+ and 
[C14H14N3Na+O3

−S +​ H]+. However, after the treatment with the D-APPJ setup, the peak at 328 m/z has disap-
peared and the peak at 306 m/z is reduced to the order of 103. Moreover, new peaks appear at higher m/z, with 

Figure 3.  Energy efficiency of ID-APPJ and D-APPJ treatment of the three different dye solutions, for  
(a) 20 min and (b) 30 min.

Figure 4.  Density of the three different dye solutions, before and after plasma treatment with the ID-APPJ 
and D-APPJ setups for 20 and 30 minutes.
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intensities in the order of 104, and the main peak appears at 421 m/z, which may be [C14H13N4Na+O8
−S +​ H]+ 

generated due to hydroxylation and nitration of MO during the treatment with the D-APPJ setup. During the 
reaction of MO with RONS generated by plasma, we thus observe a degradation of the MO molecule into small 
fragments, but at the same time hydroxylation and nitration reactions take place with MO that form stable chem-
ical compounds with a higher mass (or m/z) than MO itself. Similar to MB, the density of the MO solution also 
increases slightly after the plasma treatment, by 0.00024 g/cm3, which can be correlated to the small peaks appear-
ing in the mass spectrum.

Figure 5.  LC[QTOF]MSMS analysis for MB; (a) before and (b) after treatment with D-APPJ for 30 min.

Figure 6.  LC[QTOF]MSMS analysis for MO; (a) before and (b) after treatment with D-APPJ for 30 min.
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Finally, the TOF-MS of CR before and after D-APPJ treatment for 30 min is illustrated in Fig. 7. We again 
checked the peaks from 50 to 2000 m/z, and the main peak appears at 689 m/z (with intensity of 104), which may 
belong to [C32H22N6Na+O6

−S2 +​ OH]+. After the treatment with D-APPJ, the CR is also fragmented, and the peak 
at 689 m/z is reduced to the order of 103. We observed many new peaks that appear with intensity around 103 and 102  
(see Fig. 7). The new peaks at 441, 387, 325, 288, 265 and 236 m/z most likely correspond to the following frag-
ments: [C22H19N4Na+O3

−S +​ H]+, [C10H3N4Na+O11
−S +​ H]+, [C16H12N3O3

−S +​ H]+, [C10H5N2Na+O5
−S +​ H]+, 

[C10H5N2O5
−S +​ H]+ and [C10H9N2O3

−S +​ H]+. This shows that plasma activated species can also degrade the 
CR dye. Moreover, there is not a significant change in the density data after the D-APPJ treatment, in comparison 
to the other 2 dyes (see Fig. 4 above). Indeed, before treatment, the density of the CR solution was 0.99833 g/cm3,  
while after treatment it is 0.99843 g/cm3. As mentioned above, some higher m/z products are formed from 
MB and MO after plasma treatment, but not so many products, and only fragments, are formed from CR. This 
explains why the increase in density of the CR solution after plasma treatment is lower than for the other dyes. 
The slight increase in density might be due to the intermolecular interactions between the degraded products. The 
fact that the main peak of CR decreases after D-APPJ treatment, corresponds to the absorption and HPLC studies 
mentioned above, and points towards degradation of the molecule, and not only decolorization. The hydroxyl-
ation and nitration reactions were also observed by our group and other groups during the plasma treatment of 
amino acids25–27.

In summary, all spectroscopy results (i.e., absorption, HPLC and TOF-MS) point out the degradation of the 
three different dyes after plasma treatment. In order to understand the mechanisms of the plasma degradation, 
we studied the generation of RONS in water after ID-APPJ and D-APPJ treatment for 30 min, as well as the inter-
action of OH radicals with the dyes using reactive MD simulations.

