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Abstract

Partition coefficients describe how a solute is distributed between two immiscible solvents. They 

are used in drug design as a measure of a solute’s hydrophobicity and a proxy for its membrane 

permeability. We calculate partition coefficients from transfer free energies using molecular 

dynamics simulations in explicit solvent. Setup is done by our new Solvation Toolkit which 

automates the process of creating input files for any combination of solutes and solvents for many 

popular molecular dynamics software packages. We calculate partition coefficients between 

octanol/water and cyclohexane/water with the Generalized AMBER Force Field (GAFF) and the 

Dielectric Corrected GAFF (GAFF-DC). With similar methods in the past we found a root-mean-

squared error (RMSE) of 6.3 kJ/mol in hydration free energies which would correspond to an error 

of around 1.6 log units in partition coefficients if solvation free energies in both solvents were 

estimated with comparable accuracy. Here we find an overall RMSE of about 1.2 log units with 

both force fields. Results from GAFF and GAFF-DC seem to exhibit systematic biases in opposite 

directions with GAFF and GAFF-DC for calculated cyclohexane/water partition coefficients.
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files, and coordinate files. It contains all results files: GROMACS files required to run Alchemical Analysis and the corresponding 
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for all simulations and electronically readable files with data on every molecule. There are multiple README documents explaining 
how the content is organized. Alchemical Analysis, Hydroxynator, and Solvation Toolkit are all available open source and are 
maintained on GitHub at http://github.com/MobleyLab.
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Introduction

Partition coefficients provide a way to test the accuracy of atomistic force fields in various 

solvent environments. They describe the ratio of concentrations of a neutral solute molecule 

in a system with two immiscible solvents:

(1)

where solute refers to the neutral solute in both solvents and are typically reported as the 

logarithm of this concentration ratio (log P).1–3 This differs from a distribution coefficient or 

“apparent partition coefficient” which includes all ionized and unionized forms of the 

solute.4 log P is proportional to the transfer free energy between the two solvents and can be 

related to the solvation free energies. Solvation free energies have been used to 

benchmark5–14 and inform changes15–17 to atomistic force fields, including the GROMOS 

53A5 force field, which was parameterized in part using solvation free enthalpies in 

cyclohexane.18 However, solvation free energies can be difficult to measure 

experimentally10 compared to partition coefficients, which are relatively easy to measure 

and are measured routinely.19 The access to experimental log P values and their 

straightforward relationship to the solvation free energy makes partition coefficients an 

excellent property to test and improve the accuracy of atomistic force fields in different 

solvent environments.

Due to the popularity of these values in the pharmaceutical industry, many tools already 

exist to predict partition coefficients between octanol and water (log Poct). Partition 

coefficients are used in the pharmaceutical industry to estimate how a drug may transfer 

between different biological environments4,20 and are regularly used to predict a molecule’s 

hydrophobicity.21 Additionally many quantitative structure activity relationship (QSAR) 

methods use calculated log Poct as an input parameter.19 Methods for estimating partitioning 

are often based on additivity principles; for example, in 1964, Fujita et al. predicted log Poct 

by determining the change in the partition coefficient when a functional group was added to 

a benzene, then using these functional group contributions to predict partition coefficients 

for new compounds.22 Similar methods are still used today, where partition coefficients are 

calculated from contributions determined by molecular fragments2,23–29 or atom types, 

characterized by element and bonding order.30–36 In recent years, machine learning 

techniques have been developed using physical properties of the solute as parameters to 
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predict log Poct.19,37–47 However, very little work has been done to extend these methods to 

other organic solvents, so there are only a few examples of empirically trained methods for 

predicting cyclohexane/water partition coefficients.48–51 These methods vary in accuracy 

and efficiency, but are all trained on experimental data, meaning that they have a limited 

domain of applicability. To some extent, more physical methods would be preferable, as 

these could be general enough to cover any organic solute-solvent combination, even 

combinations well outside the range of training data. One example of a relatively more 

physical approach is COSMO-RS, which predicts solvation and partitioning with a quantum 

mechanics-based approach combined with a variety of empirically-derived correction 

factors.5,52,53

Here we take a physical approach to calculating partition coefficients from solvation free 

energies in octanol/water (log Poct) and cyclohexane/water (log Pcyc) using alchemical 

methods to calculate the transfer free energy. Alchemical free energy calculations take a 

system through computationally accessible thermodynamic pathways to connect the target 

end states54,55 – in this case, taking the solute out of one solvent and into the other. As 

discussed elsewhere, the logarithm of the partition coefficient is proportional to the transfer 

free energy between solvents,56 which means that we can use standard free energy 

techniques to compute partition coefficients via an appropriate combination of solvation free 

energy calculations. Specifically, we calculate the transfer free energy as the difference 

between the hydration free energy and the solvation free energy into the organic phase 

