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Systems in nature capable of collective behaviour
are nonlinear, operating across several scales. Yet
our ability to account for their collective dynamics
differs in physics, chemistry and biology. Here,
we briefly review the similarities and differences
between mathematical modelling of adaptive living
systems versus physico-chemical systems. We
find that physics-based chemistry modelling and
computational neuroscience have a shared interest
in developing techniques for model reductions
aiming at the identification of a reduced subsystem
or slow manifold, capturing the effective dynamics.
By contrast, as relations and kinetics between
biological molecules are less characterized, current
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quantitative analysis under the umbrella of bioinformatics focuses on signal extraction,
correlation, regression and machine-learning analysis. We argue that model reduction analysis
and the ensuing identification of manifolds bridges physics and biology. Furthermore,
modelling living systems presents deep challenges as how to reconcile rich molecular data
with inherent modelling uncertainties (formalism, variables selection and model parameters).
We anticipate a new generative data-driven modelling paradigm constrained by identified
governing principles extracted from low-dimensional manifold analysis. The rise of a new
generation of models will ultimately connect biology to quantitative mechanistic descriptions,
thereby setting the stage for investigating the character of the model language and principles
driving living systems.

This article is part of the themed issue ‘Multiscale modelling at the physics—chemistry—
biology interface’.

1. Introduction

A fundamental challenge for most, if not all, scientists is how to advance from observations
of data to a causal understanding of what goes on behind the scenes thereby coming
to grips with the generative processes producing observations. Succeeding entails (some)
predictive power because once the causes are known, their consequences and origins can be
systematically investigated from the underlying physical laws, which in turn can be used for
experimental tinkering, thereby assessing whether the consequences are in accordance or not
with the predictions. Clearly, because correlations not necessarily imply causation, a scientific
understanding of the world in terms of causes and effects is challenging as already stressed
by major thinkers from Aristotle to Hume. With the scientific revolution gaining momentum
in the seventeenth century, the notion of mathematical modelling using equations became the
efficient language of choice to understand and predict events in the natural world [1]. Four
hundred years later, we are in a situation where vast amounts of data, of a large variety, often
referred to as Big Data are being produced from new technical platforms monitoring events in the
natural world. Hence, there is urgency in developing and using advanced mathematics in order
to process and in particular to understand the generative processes behind the data. Thus, we
need theory in the form of equations capturing the causal generative processes [2-6]. In contrast
with the established modelling culture in physics and in part in chemistry, biology is still to
a great extent collecting and organizing empirical observations. However, with the accelerated
data production capabilities in biosciences, we would argue that there is an emergent need to
understand the biological systems producing the data beyond statistical correlations. Instead,
of mathematical modelling we have witnessed the emergence of fields such as bioinformatics,
focused on management, signal extraction and statistical and machine-learning based analysis
of the large and diverse data [7]. The medical and biological communities are in this narrow
sense forced to accept the infusion of computational techniques for data analysis. In practice,
statistics and machine-learning methods have therefore become increasingly important to find
patterns or correlations in complex datasets, whereas mechanistic mathematical modelling has
not become mainstream.

In our view, we find two contrasting perspectives on the topic of mathematics in general
and computational modelling in particular in biosciences. On the one hand, modelling living
systems and diseases appears unrealistic; possibly, if we wait a century or two then we may
have assembled all the facts and observations [8]. This is a viewpoint not uncommon in the
life-science community in general and among medical doctors in particular. The idea being
that we need to have ‘all’ the experimental facts on the table before even embarking upon
such an ambitious modelling task. In short, this line of thinking could be one of the reasons
why mathematical modelling is not and has not (yet) become mainstream within medicine
and biology.
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At the other end of the spectrum, we find the view that modelling biological systems is
relatively speaking straightforward. As the governing equations of atomistic systems are well
defined, there is no doubt that modelling is useful and interesting. This view comes through most
clearly among investigators with training in the hard sciences such as physics, chemistry and
mathematics.

In this short perspective review, we argue that techniques for analysing and reducing complex
mathematical models, as developed in physics and chemistry, are useful for current modelling
efforts in biology. To sum up, the existence of regularities in biology implies existence of manifolds
in a geometrical sense. Furthermore, as modelling biological systems is challenging due to
inherent modelling uncertainties such as deciding on the nature of the equations, which variables
to select and how to determine model parameters, low-dimensional systems analysis will become
an important tool in mitigating the uncertainties in modelling living systems. Finally, fuelled by
rich molecular data in biology, we anticipate a new generative data-driven modelling paradigm
in biology integrated with a low-dimensional manifold analysis of the governing equations. We
conclude the paper by discussing the implications for our understanding of living systems.