Reactive species generation and change in physical properties of the solutions after plasma 
treatment.  By means of OES, we try to understand the RONS production by the ID-APPJ and D-APPJ set-
ups, using Ar feed gas. Figure 1b,d above show the typical spectrum of the plasmas generated from the ID-APPJ 
and D-APPJ setups, which interact with the ambient air with Vrms of 0.7 kV and 1.2 kV (see Fig. S1), respectively, 
and with an Ar flow rate of 3 L/m. The applied powers of these sources are 0.2 and 0.4 W, respectively. The emis-
sion lines, displayed in Fig. 1b,d, are identified according to the reported values28. We observe in these spectra 
the emission lines originating from OH radicals at 308.95 nm, the N2 second positive system peaks at 336.8 nm, 
357.18 nm, and 379.89 nm, and atomic oxygen (O) at 777.88 nm. Additionally, we observe Ar emission lines at 
696.44, 706.59, 727.35, 738.46, 750.32, 763.41, 772.46, 794.78, 826.51, 842.44, 852.14, 911.97, and 922.3 nm. The 
intensity of these Ar peaks is higher for the D-APPJ setup than for the ID-APPJ setup, which suggests that excited 
Ar* species are more generated in the D-APPJ setup than in the ID-APPJ setup. Hence, the density of radicals 
(generated from the reaction of Ar* species with H2O molecules) will also be higher in the case of the D-APPJ 
setup.

To understand the generation of RONS in DI water after treatment with the ID-APPJ and D-APPJ setups 
for 30 min treatment, we performed a chemical and electrochemical analysis. OH, NO, H2O2 and NO2

− were 
detected in DI water using chemical analysis, while NO3

− was detected with electrochemical analysis. It can be 
deduced from Fig. 8(a) that the concentration of H2O2 in the DI water after ID-APPJ and D-APPJ treatment is 

Figure 7.  LC[QTOF]MSMS analysis for CR; (a) before and (b) after treatment with D-APPJ for 30 min.
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0.8 mM and 4.6 mM, respectively. The NO3
− concentration is 0.02 mM and 1.2 mM (see Fig. 8(b)), and the NO2

− 
concentration is 0.01 mM and 0.24 mM (see Fig. 8(c)), after ID-APPJ and D-APPJ treatment, respectively. For the 
OH and NO radicals, we measured the mean fluorescence intensity; see Fig. 8(d,e). We can conclude from Fig. 8 
that the concentration of all these RONS inside the water is higher after the D-APPJ treatment than after the 
ID-APPJ treatment. This is probably due to the higher power applied in the D-APPJ setup than in ID-APPJ setup.

Further, we measured the pH and temperature before and after the plasma treatment of DI water, as well as the 
MB, MO and CR solutions, and the results are illustrated in Fig. 9. The pH values for all treated systems clearly 
drop, and the drop is most pronounced for the D-APPJ treatment. Moreover, the drop is somewhat lower for the 
CR solution and slightly higher for the MB solution. The smaller drop for CR might be due to the formation of 
NaOH in the CR solution after the plasma treatment, while the somewhat larger drop for MB is probably due 
to the formation of organic acids during the degradation process. On the other hand, the temperature did not 
change during the treatment in all systems, hence it seems that the temperature plays no role in the degradation 
of the dyes.

We also treated all three dye solutions with 0.98 M H2O2, 1.50 M HNO3, 0.05 M NaNO2, 5712 ppm NO (20 min 
and 30 min) and 5580 ppm O3 (20 min and 30 min), to understand the impact of the various important RONS 
on the decolorization/degradation of the dyes; see Fig. 10. Note that the concentrations of these RONS are much 
higher than the RONS created in our plasma treatments. Indeed, as illustrated in Fig. 8 above, the H2O2 concen-
tration in the DI water system was measured to be 4.6 mM at maximum, the maximum NO3

− concentration was 
1.2 mM, and the maximum NO2

− concentration was 0.24 mM. Furthermore, the ozone concentration measured 

Figure 8.  Analysis of various RONS in the solution, i.e., (a) H2O2, (b) NO3
−, (c) NO2

−, (d) OH and (e) NO, 
after treatment of DI water for 30 min with ID-APPJ and D-APPJ.