(Figure 1). Similar methods for calculating hydration free energies have yielded fairly 

accurate results.,6,11,13,14 as did a recent effort for predicting relative solubilities in a variety 

of organic solvents this approach.57

A variety of previous studies have calculated partition coefficients from solvation free 

energies. Early attempts to calculate log P based molecular dynamics simulations used free 

energy perturbation, changing the identity of the solute in both solvents to obtain octanol/

water56,58 and chloroform/water59–61 relative partition coefficients (comparing partition of 

two different solutes). A number of attempts have been made to calculate log P from 

absolute solvation free energies with all atom force fields.16,62–64 For example, two recent 

studies used a hydrid atomic level/coarse grained force field with the General AMBER 

Force Field (GAFF)65 for solute parameters.,66,67 the same force field we apply here. Our 

present study is the first attempt at log P calculations with the Dielectric Corrected General 

AMBER Force Field (GAFF-DC)15 for such calculations, and we are not aware of any prior 

applications of alchemical techniques to the calculation of water-cyclohexane partition 

coefficients other than the relative work using free energy perturbation noted above. Another 

new feature of this work is that we provide an automated work flow for solvation free 

energies and therefore partition coefficient calculations, in that our new Solvation Toolkit 

was used to create all input files and is available on GitHub at https://github.com/

MobleyLab/SolvationToolkit, and analysis of the solvation free energies was fully automated 

with the Alchemical Analysis tool.68 To facilitate additional applications of this technique, 

all setup and analysis scripts are also available in the Additional information, which is 

provided free on charge online at http://n2t.net/ark:/b7280/d15k5m
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Computational Theory and Methods

Automated setup for arbitrary mixtures using Solvation Toolkit

Molecular modeling in different software packages requires a variety of input file types, 

terminal applications, and work flows. In an effort to automate our simulations, we have 

created Solvation Toolkit to generalize workflows across different software packages. It 

aims to deliver a simple tool to set mixtures of arbitrary combinations of solutes and solvents 

for use in popular molecular dynamics software packages such as GROMACS69–75 and 

AMBER This piece of software relies on other software packages including 

OpenMolTools,76,77 OpenEye’s Python toolkits,78–88 AmberTools,89–94 Packmol,95 

ParmEd,96 and MDTraj.97

The program can be logically divided into three main sections related to different tasks: 

converting simple input to molecular structures, generating force field parameters, and 

building a solvated box. These are followed by output to the proper file formats. The toolkit 

begins by requiring the IUPAC name or the SMILES string and the desired number of 

molecules for all compounds in the system. As recommended by OpenEye,98 the OEChem 

toolkit is used to convert these into a molecular structure and generate up to 800 

conformations of the molecule. Next, the Quacpac toolkit is used to automatically select the 

best conformation and to assign symmetric AM1-BCC charges.88,99 OpenEye’s toolkits 

were used rather than Antechamber as OpenEye’s AM1-BCC implementation is maintained 

by Christopher Bayly, one of the original authors of AM1-BCC, and has several features 

beyond Antechamber’s AM1-BCC, including better handling of multi-conformer molecules, 

proper symmetrization of charges which ought to be symmetric, and others.98 Using 

AMBER modules, GAFF parameters are assigned to the charged molecule with 

Antechamber and LEaP is used to produce a monomer topology file. Then the monomers for 

each compound in the mixture are assembled using Packmol to pack the different types of 

molecules into a box region defined by geometric constraints to keep atoms from different 

molecules at a safe pairwise distance.95 Finally, LEaP is used to generate the final AMBER 

topology and coordinate files of the solvated mixture. In an optional extra step, ParmEd is 

used to convert the AMBER files into GROMACS files.

The SolvationToolkit package is released as open source to the scientific community. It can 

be download via github at github.com/mobleylab/SolvationToolkit and example files are 

provided to illustrate the main capabilities of the software package.

Theory for Computing Partition Coefficients

Partition coefficients can be estimated from solvation free energies derived from molecular 

dynamics simulations. We estimate log P directly from the transfer free energy of the solute 

moving from the aqueous to organic layer. The transfer free energy can be calculated as the 

difference in the solvation free energies obtained via the thermodynamic pathway presented 

in Figure 1. Therefore log P is directly proportional to a difference in the solvation free 

energies:
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(2)

Here R is the molar Boltzmann constant and T is the temperature, 298.15 K in this case. We 

will calculate the solvation free energy for each solute in all three solvents. The equation 

above can then be used to calculate log Poct and log Pcyc.

