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The intestinal microbiota is a large and diverse microbial community that inhabits

the intestinal tract, containing about 100 trillion bacteria from 500–1000 distinct

species that, collectively, provide multiple benefits to the host. The gut microbiota

contributes to nutrient absorption and maturation of the immune system, and

also plays a central role in protection of the host from enteric bacterial infection.

On the other hand, many enteric pathogens have developed strategies in order

to be able to outcompete the intestinal community, leading to infection and/or

chronic diseases. This review will summarize findings describing the complex

relationship occurring between the intestinal microbiota and enteric pathogens,

as well as how future therapies can ultimately benefit from such discoveries.

This article is part of the themed issue ‘The new bacteriology’.
1. Introduction
The intestinal microbiota is the collective term describing the large and diverse

microbial community that inhabits our intestine. In humans, the microbiota con-

tains about 100 trillion bacteria from 500–1000 distinct species that provide

multiple benefits to the host. Among those beneficial functions, the intestinal

microbiota plays a central role in (i) shaping the intestinal immune system [1]

by contributing to immune system development and maturation, and (ii) nutrient

acquisition, by greatly enhancing the metabolic capacity of the gut, thus provid-

ing a range of essential nutrients for the host [2]. Another important benefit

conferred by the intestinal microbiota to the host intestine is the protection

from colonization by exogenous pathogens—a phenomenon nowadays named

colonization resistance—and from overgrowth of indigenous pathobionts

(potential pathogenic symbionts of the microbiota) [3–5]. The colonization resist-

ance, termed the ‘microbial barrier’ in the early 1980s [6], is the mechanism

whereby the intestinal bacteria form a barrier to prevent incursion by new bac-

teria of other species or other strains of the same species. This notion is well

exemplified by the range of infections resulting from the use of antibiotics,

such as Clostridium difficile infection [7], as well as by the observation that

many enteric pathogens induce stronger disease in mice under germ-free con-

ditions (in the absence of an intestinal microbiota) or following antibiotic

treatments [8–12] (figure 1). Mechanisms that regulate the ability of the micro-

biota to restrain pathogen growth are complex and include competitive

metabolic interactions, localization to intestinal niches and induction of host

immune responses [4]. Pathogens, in turn, have developed strategies in order

to escape from colonization resistance conferred by the commensal community.

Unexpectedly, the intestinal microbiota can also play a role in providing nutrients

to some intestinal pathogens, or may play a direct role in activating virulence of

pathogenic bacteria that will otherwise stay avirulent. In addition, in some par-

ticular conditions, the intestinal microbiota may actually drive disease, as is for

example the case for inflammatory bowel diseases. This review will summarize

these concepts and will describe the most recent findings elucidating the
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Figure 1. Microbiota/host homeostasis in the intestine. (a) The intestinal microbiota plays a central role in intestinal barrier maintenance (mucus production and
intestinal tight junctions maintenance) and immune system maturation (lymphocytes development, production of IgA and antimicrobial peptides). (b) In the absence
of an intestinal microbiota, enteric pathogens can induce epithelial damage and have the potential to disseminate. AMP, antimicrobial peptide; IgA, immunoglobulin A.
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intriguing relationship between the intestinal microbiota and

enteric pathogens. We will discuss how the understanding of

microbiota–pathogen interactions may ultimately lead to

new therapeutic approaches in order to treat infectious

diseases.
2. Role of the intestinal microbiota in
colonization resistance

The intestinal microbiota is playing a central role, through

multiple mechanisms, in protecting the host intestine from

pathogen colonization (figures 1 and 2).