2. Existence of effective low-dimensional manifolds: success of modelling of
chemical systems from first fundamental quantum mechanical principles

From the standpoint of chemistry and physics, an atomistic perspective on living systems may
appear not only desirable but also conceptually straightforward. The governing equations are
known and the challenges rather include how to (numerically) perform multiscale simulations
and how to interpret the extensive simulation results. Hence, the lack of diffusion of mechanistic
mathematical modelling in biology and medicine may therefore appear perplexing from this
point of view. However, here we would like to argue that the deep challenges, which have been
addressed when modelling chemical systems from a fundamental physics basis, are not unlike
the challenges ahead of us when performing ‘forward” modelling of living systems. Here, we
therefore ask what strategies could we learn from chemical systems modelling when modelling
significantly larger collections of entities making up living systems? To this end, we will briefly
review recent developments in computational chemistry.

From a quantum point of view, wave functions describing electrons and atomic nuclei are of
primary interest, whereas a chemical viewpoint targets atoms or groups of atoms. A classical
Newtonian modelling approach of chemical systems has fewer degrees of freedom compared
with the complete underlying quantum mechanical description. This is not only a technical
question of simulation speed but the important issue is how to ‘approximate” a quantum
mechanical description using a classical approach. In part, this is a technical numerical question
but such an analysis necessarily involves considerations such as what parts and interactions at
one scale make a difference at another scale, thus addressing what is the relevant coarse-graining
given the system of investigation. Historically, some of the key ideas have been to use a detailed
(quantum) description where necessary and to use approximation of the other parts. Important
concepts in this development were the derivation of an effective potential covering both weak
and strong interactions, in combination with guiding principles such as searching for energy
minimization in order to reveal actual chemical configurations and structures. Larger chemical
systems could then be viewed as being embedded in a dielectric continuum where computer
intensive methods could be used to compute effective empirical potentials and energy minima,
thus capturing the structure and dynamics of the system without requiring full-scale quantum
mechanical simulations of the system. Yet, classical potential-based methods are as a rule only
valid when interacting molecules are weakly perturbed or the number of elements considerably
reduced. For example, the case when reactants produce new molecules is challenging to address
with a classical approximation as this situation represents a strong perturbation. One concept
is therefore to use a hybrid approach in the sense of performing quantum chemical modelling
where necessary and then invoke those computations in a larger context handled by a classical
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formulation. These developments have led to several Nobel Prizes, where the latest in 2013 was
on developments of multiscale methods for complex systems [9]. Conceptually, this is not too
dissimilar to the idea in finite-element computations where increased numerical accuracy using
a finer grid at those space coordinates where ‘interesting’ actions, or stress, takes place. See also
related work on density functional theory and simulation [10].

From this brief overview, we emphasize two points. First, these advances in computational
chemistry are not only technical but actually teach us principles of collective structure and
dynamics across scales that actually are at work in nature. Hence, principles such as the existence
of effective potentials, energy minimization, as discussed above, are fundamentally a reflection of
the existence of natural laws, which make a shorter description of a system than itself possible. We
have no reason to believe that this would not apply when modelling living systems. Hence, we
should expect the existence of simpler models than the living systems themselves. We therefore
conclude that we anticipate the existence of analogous effective potentials yielding sub-manifolds
representing the surface upon which the effective dynamics in living systems takes place. We
do acknowledge that logically it could well be the case that living systems are computationally
irreducible in some sense, which inanimate systems are not. However, it is a reasonable working
hypothesis that the modelling situation does not differ in such a fundamental manner at the
border between living and non-living systems. For a different viewpoint, see for example the
seminal work of Robert Rosen [11]. Second, while the existence of low-dimensional manifolds
in nature is reassuring, it does not follow how to actually find such structures. In the case of
physics, where we have the equations, and a chemical readout we can work out the computational
connections between the levels if we have good insight into the specific problem. Yet, how to
automatically in a machine driven manner discover the relevant features, i.e. to perform a coarse-
graining of a system, is unclear. Another way to pose this question is to ask, which are the relevant
order parameters for the problem at hand? In conclusion, the challenges and conceptual results
when bridging scales between physics and chemistry models are expected not to be dissimilar
when bridging scales between models of biological living systems and models of their underlying
chemical parts and interactions.