A few assumptions were made in order to simplify this estimation of the transfer free energy 

and partition coefficient. First, the two solvents were taken to be completely immiscible. 

Depending on the solubility of the organic solvent in water, this assumption may not always 

hold. In theory, very polar solutes could carry water molecules with them across the solvent 

interface.1 Separately calculating the solvation free energy in each solvent does not allow for 

this possibility, and – because we use pure solvents here – assumes immiscibility. 

Additionally, during solvation free energy calculations, the solutions were also taken to be at 

infinite dilution, meaning there will be one solute molecule in a bulk solution of solvent. 

When experimental measurements were taken at sufficiently low concentrations, calculated 

solvation free energies have been shown to have good agreement.57,100 If experimental 

measurements of partition coefficients were made at concentrations deviating substantially 

from infinite dilution (i.e. where dimerization or oligomerization plays a role) this would be 

a potential source of error.

Selecting a Data Set

Experimental data was collected from the literature for both log Poct (36 molecules) and log 

Pcyc (41 molecules). There are many sources for experimental data for log Poct due to its use 

in the pharmaceutical industry. Albert Leo et al.’s collection of partition coefficients remains 

one of the larger collections of partition coefficients with a diverse set of organic solvents.1 

Initially, we assumed finding experimental octanol/water partition coefficients would be 

easy, as they are so regularly measured, therefore 41 solutes with cyclohexane partition 

coefficients provided were chosen from this collection. We made sure a diverse set of 

functional groups and a wide range of log Pcyc were represented in this set. In the literature, 

the solutes are labeled with their common names, which do not always include proper 

specification for stereochemistry. The chosen molecules only include those with 

unambiguous stereochemistry. The set of 41 molecules were chosen based on the available 

log Pcyc data, but ultimately we were only able to find experimental log Poct for 36 of these 

compounds, so the octanol set studied here is a subset of the cyclohexane set. For log Poct 

values not provided in Leo et al.,1 other sources of experimental data were found.21,101 The 

final set of molecules included a range of log Pcyc from −3.32 to 3.42 and log Poct from 

−0.82 to 5.01.

Creating Input Files

In order to setup the simulations, OpenEye’s OEChem and Omega79 Python toolkits were 

used to convert the molecule names provided by Leo et al. into SMILES strings and IUPAC 

names. The SMILES strings for the solutes and solvents were used to build coordinate and 
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topology files for use in GROMACS via the Solvation Toolkit described above. Recent 

studies have shown that calculated hydration free energies are independent of box size over a 

range of typical simulation box sizes (2–8 nm box edge).102 Solvation free energy in 

cyclohexane is also independent of box size (2–4.5 nm box edge), as shown by members of 

the Mobley group in a recent study.103,104 Here, the number of solvent molecules were 

chosen such that the box edge was around 3nm, sufficiently large for the GROMACS 

parameters specified below (100 octanol or 150 cyclohexane solvent molecules). As 

discussed above, the simulations were taken at infinite dilution, therefore only 1 solute 

molecule was added to each box.

SolvationToolkit uses OpenMolTools76 Amber module to build monomer files. Originally, 

the OpenMolTools Amber module only represented water as flexible GAFF water, whereas 

we wanted to use TIP3P.105 The monomer topology file for the solute was built according to 

the protocol in Solvation Toolkit described above. The final solvated mixture was built with 

OpenMolTools Gromacs module to make cubic boxes of the solute in water with at least 

1.2nm between the solute and the nearest box edge. OpenMolTools version 0.7.0 forward 

uses TIP3P water in the Amber module so water input files can now be built directly with 

the SolvationToolkit.

Simulation Protocols with GROMACS

Generally protocols were taken from previous work with relative solubility calculations57 

and updated to work with GROMACS 5.0.6.69–72 The alchemical solvation was broken into 

20 lambda states. In the first 5 lambda states the electrostatic interactions between the solute 

and solvent were turned off. Then the Van der Waals interactions (modeled by Lennard 

Jones potentials) were switched off in the last 15 lambda states. Specifically, Lennard-Jones 

interactions were scaled using λ = [0.0, 0.0, 0.0, 0.0, 0.0, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 

0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0] and electrostatic interactions were scaled 

using λ = [0.0, 0.25, 0.50, 0.75, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 

1.0, 1.0, 1.0]. Each state was minimized using GROMACS steepest decent algorithm and 

then equilibrated for a total of 150ps. The equilibration was broken into three steps: (1) 50ps 

constant volume, (2) 50ps constant pressure with the Berendsen barostat,106 and (3) 50ps 

constant pressure with the Parrinello-Rahman barostat.107 These were followed by a 5ns 

production phase at each λ, still using the Parrinello-Rahman barostat. The initial 100ps of 

the production stage was also removed to give the system extra time to reach equilibrium.