(a) Direct inhibition of colonization by enteric
pathogens

The concept of protection of the host intestine from pathogens

by commensal bacteria, also called colonization resistance,

was first described to be the result of microorganism-mediated

direct inhibition [13]. Indeed, many bacteria directly inhibit

intestinal pathogens by competing for nutrients or by inducing

the production of inhibitory substances. One example highlight-

ing the former is the finding that the commensal Bacteroidetes
thetaiotaomicron consumes carbohydrates used by the pathogen

Citrobacter rodentium, thus leading to competitive exclusion of

the pathogen from the intestine [14] (figure 2). By consuming

common limited resources, the gut microbiota induces the star-

vation of competing pathogens [4]. Through the production of

specific metabolites, the intestinal microbiota can also modify

the host environmental conditions, then compromising patho-

gen growth and/or virulence. Butyrate, a short-chain fatty

acid (SCFA) produced by the intestinal microbiota, can downre-

gulate the expression of several virulence genes of Salmonella
enterica serovar Enteritidis (S. Enteritidis) and Typhimurium

(S. Typhimurium) [15] and has been shown to inhibit the

growth of enterohaemorrhagic Escherichia coli (EHEC) [16].

Some Bifidobacteria strains can also protect from EHEC infection

through the production of acetate [10].

The intestinal microbiota community is also able to produce

a large number of broadly bioactive small molecules that act

toward other members of the intestinal microbiota and/or
toward enteric pathogens. Bacteriocins, for example, are antimi-

crobial peptides that can have narrow to broad activity

spectrums and can selectively kill and/or inhibit the growth

of competing bacteria [17]. As an example, Bacteroides thuringien-
sis is able to secrete a bacteriocin (thuricin CD) that directly

targets spore-forming Bacilli and Clostridia, including C. difficile
[18]. Similarly, some strains of E. coli are able to produce bacter-

iocin that can directly inhibit the growth of the EHEC enteric

pathogen [19], and anti-Listeria bacteriocins were found to be

expressed by Enterococcus faecium and Pediococcus pentosaceus
[20,21]. Recently, a computational prediction of biosynthetic

gene clusters that encode small molecules in the human gut

microbiota identified almost 600 candidate clusters, including

many newly annotated antimicrobial peptides, suggesting

that these small molecules might mediate commensal–

commensal and commensal–pathogen interactions [22].

Another in silico study identified 74 putative-encoding bacterio-

cin clusters in the gastrointestinal tract, based on the human

microbiome project’s reference genome database [23,24].

Another somewhat direct inhibitory effect of the intestinal

microbiota toward pathogens is through a mechanism involv-

ing bile acids. Produced in the liver and delivered into the

duodenum, bile acids are subsequently modified by the gut

microbiota into a myriad of secondary bile acids that can act as

anti-bacterial factors. Highlighting the role of the intestinal

microbiota in secondary bile acid production is the observation

of very low or undetectable levels in germ-free animals [25]

and a dramatically reduced production following antibiotic treat-

ment [26]. The best example of a protective mechanism conferred

by microbiota-derived secondary bile acids is the observation

that the depletion of microbial members involved in converting

primary bile acids into secondary bile acids favours the coloniza-

tion of the gastrointestinal tract by C. difficile, the most prominent

pathogen exploiting antibiotic-mediated alteration of the micro-

biota [7,26–30]. Importantly, the administration of Clostridium
scindens (a bile acid 7a-dehydroxylating bacterium) is sufficient

to confer resistance to C. difficile infection in a secondary

bile acid-dependent manner. Recent works have described that

the intestinal microbiota can also indirectly control enteric patho-

gens by other mechanisms, such as by shaping the immune

system and the inflammatory response (immune-mediated

colonization resistance).
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Figure 2. Intestinal microbiota-mediated colonization resistance. Examples of microbiota-mediated direct inhibition of intestinal colonization by enteric pathogens.
Intestinal microbiota prevents colonization by enteric pathogens by competing for nutrients (a) or producing inhibitory substances such as bacteriocin (b), secondary
bile acids (c) and short-chain fatty acids (d ). EHEC, enterohaemorrhagic Escherichia coli; SCFAs, short-chain fatty acids.
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(b) Immune system maturation and inflammation
process