3. Phenomenological modelling of biological systems at some scale in the face
of uncertainties on equations, features and parameters

Now, turning to biological systems, encompassing significantly larger groups of atoms, the
modelling situation is quite different when considering dynamical questions beyond structural
biology. In essence, there is no fundamental ground, analogous to a quantum mechanical
description underlying atomistic modelling and simulation in chemistry nor is it in any way
feasible or desirable to aim in itself for an atomistic description of larger scales when modelling
living systems. Here, we distinguish between whether it would in principle be conceivable to
perform an atomistic model-based description of a living system versus whether it would be
a useful approach in terms of understanding and deciphering governing principles of living
systems. Independent of this distinction, we posit that the existence of lower dimensional
manifolds would facilitate our understanding of living systems. However, it is unclear how to
find such reduced descriptions in practice. We will return to this fundamental challenge in the
concluding section in this paper. In practice, when modelling biological systems we are faced
with at least three levels of uncertainty [5], which, we would argue, are more severe challenges
when compared with the case when modelling chemical systems.

First, it is therefore fundamentally unclear what the governing equations are or should
be when analysing a given part or subsystem of a living system. Hence, there are no first
principles guiding us to what kind of equations which could/should be used or alternatively
which are useful despite not being mechanistically faithful. From a physics standpoint, we could
argue that differential equations are the proper language to describe nature. These could take
the shape of ordinary differential equations capturing dynamics of point elements developing
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over time such as neural signal propagation [12]. Alternatively, partial differential equations
could be used to describe reaction-diffusion and pattern formation in biological systems [13].
Yet, adopting a computer science/logical perspective, Boolean models [14] may appear useful
whereas moving towards a statistical/machine learning perspective readily yields regression
or classifier models to appear as natural language. Clearly, this issue depends on data at hand
and the question addressed if we think of models as tools for understanding phenomena in
nature. However, in analogy with physics, we may view the models as capturing a fundamental
level of how these systems work, thus leading to considerations on what is an appropriate
language (i.e. model) capturing living systems. Our point here is that this problem is in general
fundamentally unresolved and the task of modelling living systems makes this a pertinent
problem. For example, one could even put forward an argument that living (and other) systems
are at their root information processing entities, thus advocating a language (model), which
does not necessarily refer to the underlying physical entities, such as information theory in
some shape. Yet, approaching this problem by for example striving to identify relevant and
predictive differential equation models may prove a useful path forward, aiming to discover the
fundamental information processing principles if there are any. This is necessarily a trial and
error prone approach but because we do not have access to the fundamental laws in biology we
have to try capturing the observed regularities using not only differential equations but rather
assess a suite of model languages. Following this paradigm, such models can subsequently be
systematically investigated. The overall point is that when trying to capture data with the wrong
kind of model makes the model very complex and may lead us astray. For example, describing
the temporal evolution of Heaviside functions using a Fourier basis would require numerous
coefficients in order to capture the trajectory with a certain degree of numerical accuracy. In the
case of chemical systems, we ‘know” the form of the underlying equations whereas this is not the
case for living systems.

Second, assuming that we could home in towards an appropriate formalism, the modeller is
faced with a severe feature selection problem, which translates into the question of the identity
of the relevant state variables for the system under investigation [15,16]. On the one hand, all the
entities that are measured from the system could define the set of state variables to be represented.
Such a model could easily become very complex and possibly a certain subset of combinations
of measured state variables could be a more faithful or useful representation of the governing
dynamics driving the system. On the other hand, the challenge of latent variables, entities not
measured, but affecting the governing dynamics, introduces severe modelling challenges. For
example, data hungry Bayesian modelling techniques assume as a rule faithfulness, i.e. the
absence of latent variables [17]. In contrast with the case with chemical systems modelling, we
can determine whether the macroscopic approximation is sufficiently good using the quantum
equations as a reference. When the macroscopic model is good enough, we have arrived at a
description which is amenable for deep analysis.

Third, on top of these two major principal problems, every computational model of living
system comes equipped with a huge number of parameters, which cannot as a rule be measured
or have not yet been measured experimentally. This is referred to as the parameter uncertainty
problem. Last, inspecting available mathematical models in biology and medicine [18] reveals
that they are as a rule very sensitive to perturbations either in the parameter space or in the
model structure.