Figure 9.  pH and temperature of DI water and the various dye solutions, before and after the treatment 
with ID-APPJ and D-APPJ for 30 min.
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in the gas phase was 10 ppm at maximum, as mentioned in section 3.1. Finally, we also measured the NO fluores-
cence intensity in the three dye solutions after treatment with 5712 ppm, and its value was much higher than the 
fluorescence intensity generated through plasma (cf. Fig. 8(e)), using the same method (data not shown), which 
tells us that the NO concentration generated by the plasma treatment is indeed much lower than in the present 
case. For OH, we could not investigate the effect of a separate treatment, as we do not have a setup to separately 
generate OH radicals (see below).

Figure 10 shows that the treatment with 0.98 M H2O2 has no effect on the MB decolorization/degradation, 
while the decolorization/degradation is 20% and 50% for MO and CR, respectively. The treatment with 5712 ppm 
NO (20 min and 30 min) also shows no decolorization/degradation for MB and CR, but almost 60% for MO. 
However, the decolorization/degradation of MB, MO and CR is 23%, 51% and 60% after the treatment with 1.50 M 
HNO3, respectively. Moreover, the treatment with 0.05 M NaNO2 (standard solution for NO2

−) yields 40%, 50% 
and 58% decolorization/degradation for MB, MO and CR, respectively. Finally, the treatment with 5580 ppm O3  
(20 min and 30 min) has a very strong effect on the decolorization of all three dyes. In our plasma system the con-
centration of ozone is, however, only approximately 10 ppm in gas phase as mentioned above, which is very low 
compared to the concentration in this experiment. Hence, we expect that ozone will not have a large effect on the 
decolorization/degradation in our plasma treatments. Thus, from this figure, in combination with Fig. 2 above, 
we may conclude that the short lived radicals in the plasma treatment play an important role in degradation of the 
dyes. Among all the radicals, the OH radicals have the highest oxidation potential, i.e., 2.8 V, but we do not have 
a setup to generate only OH radicals, as mentioned above. Therefore, we performed reactive DFTB-MD simula-
tions to study in detail the interaction of OH radicals with the dye molecules.

Reactive DFTB-MD simulations.  OH behavior in the surrounding water layer.  When using the model 
systems surrounded by the water layer, the created OH radicals can also interact with the water layer itself. 
Our DFTB-MD simulations show that the OH radicals can indeed chemically react with the water molecules, 
exchanging a hydrogen atom and forming again the same species (i.e., a new OH radical and a water molecule), a 
process which is continuously repeated. The same behavior of the OH radicals in water was also observed in our 
previous work, by means of the classical reactive MD method, based on the ReaxFF potential29.

OH interaction with the dyes.  We observe several reaction mechanisms upon OH radical impacts. The most 
frequent reaction mechanism observed for each dye is presented in Fig. 11. In the case of MO and MB, the OH 
radical reacts with one of the methyl groups, abstracting a H atom and forming a water molecule as well as a CH2 
radical site in the dye (see Fig. 11a,b), whereas in the case of CR, the OH radical abstracts a H atom from one of 
the amine groups, leaving behind an NH radical site (see Fig. 11c). These reaction mechanisms are observed in 
36, 75 and 49% of the simulation cases for MB, MO and CR, respectively. These reaction mechanisms were also 
analyzed in the “real” water-stabilized structures, and the same reaction mechanisms were observed.

Subsequently, a new OH radical can react with these radical sites, forming an alcohol group (in the case of MO 
and MB) or a hydroxylamine group (in the case of CR). The formation of an alcohol group in MO surrounded by 
water is illustrated in Fig. 12. Indeed, it was found that after travelling through the water layer (possibly exchang-
ing a H atom with a water molecule and forming a new OH), the OH radical finally reacts with the CH2 radical 
and forms an alcohol group, making the system more hydrophilic.

It should be mentioned that we do not really see degradation of the dyes or larger compound formation, as 
observed in the MS, but this is attributed to the limited time-scale of the simulations. In fact we expect further 
reactions if we would be able to run for much longer times. However, within the time-scale of the simulations, 
we already see reactions that alter the structure of the dyes, indicating indeed that OH radicals are able to destroy 
the molecules.