The new Hydroxynator used to setup calculations in GAFF-DC

We also recomputed solvation free energies using the dielectric corrected AMBER force 

field (GAFF-DC) parameters proposed by Fennell et al.15 GAFF-DC implements changes to 

the Lennard-Jones parameters of hydroxyl group oxygens and scales the charges for all 

atoms in the hydroxyl group. These changes improve the accuracy of hydration free energy 

calculations15 and to some extent relative solubilities.57 Partition coefficients calculated 

from GAFF-DC solvation free energies provide a way to monitor how the accuracy of 

calculations with GAFF-DC compares with GAFF. The Hydroxynator tool changes the 

parameters of a topology file from GAFF to GAFF-DC.15 It was applied to the topology 

files for only alcohols in water and cyclohexane and all solutes in octanol, as the solvent is 
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an alcohol in that case. Since GAFF-DC only changes parameters around hydroxyl groups, 

applying Hydroxynator to the topology files for non-alcohols in water or cyclohexane would 

result in no change to the file. Following the protocol above, simulations were run in 

GROMACS with the GAFF-DC files. Results from these simulations will be labeled 

“GAFF-DC”.

The initial implementation of Hydroxynator15 could only handle topology files with one 

molecule containing a hydroxyl group. Up until now this was sufficient as GAFF-DC had 

only been tested on systems where the solute was the alcohol. However, as our octanol 

systems contain multiple molecules with hydroxyl groups, we rewrote Hydroxynator, 

relying on ParmEd (version 2.0.4) to read in a GAFF topology file and parse through each 

molecule to identify hydroxyl groups and adjust the parameters for those molecules. Like 

the original, this tool is open source and can be downloaded from https://github.com/

MobleyLab/Hydroxynator.108

Analysis of Simulations and Results

The partition coefficients for both solvents (log Poct and log Pcyc) were calculated from the 

calculated solvation free energies. The free energy difference between each lambda value 

and the solvation free energy was calculated using the Multistate Bennett Acceptance Ratio 

(MBAR)109 through the Alchemical Analysis tool.68 As demonstrated above, the partition 

coefficients were calculated from the transfer free energy (eq. 2). A variety of error metrics 

were calculated in order to compare the calculated log P to experiment, including root-mean-

squared error (RMSE), average signed error (ASE), Pearson’s correlation coefficient (R), 

and the percent of calculated log P with the correct sign. Following established methods,9 

each metric was calculated for 1,000 bootstrap trials and the uncertainty was reported as the 

standard deviation from these results. In order to compare our results with an empirically 

trained method, we estimated log Poct with the OpenEye OEXLogP tool.31,78 The error 

metric analysis was repeated to compare the OEXLogP values with experiment. To examine 

the statistical difference between GAFF and GAFF-DC, a t-test was performed to compare 

GAFF and GAFF-DC values using methods available with the SciPy110 Python module. 

Density convergence plots were all created for all GAFF simulations showing the cumulative 

average versus time. Uncertainty for each measurement was given by  where std is 

the standard deviation in the density measurements, N is the number of measurements and g 
is the statistical inefficiency.109

Results and Discussion

We estimated cyclohexane/water and octanol/water partition coefficients from solvation free 

energies as described above (eq. 2) for a set of small molecules, with both standard GAFF 

parameters and the GAFF-DC parameter set. Our results are organized into four sets based 

on the organic solvent (cyclohexane or octanol) and force field (GAFF or GAFF-DC). 

Complete tables of our solvation free energies and partition coefficients, both calculated and 

experimental, are available in the supporting information.
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While experimental values were reported without uncertainties, experimental measurements 

do involve uncertainty, raising questions about the typical uncertainty in the reported values. 

To assist with this, we found there were 17 molecules from our set with multiple 

experimental values reported,1 and we used the difference in these measurements to estimate 

an average experimental uncertainty of about 0.3 log units.a In reality, some measurements 

are likely susceptible to higher errors than others, but without experimental uncertainty 

estimates or repeated measurements for all compounds, we have no way of assigning 

different uncertainties to different measurements. Therefore, the same uncertainty is used for 

all results analysis.