This situation has led to significant scepticism about the prospect of modelling in life science.
On the face of it, the biological or medical investigator appears to have a strong case against using
mechanistic models. We would like to argue that the impact of these principal challenges taken
together makes the modelling in biology different in nature when compared with the situation in
physics and chemistry. One way to deal with this situation in biology is to shift focus to a narrow
well-defined system where the investigator has knowledge about the relevant state variables,
and can perform targeted experiments to estimate parameters of the system. A paradigmatic
historical success story, awarded with a Nobel Prize, is the elucidation of the chemical basis of
the propagation of a nerve impulse, referred to as an action potential in neurons.

OB 55 S i B



This work, carried out in the mid twentieth century, prior the molecular revolution in
life science, has in practice defined how to do modelling in biology. The classical model of
Hodgkin & Huxley [19] of the action potential in the Atlantic squid giant axon was indeed
a milestone. The action potential is used for communicating signals (information) over large
distances when the potential propagates over the axon, modelled by a set of coupled nonlinear
differential equations associated with several membrane channels with specific time- and
voltage-dependent properties. The Hodgkin-Huxley model of the membrane potential in the
squid giant axon provides an informative example of both the useful and artificial aspects
of model building. The squid giant axon is itself a model system; it is sufficiently large (0.5
mm) to allow access for electrodes while still being a close analogue of conventional-scale
neurons. The potential across the axonal membrane is a consequence of relative concentrations
of sodium and potassium ions, and time variation is caused by the relative rate of active
transport into the cell versus ion loss through leakage and gated channels, plus a small
contribution from the capacitance of the lipid bilayer itself. The complex spiking behaviour
of neurons largely derives from the nonlinear behaviour of voltage-gated channels. Hodgkin
& Huxley were able to identify separate voltage-dependent activation and inactivation effects
in these channels, which explain refractory effects that earlier models added ‘by hand’. They
also determined that the ion species had different dynamics and the overall potential needed
to be the sum of distinct contributions. The resulting set of ordinary differential equations
successfully describe both single activation and spike-train generation behaviours observed
in nature.

This illustrates a paradox of modelling; the Hodgkin-Huxley model provides a very useful
description of an axon. They successfully identified the minimal set of processes they needed
to include to produce a faithful model, but their parametrizations tell us little about the
actual underlying mechanisms. Conversely, detailed knowledge of the actual membrane channel
proteins would not present an easy starting point to reproducing the macroscopic behaviour the
model describes. This remarkable piece of work has defined a modelling paradigm in biology.
It provided a coherent explanatory framework, accounting for several observations regarding
the role(s) of ionic flows leading to a predicted speed of propagation of the action potential.
Notably, this was achieved without a molecular description of the underlying circuitry in terms
of ion channels and the internal organization of the cell. Moreover, it was not based on or
depended upon a fundamental quantum mechanical description of the system. On the contrary,
the approach was in essence classical in a physical sense, where the axon could be viewed as
firm phenomenological ground to be investigated. This has not only defined a framework for
the analysis and modelling of excitable cells across biology but also served as a paradigm in
the analysis of cell differentiation, apoptosis and numerous other cellular dynamic processes
in biology. Luckily, or rather because of a clever choice of model system, there were no other
strong correlations at the microscopic level in the axon that interfered with the governing
dynamics of the four Hodgkin-Huxley equations, which were sufficient to account for the
experimental observations. However, the reason for success, the choice of a narrow model
system, also entails the reason for the limited generality and usefulness when investigating
larger systems. Clearly, to investigate large (neural) systems, the number of equations and
parameters explode. We would argue that the few success stories of modelling in biology
share these characteristics. To overcome the three faces of uncertainty, discussed above, the
strategy has been to investigate a small system, in close conjunction with an experimental
set-up, where there are good arguments defining a phenomenological basis which should
be taken for granted, i.e. to avoid the myriad of molecular, chemical complexities down to
the level of quantum mechanics. The main problem with these success stories is that they
do not readily scale to either other or larger systems. In parallel, during the last decade
there has been ambitious projects targeting whole-body models, or a virtual physiological
human, as a paradigm [20]. We will return to this issue in the concluding section reflecting
upon whether small-scale bottom-up modelling is the only way forward when quantifying
living systems.
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4. From forward modelling and finding manifolds to inverse techniques for
model design: a pending synthesis?