Figure 10.  Decolorization/degradation percentages of the MB, MO and CR dye solutions after treatment 
with 0.98 M H2O2 (black), 5580 ppm O3 (red 20 min and blue 30 min treatment), 5712 ppm NO (cyan 20 min 
and magenta 30 min), 1.50 M HNO3 (yellow) and 0.05 M NaNO2 (purple).
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Conclusion
We can conclude from our study that both plasma devices (i.e., the ID-APPJ and D-APPJ setups) have the poten-
tial to degrade all three dyes (MB, MO and CR), and the extent of decolorization/degradation is quite similar for 
the different dyes. The D-APPJ setup leads to more decolorization/degradation than the ID-APPJ setup, which 

Figure 11.  Snapshots from DFTB-MD simulations, showing the interaction of OH radicals with isolated 
MB (a), MO (b) and CR (c) molecules, leading to the formation of radical sites in the structures as a result 
of H-abstraction. The OH radicals approaching the structures are shown in red dashed circles and the 
H-abstraction reactions are presented by green dashed arrows. Note that the reactions shown in (a,b,c) are 
observed in 75, 36 and 49% of the simulated cases, respectively.

Figure 12.  Snapshots from DFTB-MD simulations, showing the interaction of an OH radical with the 
radical site in MO, surrounded by water molecules. An OH radical is initially placed near the CH2 radical (i.e., 
at a distance of dC-O =​ 3.76 Å, see (a)) and after travelling through the water layer (i.e., after ~185 fs) it finally 
reacts with this site and forms an alcohol group (b). The water molecules are shown in greyish green color, for 
the sake of clarity.
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can be explained by the fact that more (short-lived) reactive plasma species can be transferred to the dye solution 
(see below), but also by the higher power applied. When comparing the energy efficiency of both setups, the 
ID-APPJ gives better results, exactly because it operates at lower power, and still gives considerable degradation. 
A longer treatment time leads to somewhat more decolorization/degradation, but the effect is minor, and it also 
results in a lower energy efficiency. Therefore, the D-APPJ at longer treatment times might be the most appro-
priate, if as much as possible dye degradation is targeted. However, typically the energy efficiency is also equally 
important, and in that case, the ID-APPJ setup with 20 min treatment time is to be preferred, as it still yields a 
decolorization/degradation of 70–80% for the different dyes, at an energy efficiency of about 4–5 g/kWh.

Huang et al., obtained degradation for MB and MO of about 55% and 94% for 30 min DBD treatment, which is 
comparable but slightly lower than our results, but the energy efficiency was not determined by the authors15,16. In 
another work, an APPJ with Ar as feeding gas was used for the degradation of MB, and it was approximately 80% 
after 30 min treatment, while the efficiency was less than 0.4 g/kWh, thus clearly lower than in our experiments. 
Recently a DBD reactor was used to decolorize CR, but the decolorization was only 30% (100 ppm initial concen-
tration) after 30 min treatment, which is clearly lower than in our case (using 200 ppm initial concentration), and 
the energy efficiency was not determined by the authors30. To our knowledge, there are no reports in literature yet 
where different plasma setups were compared for these dyes.

According to European drinking water regulations, the concentration of nitrate should be no more than 
50 mg/l, and the maximum permissible limit of nitrite is 0.5 mg/l31. As illustrated in this work, the D-APPJ setup 
yields nitrate and nitrite concentrations in the solution of 74.4 mg/l (~1.2 mM) and 11.0 mg/l (~0.24 mM), while 
the ID-APPJ yields values of only 1.2 mg/l (~0.02 mM) and 0.46 mg/l (~0.01 mM), respectively, which are lower 
than the permissible limits. Therefore, we believe that the ID-APPJ setup might be more appropriate for water 
purification.

We also measured the density of the dye solutions after plasma treatment, and we observed some increase in 
density, being more pronounced for MB and MO, but the difference with the untreated solutions is in all cases 
very minor. Additionally, mass spectroscopy analysis showed that the plasma action has not only a decolorization 
effect, but also a degradation effect on the dyes, as new peaks appear in the MS.