In general, we saw rather good agreement between the experimental and calculated partition 

coefficients (Figure 2). Considering all partition coefficients measured, we found a root-

mean-square error (RMSE) of 1.2 ± 0.2 in GAFF and 1.2 ± 0.1 in GAFF-DC, a Pearson’s 

correlation coefficient (R) of 0.8±0.1 in both force fields and an average signed error of 

0.5±0.1 in GAFF and 0.2±0.1 in GAFF-DC. A common metric for evaluating the accuracy 

of partition coefficients in octanol is to check that the sign of the log P for the calculated and 

experimental data is the same.67 The sign determines if the solute prefers the organic or 

aqueous layer. For all measured log P, 82 ± 4% in GAFF and 79 ± 5% in GAFF-DC agreed 

by sign with the experimental data. These error metrics were computed for log Poct and log 

Pcyc separately and for alcohol solute molecules as a subset (Table 1).

There were a few clear outliers in both solvents. We will focus on those with larger than 3 

log unit difference between calculated and experimental values (Figure 2). In octanol, the 

calculated log Poct for erythromycin (5785) was overestimated by 3.8 log units. The outliers 

in cyclohexane were pentachlorophenol (1307) by 5.6 log units and nitrocyclohexane (1879) 

by 3.9 log units. Past studies of hydration free energies have shown that atom-centered 

charges can be inadequate to describe the electrostatic potential around polychlorinated 

compounds, likely explaining difficulty reproducing the partition coefficients for 

pentachlorophenol.11 Erythromycin is a large molecule with many rotatable bonds and rings. 

It seems likely that our errors for erythromycin could be due to problems with 

conformational sampling, though another possible source of errors could be conformation-

dependence of partial charges. To check the latter, we took many snapshots of erythromycin 

from our simulations and calculated partial charges for each conformation separately, then 

looked at the average and standard deviation in these charge sets for each atom. The standard 

deviation of all charge sets was orders of magnitude smaller than the average, thus our data 

does not support charge variation as the explanation for the error here. Instead, we suspect 

that the problem is conformational sampling, and that in order to accurately sample all of the 

possible configurations, longer simulation times or enhanced sampling methods may be 

needed. We decided to explore the possibility of sampling issues with erythromycin further, 

these results are discussed in depth below.

aFrom the data provided in Leo et al. 13 of the compounds had at least 2 log Pcyc measurements: butanol (950), ethyl 
benzalcyanoacetate (4312), p-ethylphenol (2938), benzaldehyde (2133), 2–4-dimethylphenol (2914), o-methylphenol (2336), aniline 
(1711), p-methylphenol (2348), p-toluidine (2422), p-iodophenol (1425), 2–5-dimethylphenol (2917), m-methylphenol (2323), 
salicylic acid (2185). 8 of the compounds had at least 2 log Poct measurements: o-toluidine (2411), butylamine (1014), p-
methylphenol (2348), diethylamine (1028), p-toluidine (2422), o-nitrophenol (1453), m-methylphenol (2323), salicylic acid (2185)
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log Poct values were also calculated with OpenEye’s OEXLogP tool. These results are 

included in the Supporting Information tables and the scripts to used to calculate them are 

available with the additional information online. The OEXLogP results in an R value of 0.83 

± 0.09, RMSE of 0.6 ± 0.1, ASE of −0.1 ± 0.1, and correct sign of 94 ± 4%. Clearly, 

OEXLogP more accurately estimates log Poct than the values calculated with either force 

field. This is perhaps not surprising given the wealth of experimental octanol partitioning 

data that can be used for training empirical methods like this one. However, there are a few 

examples where the log Poct calculated by our alchemical solvation free energy method 

results were closer to experiment than OEXLogP. Most notably, salicyclic acid (2185) and o-

nitrophenol (1453) where the OEXLogP under estimates log Poct by 1.5 and 2.1 log units 

respectively. But given the small size of our present test set, we cannot draw meaningful 

predictions about whether and when alchemical methods will be more accurate in general 

than OEXLogP or other empirically trained methods.