Now, examining biological systems in greater detail or investigating larger systems produces
complex nonlinear phenomenological models. All such large models are as a rule afflicted by
the three issues of model formalism, variable selection and parameter problem, yielding fragile
and sensitive models. We would like to argue that this state of affairs in combination with the
scarcity of validated predictions from modelling work has created scepticism towards modelling
in biology in general and medicine in particular. Yet, there has been and is currently a flurry of
work within the computational communities on developing tools for understanding, analysing,
and constructing these kinds of phenomenological biological models.

In brief, model reduction has been a recurring theme across several sub-fields of computational
biology and neuroscience with special reference to dynamical forward models. The idea being
that if a complex nonlinear model can be reduced in complexity (fewer state variables and
parameters), then the investigator can more readily discern which parameters and state variables
are more crucial for the model behaviour, thus facilitating model analysis and understanding. One
example is the reduction of the four-dimensional Hodgkin-Huxley model to a two-dimensional
FitzHugh-Nagumo (FHN) system [21]. The core idea is to perform a time-scale separation
into a fast and slow subsystem [22]. This has been used in a number of model reduction
studies including the cell cycle [23,24]. Such a reduction facilitates the identification of critical
parameter(s) in the system, often related to how the fast system is being slaved by the slow state
variable, corresponding to a slow manifold. This mode of analysis has also been extended to more
complex chemical models and a large body of work is currently addressing how to identify the
slow invariant manifold in more complex high-dimensional nonlinear systems [25]. In the case
of neuron models, extensive analytical work has resulted in effective low-dimensional models
such as leaky integrate-and-fire (LIF) neuron model [26]. These theoretical advancements have
made it feasible to construct larger circuit models using Hodgkin-Huxley, FHN or LIF models of
the individual neurons, depending on the needed level of detail required for the specific systems
analysis at hand. It should be stressed that such phenomenological circuit models have provided
important insights despite that they are not grounded in faithful molecular representations.
However, to gain such insights, beyond simply numerically solving these models repeatedly for
different parameter values, theory has been essential [27]. Again, theory in this context means
techniques for model reduction in order to identify the critical elements in the circuit model. The
second major idea is to employ and to develop modified versions of mean field techniques for
computing effective smaller models representing and capturing the ‘essential” system dynamics
occurring in the full-scale yet simplified model from a biological standpoint [28]. For example
in [29], the authors derived explicit analytical expressions in a neural working memory circuit
model, for the capacity to hold memories over time, where the original system was defined by
thousands of nonlinear Hodgkin-Huxley equations.

In essence, these two complementary approaches of slow manifold computation and mean
field reduction have been instrumental to facilitate analytical insights as well as enabling large-
scale models without being forced to rely entirely on brute force numerical calculations. Yet,
it is difficult to generically apply these techniques because in many cases specific adaptations
have to be made depending on the equations at hand and depending on what the scientific
question is. Conceptually, these methods effectively accomplish a coarse-graining of a complex
nonlinear system. It is an open question whether such coarse-graining should be viewed as a
practical tool to understand a complex system, or if a natural living system actually makes use
of the effective reduced system dynamics in order to be more efficient in operating as a fast,
adaptive living system capable of predicting future events and actions. Here, we like to highlight
the conceptual similarity with the theoretical and numerical work referred to in our first section on
bridging between a quantum mechanical description of a chemical system and effective equations
incorporating dynamics and structure of groups of atoms. Yet, forward modelling and analytic
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dissection have been less visible in the computational biology community when compared with
investigators working in computational neuroscience. Part of the reason being that experimental
techniques in neuroscience such as recording electrical and chemical activity over time lend
themselves naturally to ask dynamical questions, thus requiring time-dependent models to
understand the generative processes. This is possibly even clearer in the chemistry community. By
contrast, the molecular revolution in life science fuelled by rapid advances in technical capabilities
in sequencing and molecular profiling of living systems, from tissues to single cells, has as a
rule generated more static data. This has created a situation where inverse problems have had a
higher priority on the research agenda in computational biology, in preference to forward explicit
dynamical modelling. The generic situation could be described as given a set of input data,
infer a (statistical) model consistent with the observations. Examples include (i) from a string
of amino acids to inference of the folding structure (http:/ /predictioncenter.org/), (ii) from a set
of DNA sequences reconstruct (infer) the evolutionary tree consistent with the observations [30],
and (iii) from a set of molecular profiles (expressed genes, proteins, metabolites) to reconstruct
(infer) a graph representing a molecular interaction network [31,32]. As our understanding of
the governing equations in each of these examples from first principles is limited, statistical
and machine learning techniques have become very important in addressing the corresponding
inverse inference challenges in different domains.