The microbiota plays a primordial role in the maturation of the

intestinal immune system, as demonstrated by the observation

that germ-free mice are heavily immuno-depressed. Indeed, the

intestine of germ-free animals lack Peyer’s patches, and have a

reduced expression of both antimicrobial peptides and immuno-

globulin A (IgA), molecules implicated in intestinal immunity

[31–36]. An example of a member of the microbiota that contrib-

utes to the immune system development is Bacteroides fragilis,
with the demonstration that monocolonization of germ-free

micewith this bacterium is sufficient to promote the development

of CD4T lymphocytes [37]. Similarly, segmented filamentous

bacteria have been described to be sufficient to drive the differen-

tiation of CD4T cells into Th17 cells, important for protection

against the intestinal pathogen C. rodentium [38–41].

The intestinal microbiota is also an inexhaustible source of

ligands for the innate immune system. Antibiotic treatment is

sufficient to increase susceptibility of mice to dextran sodium

sulfate (DSS)-mediated colitis, a phenomenon that can be res-

cued by the administration of Toll-like receptor ligands [42].

Such a finding initiated the concept that pattern recognition

receptor signalling originating from the intestinal microbiota

is necessary for the steady-state protection of the intestine

[42,43]. This has also been illustrated by the discovery that
bacterial flagellin from the intestinal microbiota is able to pre-

vent and cure rotavirus infection though a mechanism

requiring flagellin receptors Toll-like receptor 5 (TLR5) and

NOD-like receptor C4 (NLRC4) and involving interleukin-

22 and interleukin-18 production [44]. Bacteria belonging to

the Clostridium group cluster XIVa are able to induce the

development of anti-inflammatory T regulatory cells [45],

and SCFAs derived from the intestinal microbiota play a

central role in maintaining the balance of inflammatory and

anti-inflammatory T cell subsets [46–49]. Importantly, some

TLR ligands, such as LPS, are modified by the host in order

to be less bioactive, indicating the existence of mechanisms

to detoxify such pro-inflammatory molecules, thus avoiding

over-activation of the intestinal immune system in response

to the commensal bacterial population [50–52]. All these

reports are good examples of the roles played by the micro-

biota in the maturation of the intestinal immune system,

where the intestinal bacterial population can generate pro-

inflammatory or anti-inflammatory responses, both central

for avoiding over-activation of the intestinal immune

system but conferring protection against enteric pathogens.
(c) Intestinal barrier maintenance
Another mechanism by which the intestinal microbiota protects

the intestine against enteric pathogens infection is by acting on
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the ‘strength’ of the intestinal barrier, such as the thickness and

composition of the mucus layer, as well as the maintenance of

the intestinal tight junctions. It is indeed primordial for the host

to keep the intestinal microbiota at a safe distance from the intes-

tinal epithelium, in order to minimize the appearance of tissue

damage and inflammation [53]. The intestinal microbiota is

restricted to the intestinal lumen by a mucus layer that overlays

the epithelium. Treatment of mice with antibiotics reduces the

mucus layer thickness and results in an increased contact of the

bacteria with the intestinal epithelium monolayer that can be

highly deleterious in the context of an enteric pathogen infection,

as exemplified with C. rodentium [54]. In addition, the intestinal

microbiota maintains the intestinal barrier though the production

of SCFAs, which are a primary nutrient for the colonic epithelium

and contribute to the control of mucin production [55,56]. Thus, a

decrease in production of SCFAs may result in the reduction of

mucus thickness/degradation of the mucus barrier.
371:20150504
3. When the intestinal microbiota leads to
enteric pathogen virulence

While all the mechanisms described above are central to pro-

tect the intestine against bacterial infection and pathogens,

the microbiota can also trigger bacterial virulence. For

example, the intestinal microbiota can also produce metab-

olites that might unexpectedly enhance pathogen virulence

expression and colonization in the gut [57–61] (figure 3a).