Comparing results with GAFF and GAFF-DC to previous work with both force fields

Our results are about as accurate in GAFF as past work would predict, but significantly less 

accurate with GAFF-DC. The simulation parameters used here to calculate solvation free 

energies with GAFF are the same used by Mobley and collaborators for the calculations 

reported in the FreeSolv database.111 FreeSolv includes the calculated and experimental 

hydration free energies for 643 neutral solutes. For the calculations reported in FreeSolv, 

there is an RMSE of 6.3 kJ/mol for the whole database. Assuming the solvation free energy 

calculations in each solvent (i.e. water and cyclohexane) would have a similar error, this 

would translate to an expected error of 1.6 log units in log P. Fennell et al. also used these 

GAFF and GAFF-DC parameters when testing the development of GAFF-DC.15 They found 

a similar RMSE for hydration free energy calculations with GAFF, but significantly better 

performance in GAFF-DC with an RMSE of only 1.9 kJ/mol, which would lead to an 

expected error of 0.47 log units for log P. When we consider all our log P calculations in 

both solvents the RMSE is 1.2 log units for both force fields. Our calculated log P results are 

within uncertainty of what would be expected given the accuracy of hydration free energies 

in FreeSolv. Despite significant improvement in past hydration free energy calculations,15 

we see no significant improvement in log P values calculated with GAFF-DC compared to 

GAFF (Table 1).

For solvation free energies in cyclohexane and water, only alcohols are affected by the 

change from GAFF to GAFF-DC, so they should be addressed as a subset of the data. Our 

results show a significant bias in the calculated log Pcyc. Partition coefficients calculated 

with GAFF show alcohols prefer cyclohexane to water more strongly than in experiment as 

demonstrated by the average signed error (0.7 ± 0.3) and Figure 2a. The calculated log Pcyc 

in GAFF-DC show alcohols to prefer water over cyclohexane with an average signed error 

of −0.5±0.3 (Figure 2b). Thus, GAFF-DC shifts the systematic error for alcohol log Pcyc 

from having one sign to having the other, as shown in Figure 2. GAFF-DC was 

parameterized to improve simulations in pure methanol, leading to more polarized hydroxyl 

groups.15 It follows that the less polarized alcohols in GAFF might over-favor cyclohexane, 

but when more polarized would move to favoring water.
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In octanol, however, there is no significant change in the accuracy of the calculated partition 

coefficients with GAFF compared to GAFF-DC (Figures 2c,d). The calculated log Poct 

indicates all solutes prefer octanol over water more strongly than in experiment for both 

force fields as indicated by the average signed error (GAFF: 0.7 ± 0.1 and GAFF-DC: 0.5 

± 0.1). When only considering alcohol solutes there is still a preference for octanol over 

water with no significant change in the average signed error (GAFF: 0.6±0.3 and GAFF-DC: 

0.5 ± 0.2). The RMSE also decreases slightly for GAFF-DC with all solutes and alcohols, 

but the change is still within uncertainty (Table 1). T-tests comparing the log Poct values 

calculated with GAFF and GAFF-DC resulted in t = 2.4 and p = 0.022 indicating the two 

sets of calculated values are significantly different, even though there is no statistically 

significant change in the overall error metrics. This significant difference appears to be 

consistent with a slight overall improvement in calculated values with GAFF-DC.

Sampling in largest solute molecule

Our solutes varied in size and flexibility from only 2 heavy atoms and no rotatable bonds 

(methanol, 159) to 51 heavy atoms and 7 rotatable bonds (erythromycin, 5785). As 

mentioned above, erythromycin was also an obvious outlier in octanol. For these reasons, we 

chose erythromycin as a test case to check how the initial solute conformation might affect 

solvation free energy and therefore log P. Each new conformation is placed in an 

independent box of solvent molecules. If the conformational space of the solute is being 

thoroughly sampled and solvent sampling is adequate, then the solvation free energy should 

not be affected by a change in the initial conformation. We simulated erythromycin in each 

of the solvents three additional times each with a different initial conformation. Variations in 

solvation free energies of about 4 kJ/mol in each solvent led to variations of up to 1.6 log 

units in log Pcyc and 2.2 log units in log Poct (Figure 3). These results suggest a significant 

dependence on the initial conformation of the erythromycin, which in turn points to issues in 

sampling the conformational space of the solute. Longer time scales or different sampling 

techniques will need to be applied for solutes as large and flexible as erythromycin.