In summary, there is a gap within the bioinformatics and computational biology communities
between forward modelling approaches assuming a phenomenological ground including a form
of the governing equations versus inverse problems, which in contrast are heavily dominated
by statistical and machine-learning related techniques. Here, we find it evident that it would
be valuable if this gap could be mitigated. Merging rich molecular data with powerful forward
modelling techniques holds the promise to uncover deep principles of relevance for addressing
Schrodinger’s quest on ‘what is life’.

To this end, we think that two emerging trends will become important in bridging this gap.
On the one hand, advances in molecular profiling techniques and experimental designs in the
analysis of either populations or single cells are increasingly producing temporal data reflecting
transitions between different biological states or effects of external perturbations. Examples
include work in stem cell biology on how to either reprogram stem cells into specialized niches
or transform a differentiated patient-derived cell like a fibroblast into therapeutically relevant
cells such as dopamine-producing cells. Effects of drugs will increasingly also be analysed in
a temporal mechanistic context. Thus, we anticipate that forward modelling techniques will
enter these and other areas in biology. This is similar to the development over the last two
decades in neuroscience where increasing amounts of complex temporal data have fuelled
theoretical and computational neuroscience. Secondly, the molecular revolution in life science
produces what could slightly misleadingly be classified as big data. Large datasets without a
fundamental grasp of the generative models are as a rule interrogated with machine learning
techniques in combination with statistical tools. Examples of this growing paradigm are abundant
in leading biomedical journals. Yet, in our hands we would rather characterize these datasets
as heterogeneous, defined by their multitude of different data types, each relatively small, in
contrast with referring to them as ‘big data’. This view entails that the notion of data-integration
becomes crucial in order to connect observations at different scales [33,34]. The data typically
include genetic (DNA) information, activities of expressed genes, proteins and metabolites, in
cells, tissues, organs and clinical data in human or experimental model systems. Clearly, data-
driven methods have been and are currently being developed to fuse and integrate such diverse
data. However, we anticipate that model-based methods will become crucial in order to link and
comprehend rich and different molecular data types sampled from a given system. In summary,
these two developments of increased production to complex temporal data, involving several
data types, need model-based tools for analysis, thus in the end mitigating the gap between
inverse and forward modelling approaches in biology. Given such a development, we expect
model reduction techniques as previously discussed to become central in biology in general and
computational biology in particular.
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5. Molecular and atomistic simulations of small living systems

Thus far, we have reviewed and discussed modelling work from quantum mechanics to more
complex chemical systems, and the current status of both forward modelling and inverse data
analysis in biology. We highlighted the similarities in the necessity of identifying governing
principles on how to bridge across scales as well as delineating their domains of validity. Yet,
one flagrant gap is between efforts of modelling complex chemical systems, with a rigorous
foundation, and approaches in biology, which assumes a phenomenological basis for constructing
more complex and larger models. We can therefore ask to what extent can we account for
a biological system in terms of collective dynamics of atoms subserving nonlinear chemical
dynamics?