To obtain a better insight in the underlying mechanisms and the role of various RONS in the plasma, we meas-
ured the concentration of various RONS in DI water after plasma treatment, and we could conclude that among 
the stable reactive species H2O2 is formed in the largest amounts, followed by NO3

− and NO2
−. Furthermore, the 

D-APPJ setup yields clearly higher concentrations in the DI water than the ID-APPJ setup, which confirms our 
conclusion above, about the reason why the first setup yields more decolorization/degradation. Also the drop in 
pH is more pronounced in the D-APPJ setup. The temperature of the solutions, however, does not change for the 
different plasma setups and treatment times, indicating that it does not play a major role in this process.

A standard (non-plasma) treatment with several RONS showed that NO plays no role in the decolorization/
degradation of MB and CR, while H2O2 has only effect for CR, and no or only a very minor effect for MB and 
MO, respectively. O3 seems to have a large effect on the decolorization/degradation of the three different dyes, 
but the concentration used in this treatment is much higher than in typical plasma treatments. We were not able 
to evaluate the separate decolorization/degradation potential of OH radicals, as we have no setup to generate 
them separately. Likewise, we could not quantify their concentration in the plasma-treated solutions, but from 
the fluorescence intensity, we know they are present in the solutions. Moreover, because we have obtained high 
concentrations of H2O2 in our plasma setups, and the OH radicals are the main components for the generation of 
H2O2, we may conclude that OH radicals are also generated in large amount in our plasma systems. Furthermore, 
among all the reactive species, the OH radicals have the highest oxidation potential. Hence, this suggests that the 
OH radicals are one of the main components in the plasma that lead to degradation of the dyes. Because we do 
not have a setup to generate only OH radicals, we could not draw firm conclusions, but we performed reactive 
DFTB-MD simulations to study in detail the interaction of OH radicals with the dye molecules, and we observed 
some reactions in all cases, leading to changes in the dye molecules. However, due to time scale limitations of the 
simulations, the product formation, as observed in the MS, could not be investigated.

In general we can conclude that the plasma treatment allows the degradation of the three different dyes, and 
not just one specific dye, and it has advantages over other techniques. Indeed, conventional biological treatments 
are ineffective for dye degradation due to the presence of aromatic rings in the dye molecules, and physical meth-
ods must transfer the organic pollutants from water to solid phase, which further requires post-treatment of the 
solid waste32. Additionally, the absence of byproducts, which are typically generated due to O3 and Cl2 treatment, 
also provides advantages for plasma treatment. Hence, this study provides new possibilities of plasma technology 
for water purification.

Material and Methods
Atmospheric pressure non-thermal plasma jet setups.  The schematic illustrations of the ID-APPJ 
and D-APPJ setups, as well as their corresponding optical emission spectra (OES), are displayed in Fig. 1. The 
ID-APPJ source consists of a hollow inner needle electrode in a cylindrical glass tube supplied with Ar gas. The Ar 
gas flows along the hollow inner needle electrode at a flow rate of 3 l pm. The grounded electrode, which is made 
of copper tape with 2 mm width, is placed outside of the glass tube surface and located 1 mm away from the end 
tip of the inner electrode, as shown in Fig. 1a. Similarly, the D-APPJ consists of a hollow inner needle electrode in 
a cylindrical glass tube. The Ar gas, with 3 l pm flow rate, flows again through this hollow inner needle electrode 
covered with glass, but the grounded electrode (made of copper tape) is positioned below the sample, which is 
located 27 mm away from the end tip of the inner electrode (see Fig. 1c). The root mean square voltage (Vrms-) is 
observed to be 0.7 kV and 1.2 kV, whereas the root mean square current (Irms) is 3 mA and 5 mA, for the ID-APPJ 
and D-APPJ setup, respectively. Both sources have a frequency of 16 kHz with a power of 0.2 W and 0.4 W, 
respectively. The power is calculated using the method reported in ref. 33. The voltage and current waveforms 
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of both ID-APPJ and D-APPJ setups are shown in Fig. S1. The concentration of ozone, measured immediately 
after 30 min treatment with the ID-APPJ and D-APPJ setups, is found to be 2 and 10 ppm in the gas phase, 
respectively. The OES spectra of the ID-APPJ and D-APPJ emission are recorded by the HR4000CG-UV-NIR  
instrument (Ocean Optics, FL, USA) and optical fiber (QP400-2-SR) with a diameter of 400 mm, at humidity 
of 40%. UV spectra are measured over a wide wavelength range of 200–1100 nm in gas phase for both plasma 
devices. The signal is accumulated for 3 min, and the data are analyzed using the Origin 8.0 software package. The 
emission spectra are recorded as illustrated in Fig. 1b,d.