Examining convergence of solvation free energies in octanol

Octanol has a tendency to form clusters where the polar hydroxyl groups group together and 

separate from the non-polar carbon chains. These clusters have been suggested as a source 

of slow equilibration in simulations.58,112 Convergence of physical properties can help 

indicate that a system has sufficiently equilibrated. To observe how well the simulations in 

octanol converged, we plotted average density versus simulation time (Figure 4). These plots 

were made with data from the production phase, meaning the system has already spent 

considerable time equilibrating. In a system that has converged, the average density should 

be within uncertainty of a constant value. In the case of o-nitrophenol (1453), the cumulative 

average density is within uncertainty of the overall average within the first 300 ps the density 

appears to be converging (Figure 4a). However in the case for 2,5-dimethylphenol (2917), 

the system does not get within uncertainty of the overall average until 4400 ps meaning the 

density may not have completely converged in the 5000 ps production phase (Figure 4b). In 

the solvation free energy calculations, we remove the first 100 ps of the production phase for 

additional equilibration, but it is included here. If the initial part of the production phase had 

not reached equilibrium, we might expect removing data from the beginning of the 
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simulation would decrease the amount of time it takes the density to apparently converge. To 

test if this was the case, we considered density convergence plots with the first 100, 300, and 

1000 ps removed from the beginning of the data sets for 1453 and 2917. The plots from this 

analysis are available in the additional information, but there was no significant 

improvement in the apparent time to convergence when any amount of data was removed 

from the 2917 simulation.

These two systems are meant to represent the best and worst examples of simulations in 

octanol; plots for all other solutes are available in the additional information. We do not 

necessarily expect that the solute identity for these relatively small solutes dramatically 

impacts the convergence of the density of the entire system. Indeed, the density of the 

simulation with erythromycin, which has been shown to have sampling problems, converged 

more quickly than simulations with smaller solutes. Since each system is set up 

independently, the difference in convergence of the density for these different systems is 

likely the result of changes in initial conditions. If that is the case, it clearly indicates that 

octanol rearrangement is quite slow. As a follow-up, we performed three additional 

simulations for (4-bromo-benzal)-acetylacetone (4299) with larger box sizes (400 octanol 

molecules and 1 solute molecule) and fully interacting solvent (λ = 0). In one of these cases, 

the average density did not converge within the 5 ns production time, evidence that the slow 

rearrangement of octanol does not appear to be dependent on box size. The data and 

resulting convergence plots from these simulations are available in the additional 

information. The fact that the density converges quite slowly raises concerns about how well 

these simulations are converged. Thus, despite fairly accurate results for log Poct there are 

still issues to be resolved to guarantee sufficient sampling when octanol is used as the 

solvent.

Conclusions

We did not initially expect accurate results for transfer energies into cyclohexane. 

Beauchamp et al. recently reported results for a benchmarking study for GAFF based on 

calculations of dielectric constants in pure solvents. They argued that GAFF would not 

accurately predict transfer free energies into cyclohexane because of an inaccurate 

representation of the solvent’s dielectric constant.77 They suggested transfer free energies 

from aqueous solutions into cyclohexane would have an error around −3.8 kJ/mol. Since 

partition coefficients are directly proportional to the transfer free energy, this translates to an 

error of +0.7 log units in log Pcyc. While there is a slight bias for alcohols in cyclohexane, 

there is no obviously trend in the log Pcyc for all solutes (Figure 2a). While we do observe an 

overall average signed error in that same direction (0.4 ± 0.2), its magnitude suggests less 

bias than was anticipated for transfer free energies in cyclohexane. One possible reason for 

the lack of bias is Beauchamp et al. based their conclusions on calculations of the dielectric 

constant. This limits the free energy estimation to contributions from the electrostatic 

interactions. It is possible that Van der Waals interactions may play a role in counteracting a 

potential electrostatic bias introduced by the solvent dielectric constant. Given the diverse 

sizes and functional groups represented in this small set of molecules, we find GAFF’s 

performance on cyclohexane partition coefficients to be surprisingly good.
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As discussed in the methods section, a number of assumptions were made in order to 

perform these simulations. Some of these assumptions will need to be addressed in the 

future if partition coefficient calculations are going to be pursued. For one, we treated the 

solvents as completely immiscible. This approximation will be worse as the organic solvent 

becomes more polar and more miscible with water. For more polar organic solvents, water is 

more likely to permeate the organic/aqueous interface and may impact the accuracy of the 

calculated partition coefficient. Calculating solvation free energies into wet octanol, instead 

of the dry used here, may improve calculated log Poct values. Additionally, there is some 

evidence to suggest polar solutes carry water molecules with them into the organic layer.1 

The assumption of complete immiscibility does not allow for this possibility. One way to 

examine if a polar solute is carrying water across the interface would be to perform a set of 

simulations near the interface between the aqueous and organic layers. Umbrella sampling at 

various distances from the interface could then be used to monitor if the solute is pulling 

water into the organic layer with it.