Interestingly, there have been a couple of proof-of-principle studies demonstrating that
by collecting and integrating available molecular data into computational models, accurate
predictions of interventions into the system can actually be produced. For example, a
computational model [35] of Halobacterium salinarum NRC-1 was first constructed through
massive data integration and machine learning driven inference of the regulatory network, a
graph representing the molecular components and their interactions in the system. Next, using
changes in more than 70 transcription factors in relation to a dozen environmental factors, the
investigators could on the basis of the model, predict dynamic transcriptional responses of all
these genes in close to new experiments. The authors concluded that their approach could be
used to construct similar kinds of models for any organism using only a modest number of
experiments. As second example of similar nature is the ambitious whole-cell computational
model of the life cycle of the human pathogen Mycoplasma genitalium [36]. The model accounted
for all annotated gene functions and was validated against a broad range of data. Now, the model
encompasses approximately 500 genes and their interactions. To deal with the different data
types (DNA, RNA, proteins, metabolites, environmental conditions), the authors had to resort
to a ‘manual’ coarse-graining in the sense of sub-dividing the system into 28 modules on the
basis of our current understanding. Overall, these two examples demonstrate the feasibility of
formulating predictive yet mechanistically faithful models of complete but small living systems.
However, these efforts are by no means automatic and still require substantial domain knowledge
on how to integrate different data types, and how to coarse grain the system. Despite this
significant advance, we are faced with model and parameter uncertainties, and how to effectively
understand or identify the governing manifold(s) of these highly complex nonlinear models.
Researchers in Japan have taken this second example one step further in that they have produced
a complete atomistic model of the cytoplasm in Mycoplasma genitalium, thereby integrating an
atomistic physics description with biochemistry [37]. They used a known metabolic reaction
network as a basis, then replacing the components with their respective atomistic representation.
While the model bridges by its very construction several spatial scales, it is not clear how to
validate the simulation results. However, their impressive work demonstrates a possible road
to grounding phenomenological biological models towards an atomistic level thereby making
contact with a representation of groups of atoms, in principle derivable from a quantum point
of view. There are other emerging examples of this style of modelling, such as the prediction of
nucleosome positioning using atomistic energy minimization principles [38].

This bottom-up style of modelling raises a couple of issues for discussion. First, it should
be noted that the models themselves do not necessarily provide insights, in part due to their
complexity. To wit, why and how are these models working, which aspects are essential and
which are not? The advantage is that the models can be systematically investigated using model
reduction techniques in order to grasp the effective potentials or sub-manifolds driving these
systems. The outcome of such an analysis may be the design of smaller effective models capturing
the dynamics of these systems, thereby possibly discovering design principles. Complementary,
in such smaller systems we can also ask whether other model languages including information-
based approaches could equally well capture the function of these systems. For example,
using appropriate reduction techniques applied to different models capturing phenomenological
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regularities expressed in different formalisms may converge to a common core of dynamical
design principles. These could in turn possibly be expressed in different terms using information
theory. The outcome of such a programme could be a view of living systems, which is less
dependent on the material basis, akin to the standpoint of functionalism in philosophy of mind.
Last, we may also define or discover quantities operating at the level of organisms, which are
not visible at the microscopic scale. This does not exclude that such quantities are in principle
derivable from ensemble of microscopic variables, in analogy with the concept of temperature in
statistical mechanics

6. Concluding remarks: the modelling landscape and beyond

Figure 1 summarizes schematically the overall modelling landscape as presented in this brief
review. Here, we organize the different activities along two axes. On the one hand (left-
hand side of the horizontal axis), mechanistic models can have a strong explanatory power in
revealing causes and consequences of different interventions, thus being predictive with respect
to mechanisms. At this end, we find bottom-up modelling approaches such as fundamental
physics and atomistic modelling of chemistry and biology. At the other end at the horizontal
axis, we have purely data-driven analysis with an emphasis on pattern and correlation detection.
Such models may be predictive in the sense that if we observe some variables we can readily
expect other combinations of variables to co-occur due to correlations or statistical relationships.
This is useful in a biomedical biomarker context. The bulk of bioinformatics research and
development dealing with molecular data in biology is essentially of this kind. In between these
two extremes, we first find what is referred to as reverse engineering or inference of data into a
static network model or a graphical probabilistic model [39]. This approach may suggest causal
relationships between the variables. This is a major activity occurring in research areas also
referred to as network biology or systems biology. Phenomenological modelling on the other
hand makes explicit representation of mechanisms, in a small or large model, and as discussed
previously being more or less valid depending on the assumptions, but eventually aiming for
causal explanations and predictions of the effects of an intervention. The other vertical dimension
represents the confidence or the certainty we have in what comes out from these different
approaches. Note that when we state that we have low confidence in a model and the output,
i.e. large uncertainty (top of vertical axis), it may depend on different combinations and aspects
of the uncertainty. For example, we can be very confident about the nature of equations, but less
certain how to determine the model parameters. In large-scale atomistic simulations of biological
systems, we can readily represent the dynamical equations at the atom scale but it is less clear
how to determine the parameters of the active biological system when there is a surrounding
environment such as water and being situated in a cellular context. At the other end (right-hand
side of the horizontal axis), using a statistical model while we could compute confidence intervals
for parameters given the data, the subset of predictive variables are easily underdetermined and
there may be latent variables outside the model. In summary, there are several sources of such
fundamental uncertainty in addition to technical variability of the data itself. As illustrated in the
figure, both phenomenological modelling and reverse engineering techniques are afflicted with
strong uncertainties. For example, comparing close to 40 different reverse engineering algorithms
on a reference dataset revealed that each of them captured different yet incomplete aspects
of the regulatory gene network [40]. Furthermore, it is important to clarify which algorithms
preserve or capture which aspects of the generative network [41,42]. Thus, our analysis clearly
highlights the need for development of modelling techniques with increased causal explanatory
power where we must reduce the uncertainties dramatically. Now, at this point it would be
tempting to believe that more data will solve this challenge. More data are good but measuring
more entities also increases the search space of putative causal interactions, thus easily leading
to larger models where we would still be in an unfavourable low data-to-model-complexity
ratio. We would therefore like to argue that we need other complementary ideas such as top-
down driven constraints, in order to tame the combinatorial complexity when considering huge
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Figure 1. A schematicillustration of the modelling landscape in physics, chemistry and biology. The horizontal axis represents
the spectrum from forward explicit modelling of a system to the purely data-driven statistical analysis. Our degree of certainty
of the models and the outcomes is captured by the vertical axis.