Bacteroidetes thetaiotaomicron, found to lead to a competitive

exclusion of C. rodentium through the consumption of similar

carbohydrates [14], can also cleave sialic acid moieties from

mucin and produce high levels of succinate that can lead to

an enhanced colonization by C. difficile [58,59]. The pro-

duction of fucose or succinate from the host mucin by

commensal bacteria can also modulate the expression of

the virulence factor ler, a master regulator of the locus of

enterocyte effacement (LEE) genes in EHEC [60,62], thus con-

tributing to EHEC virulence. Other examples of pathogens

that utilize the intestinal microbiota to facilitate their own

infection include C. difficile whose spores require by-products

from the microbiota, such as bile salts, to germinate [63] and

S. Typhimurium that utilizes di-hydrogen generated by the

microbiota for its luminal growth [64]. Moreover, micro-

biota-produced ethanolamine is used as a nitrogen source

and a regulator of virulence genes by EHEC, S. Typhimurium

and Listeria monocytogenes [65–68]. Akkermansia muciniphila, a

mucin degrading commensal bacterium that resides in the

mucus layer and that can confer protection against obesity

and metabolic disorders [69,70], is also able to exacerbate

S. Typhimurium-induced intestinal inflammation by its

ability to disturb host mucus homeostasis [71].
4. When intestinal microbiota alteration by a
pathogen leads to chronic diseases

While previous examples illustrated how the intestinal micro-

biota can promote infection by enteric pathogens, some

findings also revealed that intestinal microbiota alteration by a

pathogen or a pathobiont can lead to chronic diseases. As an

example, it was shown that colonization of adherent-invasive

E. coli (AIEC, a pathovar of E. coli involved in Crohn’s disease

pathogenesis) during microbiota acquisition drove chronic
colitis in mice lacking the flagellin receptor TLR5 [72]. The obser-

vation that such colitis persisted well beyond AIEC clearance

leads to the conclusion that AIEC bacteria instigate chronic

inflammation by altering the intestinal microbiota composition

in a way that increases its pro-inflammatory potential [73].

These data suggest that AIEC, and perhaps other pathobionts,

may instigate chronic inflammation in susceptible hosts byalter-

ing the gut microbiota composition so as to give it an inherently

greater ability to activate innate immunity/pro-inflammatory

gene expression [73], leading to the concept of pathobiome

[74]. Similarly, Yersinia enterolitica infection of mice lacking the

receptor TLR1 leads to an alteration of the microbiota compo-

sition and to the generation of anti-commensal immunity, that

ultimately leads to the development of chronic intestinal inflam-

mation [75]. Thus, these two findings describe that an acute

infection can drive long-term immune and microbiota altera-

tions, leading to chronic inflammatory disease in a genetically

predisposed host.
5. How bacterial pathogens emancipate
themselves from the intestinal microbiota

As discussed above, the intestinal microbiota is playing a

central role, through multiple mechanisms, in pathogen colo-

nization resistance. However, in turn, pathogens have

evolved strategies to escape some of those mechanisms

(figure 3b–d ).

(a) The use of alternative nutrients or niches
Even if the intestinal environment is qualitatively and quanti-