Materials and analysis.  A 1 g/L stock solution of MB, MO and CR is prepared by dissolving the required 
amount of analytical grade dye in Millipore water. The experimental solutions (200 mg/L) are obtained by diluting 
the stock solution in accurate proportions. Degradation of the dyes is monitored via a UV-Vis spectrophotometer 
S-3100, with a wavelength resolution, accuracy, and reproducibility of 0.95 nm, ±0.5 nm and ±0.02 nm, respec-
tively. The absorption is measured at 660 nm, 460 nm, and 500 nm for MB, MO and CR, respectively, and the 
degradation percentage and energy efficiency (g/kWh) are calculated using a previously reported method22. The 
H2O2 concentration is measured using titanyl ions34,35 in the presence of sodium azide to control the H2O2 deg-
radation by nitrites. The NO concentration is detected using 4-amino-5-methylamino-2′​,7′​-difluorofluorescein 
(DAF-FM)36, and the OH concentration is measured using terephthalic acid (20 mM) by means of the pro-
cedure described earlier in ref. 37. The NO2

− concentration is measured using Griess reagent supplied by 
Aldrich Chemical Co. (USA), whereas the NO3

− concentration is obtained using the Acorn Series ION 6 meter  
(pH/mV/°C Meter), nitrate electrode, from Oakton Instruments, USA. After exposure of both plasmas (generated 
from the ID- and D-APPJs) to deionized (DI) water and the three different solutions, the pH and temperature of 
the water and of the solutions are measured using a pH meter (Eutech Instruments, Singapore) and Infrared (IR) 
camera (Fluke Ti100 Series Thermal Imaging Cameras, UK). All measurements are performed in triplicate. The 
density of the dyes in the solution is measured using an Anton-Paar DSA 5000 with an accuracy in temperature 
±​0.01 K, whereas the uncertainty in the density is ±​0.00005 g cm−3. Prior to the measurements, the instrument is 
calibrated with DI water and dry air as standards at 293.15 K38–40.

The filtrates are measured by a high performance liquid chromatography method using HPLC-UV (Agilent 
1200, USA) containing a ZORBAX SB-C18 column (2.1 mm 150 mm, 5 mm). 30/70 (v/v) of acetonitrile/10% 
acetic acid is used as the mobile phase for MB, MO and CR in HPLC-UV. The analysis is performed at 25 °C with 
0.8 mL/min flow rate of an injected 100 mL volume of sample. The final degradation products are analyzed using 
LC[QTOF]MSMS. The LCMSMS consists of a TripleTOF 5600 (quadrupole-Time of flight) tandem mass spec-
trometer (ABSciex). The TOF mass range is 40,000 m/z with a maximum resolution power of MS 25,000@m/z 
195, MS/MS 35,000@m/z 965, and a mass accuracy of <​0.05 ppm.

To understand the effect of various RONS, generated by the plasma, on the decolorization/degradation of 
the dyes, we also treat the dye solutions with ozone and nitric oxide. Ozone (O3) is generated using an ozone 
machine (Model: LAB-II, Company: OZONE TECH). Applying this technique we generate 5580 ppm of ozone, 
the concentration of which is measured using the detection tubes obtained from Gastec (Product No. 18M and 
18L, Gastec, Japan). These tubes contain a reagent which changes its color after coming into contact with the 
ozone. Note that these tubes have an accuracy of about ±​10% due to the presence of other interfering species. 
Nitric oxide (NO) is generated using a microwave plasma system. This system consists of a magnetron, waveguide 
component (WR-340 for 2.45 GHz) and a microwave plasma torch apparatus, as described in our earlier work41, 
which can generate 5712 ppm of NO.