sets of molecules. It is a completely open issue whether this is a good approach and how to
find such principles. Interestingly, there appears to be an emerging literature in this direction
using ideas from compressed sensing and sparse constraints (e.g. [43-45]). There is a very
informed discussion of these issues in [46,47]. Here, we have argued that using technical tools
and insights derived from modelling reduction analysis, as practiced in computational chemistry
and neuroscience, we may find hints on how to search for effective models. In our hands, what is
needed is an integration of a data-driven approach identifying the effective components spanning
the low-dimensional space in the data, in combination with the functional mathematical form
of the expected manifold. We refer to such a development as the next generation modelling
paradigm for living systems (centred at the origin of figure 1). In summary, we think this
representation of the modelling landscape of selected parts across physics, chemistry and biology
indicates where we need to increase efforts and progress in order to bridge between what can be
perceived as modelling silos.

Next, we would like to clarify that our view on modelling is agnostic with respect to the
issue of reductionism. The vantage point is that because nature is connected, events at different
spatial and temporal scales are related to each other, within some limits naturally. Networks
in biology are one example of this principle [48]. Hence, models capturing nearby levels (i.e.
quantum descriptions of chemical systems) will thereby be amenable for model reduction and
mapping between state variables. This view is also consistent with the emergence of new
phenomena at one level not perceivable at another level, such as the example of the concept
of temperature. This elementary observation together with the existence of physical laws is the
basis for the fact that a system in nature allows a shorter description than the system itself.
Further supporting this perspective is the crucial derivation by Noether [49] that there exists a
conservation of an entity whenever there is a symmetry in the system. This has been exploited
and extended in physics, essentially leading to a global constraint on which states a system
can visit, hence an effective reduction in complexity. Whether there are analogous yet modified
notions of symmetry in living systems remains to be investigated. In summary, from the existence
of low-dimensional manifolds, we conjecture that there exists a reduced system description in

SRR 75 S i B



terms of complexity. Finally, when auxiliary bridges and modelling techniques can be developed
as outlined above with applications across biology, chemistry and physics, we will be in a
position to analyse these effective models of living systems from different vantage points. On
the one hand, we can try to extract simplifying principles for different systems at different scales
and to assess their respective validity. At this juncture, there are several promising candidate
principles, which are discussed and investigated in different systems and contexts. These include
effective potentials, free energy minimization, maximum entropy, computational mechanics,
maximum calibre, motifs in biological networks, self-organization, compressed sensing, evolution
as thermodynamics, algorithmic complexity and algorithmic laws of information [47,50-64].
These could be considered as deep principles or algorithms that systems in nature use or from
another perspective that represent efficient machine-learning principles, which may the reason
why some of them are actually used in nature.

It is out of the scope to review all these concepts and their applications. Here, we remark on
the difference between a priori assuming a principle and then using it for constraining a given
modelling task versus performing detailed modelling at different levels, and thereby discovering
which principles are at work in which contexts in nature. We have in this review stressed the
discovery aspects, i.e. revealing effective manifolds, which can readily be used as tools to validate
and test various proposed principles such as those listed above.
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