In any study evaluating the accuracy of a computational model or method, the reliability of 

the experimental data must be considered. Partition coefficients are no different and a 

number of specific concerns have been well documented for experimental log P data. For 

example, a recent survey found that sources of partition coefficient measurements cited in 

some databases are not actually the original measurement of the reported value.113,114 The 

miscibility of water and octanol can also pose problems with experimental measurements. 

Above we discussed how the clustering of water around polar solutes has been proposed as a 

concern. Especially in shake-flask techniques, octanol transferring into the aqueous phase 

can form small clusters around a non-polar solute to over-favor the aqueous phase.113,115 

With these concerns, a more non-polar solvent may be a better option for using partition 

coefficients to evaluate force fields. When comparing any computed physical property with 

experiment, experimental data must always be carefully curated to ensure high quality.

We propose that partition coefficients, given the ease and frequency with which they are 

measured experimentally, provide a new way to benchmark the accuracy of atomistic force 

fields. The results for log Pcyc in particular show continued biases for alcohol solutes, 

indicating these calculations may be helpful for further force field improvements. While our 

set contains relatively few solutes containing hydroxyl groups, there is still a clear bias for 

these results with both force fields. The calculated log Pcyc for alcohols overestimates the 

solute concentration in cyclohexane with GAFF and in water with GAFF-DC. GAFF-DC 

increases the polarization of the hydroxyl group. It was parameterized to correct the 

dielectric constant of pure liquid methanol. When initially proposed, Fennell et al. showed 

GAFF-DC significantly improves calculated hydration free energies for solutes with 

hydroxyl groups.15 However, a recent study calculated relative solubilities and did not see a 

significant change in the accuracy of results in GAFF-DC compared to GAFF.57 We would 

expect GAFF-DC to improve calculated properties in environments where they would be 

naturally more polarized, such as water or other polar solvents. Cyclohexane would not be 

expected to increase the polarization in the hydroxyl group, so in our view GAFF-DC could 

actually decrease the accuracy of calculated properties in such an environment, though we 

do not observe a significant change in overall accuracy here. However, we do see that 

GAFF-DC results in a systematic error (averaged signed error) for alcohol partition 
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coefficients between cyclohexane and water which has the opposite sign of that with GAFF 

and differs by more than one log unit. Essentially, it appears likely that because of the lack 

of polarization of cyclohexane, GAFF-DC results in over polarized solutes in cyclohexane. 

We do not see this same effect in octanol, possibly because GAFF-DC also polarizes 

octanol. We find that GAFF-DC outperforms standard GAFF for hydration free energies, but 

shows no significant improvement in overall accuracy for partition coefficients. This may 

indicate that we are encountering the limits of fixed charge force fields. Fixed charge force 

fields do not allow for changes in polarization as the environment around the solute 

molecule changes. A similar issue was encountered in GROMOS force field development, 

where it was found that no single charge set could adequately capture both hydration free 

enthalpies and the thermodynamics of pure organic liquids.18 Overcoming this limitation 

will be a key step in improving the accuracy of such simulations.

The first goal of this project was to create an automated protocol for calculating partition 

coefficients from solvation free energies using GROMACS. By introducing Solvation 

Toolkit, automating this setup was successful. We plan to use these protocols to extend this 

small database of partition coefficients in the near future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Alchemical thermodynamic cycle used to calculate transfer free energies from solvation free 

energies. Here we calculate ΔGTransfer from the difference in ΔGsolvation into cyclohexane or 

octanol and ΔGhydration. log P is directly proportional to ΔGTransfer.

Bannan et al. Page 17

J Chem Theory Comput. Author manuscript; available in PMC 2017 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Comparison of the calculated log P to the experimental log P. Data is divided into four sets, 

covering partition from water into both organic solvents (cyclohexane and octanol) for both 

force fields (GAFF and GAFF-DC). Alcohols are indicated separately since GAFF-DC 

affect the parameters for hydroxyl groups. The shaded region indicates where experimental 

and calculated log P agree within 1.5 log units, the predicted error given the accuracy of 

hydration free energy calculations in the FreeSolv Database.111 Outliers greater than 3 log 

units are labeled by number.
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Figure 3. 
Comparison of calculated solvation free energies and partition coefficients for 4 different 

initial conformations of erythromycin (5785). If the conformational space was thoroughly 

sampled, changes in initial conformation would have no effect on the solvation free energy. 

Here we see significant changes in all three free energies, dramatically affecting calculated 

partition coefficients.
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Figure 4. 
A cumulative average of the density during simulations of the solute in octanol. The overall 

average is indicated with a solid black line.
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