Simulation details.  We use the so-called DFTB3 method, which is the extended and improved version of 
self-consistent charge DFTB42. For the description of the interatomic interactions in our DFTB-MD simulations, 
we employ a recently developed parameter set, called ‘3ob-3-1’43,44. In the experiments the dye molecules are 
surrounded with a water layer. However, due to the high computational cost of the DFTB method, the simula-
tion of the entire system, including the water layer, requires a prohibitively long calculation time. Moreover, to 
study in detail all possible bond breaking and formation processes upon OH radical impact, and to gain some  
(limited) statistics, we need to perform a large number of DFTB-MD simulations. Therefore, we consider the 
model systems in vacuum, and perform 100 DFTB-MD simulations for each dye molecule; hence, 300 DFTB-MD 
runs are conducted in total. Subsequently, we also analyze the most often occurring reactions, as obtained from 
the vacuum simulations, by performing simulations for the “real” water-stabilized structures, i.e., the systems in 
a water environment.

Figure 13 displays the model systems (in vacuum), which are used to study the reaction mechanisms and 
to gain some limited statistics. The MO and MB molecules (containing 36 and 39 atoms, respectively) are each 
placed in a box with size of 25 Å ×​ 25 Å ×​ 25 Å, whereas CR (containing 70 atoms) is positioned in a larger simu-
lation box, i.e., with size of 30 Å ×​ 30 Å ×​ 30 Å. These box sizes are large enough to randomly create a single OH 
radical around the structures. The geometry of the systems is optimized using the conjugate gradient algorithm. 
The systems are then equilibrated for 25 ps in an NVT ensemble (i.e., a system with constant number of particles 
N, volume V and temperature T), at 300 K, employing the Berendsen thermostat45 with a coupling constant of 
100 fs. We use a time step of 0.5 fs in all simulations, i.e., during the thermalization, as well as during the particle 
impact simulations. Periodic boundary conditions are imposed in all three directions. Subsequently, a single OH 
radical is randomly created around the structure with a minimum distance of 5 Å from the system. This is done to 
avoid initial interactions between the OH radical and the system due to long distance interactions (i.e., Coulomb 
and van der Waals interactions). The impact simulations (i.e., 100 DFTB-MD runs for each structure) are per-
formed for a total simulation time of 30 ps (i.e., 6 ×​ 104 iterations) per simulation, which is long enough to realize 
bond breaking and formation in the structures.
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After the calculations with these structures in vacuum are completed, we then use the water-stabilized struc-
tures (i.e., the structures in a water environment) for the analysis of the most frequent reactions. In these cases 
we place the OH radical closer (at ~2 Å) to the position where it should react (according to the vacuum sim-
ulations), to avoid excessively long calculation times in the DFTB method. The systems surrounded by water 
are also prepared in the same way as the aforementioned method. However, they are placed in smaller boxes  
(i.e., 20 Å ×​ 20 Å ×​ 20 Å for MO and MB, and 25 Å ×​ 25 Å ×​ 25 Å for CR, respectively), as the OH radical is placed 
closer to the structures. The structures are also thermalized using the NVT ensemble, but for a shorter simulation 
time, i.e., 5 ps, due to the high computational cost of the DFTB method. Our calculations show that this time is 
sufficient for equilibration of the systems. Subsequently, MD simulations are performed, but now for only 5 ps 
(i.e., 104 iterations), due to the severe computational cost of DFTB. Since the OH radicals are positioned close 
enough to their reacting positions, this time is sufficient for the reactions to occur.

Statistical analysis.  All values are represented by the mean ±​ S.D of the indicated number of replicates. 
Statistical analyses of the data were performed using student’s t-test to establish the significance between data 
points, while the significant differences were based on *P <​ 0.05 and **P <​ 0.01.
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