tatively rich in nutrients, the large load of bacteria ultimately

leads to competition. One mechanism by which an enteric

pathogen can compete with the microbiota is by using a distinct

metabolic repertoire. Ethanolamine, which is released into the

intestine during epithelial cell turnover, is for example used

by some pathogens [76], and genes involved in the use of etha-

nolamine are preferentially found in the genomes of enteric

pathogens [77]. The foodborne illness pathogen EHEC is able

to utilize galactose, hexuronate, mannose and ribose as

carbon sources, while commensal E. coli cannot use such

sugars [78,79]. In addition, some pathogens more efficiently uti-

lize common resources, such as iron. Iron is essential for

bacterial growth, and many bacteria produce siderophores in

order to acquire ferric iron [80]. As a protective mechanism,

host cells secrete lipocalin-2, which is able to block the sidero-

phore enterobactin in E. coli, preventing iron acquisition and

proliferation of commensal E. coli in the gut [81,82]. However,

Salmonella and some pathogenic E. coli express modified enter-

obactins, named salmochelins, which are lipocalin-2 resistant,

providing an important advantage of pathogens over commen-

sals [4,81,82]. Pathogens can also reside in a distinct niche from

the microbiota. Pathogenic E. coli can, for example, localize

close to the intestinal epithelial surface, normally devoid of

commensal microbiota, through the expression of molecules

such as intimin, a LEE-encoded adhesion molecule [14].

Chemotaxis and mobility conferred by flagella enable

Salmonella to identify and swim to nutritionally beneficial

niches. Indeed, the methyl-accepting chemotaxis receptors

Aer and Tsr were observed to respond in vivo to tetrathionate

or nitrate, respectively, in order to confer a fitness advan-

tage upon S. Typhimurium during inflammation by enabling
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the bacteria to seek out favourable spatial niches containing

host-derived electron acceptors that boost its luminal growth

[83]. Pathogenic bacteria may also benefit from intesti-

nal inflammation and/or by-products of the inflammatory

response. For example, reactive oxygen species produced by

neutrophils during inflammation react with luminal sulfur

compounds (thiosulfate, S2O�3 ) to form a new respiratory

electron acceptor, tetrationate (S4O2�
6 ). Unlike commensals,

Salmonella contains the operon ttrSR ttrBCA that allows

for the use of S4O2�
6 , providing a growth advantage to

Salmonella over commensal microbes in an inflamed environ-

ment [84]. Similarly, nitrate generated as a by-product of the

inflammatory response conferred a growth advantage to the

commensal bacterium E. coli over Firmicutes and Bacteroidetes

in the large intestine of mice [85]. Although this mechanism of

E. coli overgrowth in the inflamed gut involved commensal–

commensal competition, pathogenic E. coli strains, which

have nitrate reductase genes such as NarZ in their genome,

may use a similar mechanism to acquire a growth advantage

over the competitive commensal community.

(b) Promotion of host inflammation
Another mechanism by which intestinal pathogens acquire a

growth advantage compared to the commensal population is

through the promotion of intestinal inflammation, that alters

commensal survival. Indeed, the expression of virulence
factors by pathogenic bacteria, such as toxins, leads to intes-

tinal inflammation that, in turn, dramatically alters the gut

microbiota composition and richness [86]. For example,

during intestinal inflammation, neutrophils and macro-

phages expressing inducible nitric oxide synthetase (iNOS)

are recruited, leading to an increased concentration of nitrate

in the gut that confers an advantage to Enterobacteriaceae
compared to obligate anaerobes, such as Bacteroidetes or

Firmicutes [85]. Many E. coli pathovars are indeed able to uti-

lize nitrate as an electron acceptor, such as AIEC associated

with inflammatory bowel disease, and can profit from such

growth advantage compared to the commensal population

to more efficiently colonize the intestine [87–90].

In addition, the host inflammatory environment can

enhance the expression of virulence factors, promoting the

growth of pathogenic bacteria in host tissues. For example, inter-

feron-? increased the expression of type I lectin by Pseudomonas
aeruginosa, allowing adhesion of the bacteria to lung epithelial

cells [91]. Hence, the gut inflammatory environment may also

promote virulence factor expression by enteric bacteria.

(c) Toxin production
Pathogens are able to produce inhibitory substances/toxins

that can directly target the gut microbiota. Through its type

VI secretion system, Vibrio cholerae is able to deliver toxic

effectors directly to E. coli [92,93]. In addition, bacteriocin
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production has been reported for Salmonella [94] and patho-

genic Shigella strains [95–99], but its role in virulence or as

a mechanism to outcompete microbiota are not yet known.

Taking into account that bacteriocins play an important

role in bacterial relationships, it is very likely that they can

contribute to the successful colonization of the intestine by

pathogenic bacteria, by targeting specific commensals and

therefore modifying the barrier maintenance, altering the

immune surveillance and/or the gut metabolism to promote

their colonization. Studying the role of bacteriocins produced

by pathogenic strains on the microbiota and on virulence

might reveal new mechanisms of pathogenicity and will

help to decipher the complex relationship between the

intestinal microbiota and some enteric pathogens.
.R.Soc.B
371:20150504
6. Conclusion and perspectives
With the recent appreciation of the important roles played by

the intestinal microbiota in health and diseases, a number of

studies have highlighted its specific role in protection against

enteric pathogen infection. It is important to note here that

most mechanisms presented in this review have been discov-

ered from animal models and/or in vitro works.

Extrapolation to the human situation has to be considered

with caution in a context of different dietary habits, intestinal

architecture, microbiota composition, environment, immune

system and genetic background. However, new therapeutic

approaches may ultimately benefit from understanding the

important inhibitory role of the intestinal microbiota against

pathogen virulence [100], as exemplified by the recent use

of fecal microbiota transplant for the treatment of recurrent

C. difficile infection, which has more than 90% effectiveness

compared with only 30% when using antibiotic treatment

[101]. Targeted manipulation of the intestinal microbiota by

bacteriocins and/or other antimicrobials has the potential

to be a therapeutic tool for the prevention or treatment of

dysbiosis-associated diseases [102]. Based on their very high

specificity (at least for some of them), bacteriocins might rep-

resent ideal candidates with respect to the targeting of only

undesirable populations. Importantly, there are already some

proof of concept studies, such as the use of thuricin CD to

specifically inhibit C. difficile in a distal colon model [103].

Similarly, bacteriocin production by the probiotic Lactobacillus
salivarius UCC118 was shown to significantly protect mice

against L. monocytogenes [104]. Moreover, it was recently

shown that intestinal colonization with a bacteriocin-

producing Enteroccocus faecalis results in the clearance of
vancomycin-resistant enterococci, strengthening the concept

that bacteriocins may be an effective therapeutic approach

to specifically eliminate intestinal colonization by multiple-

resistant bacteria without a profound disruption of the

commensal population [104]. However, when identifying or

choosing a bacteriocin as a therapeutic approach, the putative

broad impact on the gut microbiota should be taken in

account, even if less drastic than antibiotic use. For example,

thuricin CD was also found to strongly inhibit Lactobacillus
fermentum [18].

In addition, phage therapy can potentially have beneficial

impact on human microbiota and associated host health

[105]. Bacteriophages are virus particles that naturally infect

bacteria with a high specificity and phage therapy consists

of using these bacteriophages as antimicrobial agents

[106,107]. Some groups are currently investigating their

suitability as therapeutic strategy against some enteric patho-

gens, for example against AIEC associated with inflammatory

bowel disease [108].

Finally, bacteria (both non-pathogenic and pathogenic)

synthesize small diffuse signal molecules, called auto-indu-

cers, in order for them to coordinately control the gene

expression of the entire community in response to changes

in cell density [109]. This process, termed quorum sensing,

can be universal or highly specific, enabling bacteria to com-

municate within and between species. Hence, quorum

sensing can have a major impact on the composition of

microbial communities, and is also involved in the regula-

tion of virulence gene expression by many pathogenic

bacteria [110]. Therefore, the identification of chemical sig-

nals, receptors and targeted genes will be essential for our

understanding of how bacteria–bacteria communication

may be used in preventing colonization by pathogenic

bacteria [100].

Additional studies are needed to decipher the complex

relationship occurring between the intestinal microbiota and

pathogenic bacteria that will ultimately help to define, and

maybe engineer, a ‘healthy’ microbiome.
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