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Abstract

Understanding the mechanisms by which sensory neurons encode and decode information remains 

an important goal in neuroscience. We quantified the performance of optimal linear and nonlinear 

encoding models in a well-characterized sensory system: the electric sense of weakly electric fish. 

We show that linear encoding models generally perform better under spatially localized 

stimulation than under spatially diffuse stimulation. Through pharmacological blockade of 

feedback input and spatial saturation of the receptive field center, we show that there is 

significantly less synaptic noise under spatially diffuse stimuli as compared with spatially 

localized stimuli. Modeling results suggest that pyramidal cells nonlinearly encode sensory 

information through shunting in their dendrites and clarify the influence of synaptic noise on the 

performance of linear encoding models. Finally, we used information theory to quantify the 

performance of linear decoders. While the optimal linear decoder for spatially localized stimuli 

could capture 60% of the information in pyramidal cell spike trains, the optimal linear decoder for 

spatially diffuse stimuli could only capture 40% of the information. These results show that 

nonlinear decoders are necessary to fully access information in pyramidal cell spike trains, and we 

discuss potential mechanisms by which higher-order neurons could decode this information.

INTRODUCTION

The discovery of behaviorally relevant neural codes remains an important goal in sensory 

physiology (Rieke et al. 1996). Progress toward this goal requires determining the relation 

between behaviorally relevant input signals and the patterns of action potentials that they 

elicit from sensory neurons, the encoding process, as well as subsequent decoding of these 

patterns by higher brain centers. The discovery of such codes is complicated by the fact that 

the same stimulus pattern will not always give rise to the same spike train (Mainen and 

Sejnowski 1995) and that behaviorally relevant input signals are often unknown (Krahe and 

Gabbiani 2004). Moreover, the mechanisms by which sensory neurons encode information 

can be very different from the optimal algorithms used to decode this information (Rieke 

1992; Treves 1997): information encoded nonlinearly can sometimes be decoded linearly 

(Rieke et al. 1996). Furthermore, whereas neurons are clearly nonlinear, linear models can 

often adequately describe the neural encoding process for weak (i.e., low intensity) sensory 

stimuli (Roddey et al. 2000).
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On the other hand, it is commonly assumed that neural responses can be decoded linearly 

(Rieke et al. 1996). Several studies have shown that this is not always the case and that 

nonlinear decoders are necessary for strong (i.e., high intensity) stimuli in the visual 

(Passaglia and Troy 2004) and auditory systems (Marsat and Pollack 2004, 2005). This was 

done with information theory (Cover and Thomas 1991; Shannon 1948). Mutual information 

rates can be directly estimated from the probability of obtaining various neural responses 

(De Ruyter van Steveninck et al. 1997; Reinagel and Reid 2000; Strong et al. 1998). This 

direct method makes no assumptions about the neural code and is exact in principle (Borst 

and Theunissen 1999). It, however, does not give much insight as to the mechanisms by 

which neurons process information and furthermore requires large data sets. For this reason, 

investigators have turned to other techniques that make assumptions on the nature of the 

code. One such approach is to reconstruct the stimulus from the neural response using 

Wiener kernels: the indirect method (Gabbiani 1996; Rieke et al. 1996). Typically, only the 

first-order (linear) kernel is used (Gabbiani 1996; Theunissen et al. 1996; Wessel et al. 

1996), and the amount of information thus estimated will in general be a lower bound on the 

rate of information transmitted by the neuron. A direct comparison between the mutual 

information rate estimates from the indirect and direct methods will yield an estimate of the 

relative amount of information that can be decoded linearly and thus quantify the 

performance of optimal linear decoders.

From the arguments presented in the preceding text, it seems that strong stimuli might 

require both nonlinear encoding and decoding mechanisms, whereas linear encoding and 

decoding might be sufficient for weak sensory stimuli. To determine the nature of the 

nonlinearities elicited by strong stimuli, we quantified the performance of nonlinear 

encoding and decoding models for pyramidal neurons in the electrosensory lateral line lobe 

(ELL) of weakly electric fish using both weak and strong stimuli. Electroreceptor afferents 

detect amplitude modulations of the animal’s self-generated electric field and relay this 

information to pyramidal cells in the electrosensory lateral line lobe (ELL) (Turner et al. 

1999). There are large heterogeneities present in the pyramidal cell population: receptive 

field organization, apical and basal dendritic morphology, the tendency to fire bursts of 

action potentials, adaptive cancellation of redundant stimuli through synaptic plasticity, and 

sensitivity to the stimulus’ spatial extent were all found to be highly correlated with baseline 

firing rate (Bastian and Courtright 1991; Bastian and Nguyenkim 2001; Bastian et al. 2002, 

2004; Chacron et al. 2005c). The baseline firing rate is thus a convenient quantifier of ELL 

pyramidal cell heterogeneities. There are two classes of pyramidal cells: E-cells, or basilar 

pyramidal cells, are excited by increases in the EOD amplitude while I-cells, or nonbasilar 

pyramidal cells, are inhibited by increases in the EOD (Maler 1979; Maler et al. 1981; 

Saunders and Bastian 1984). Furthermore, pyramidal cells found most superficially in the 

ELL have low firing rates and large apical dendritic trees while cells found more deeply 

have high firing rates and small apical dendritic trees (Bastian and Courtright 1991; Bastian 

and Nguyenkim 2001).

Previous studies in a related fish species have estimated lower bounds on the rate of 

information transmission and thus shown that receptor afferents were adept at encoding the 

detailed time course of the stimulus (Gabbiani et al. 1996; Kreiman et al. 2000; Metzner et 

al. 1998; Wessel et al. 1996), whereas pyramidal cells responded only to specific features of 
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the stimulus (Gabbiani et al. 1996; Metzner et al. 1998). Behaviorally relevant stimuli fall 

within two broad categories: prey stimuli that impinge only on part of pyramidal cell 

receptive fields are spatially localized and inherently weak (Nelson and MacIver 1999), 

whereas electrocommunication stimuli that impinge on the entire body surface of the animal 

are spatially diffuse and stronger (Zupanc and Maler 1993). It was also found that pyramidal 

cells could switch their frequency tuning in a behaviorally relevant manner based on the 

stimulus’ spatial extent (Chacron et al. 2003, 2005c). All but one of these studies were 

conducted assuming a linear decoder, and that study (Metzner et al. 1998) found that a 

particular nonlinear decoder did not significantly improve the information rate. However, 

because nonlinear encoding and decoding mechanisms have been found in the visual, 

auditory, and cercal systems, it is probably safe to assume that they are present in the 

electrosensory system as well. To gain understanding as to the nature of possible nonlinear 

mechanisms of information transmission in the electrosensory system, we assessed the 

performance of linear encoding models relative to the maximum theoretically achievable 

performance of nonlinear models for both receptor afferents and pyramidal cells under 

different behaviorally relevant stimulation geometries. This was done to gain insights as to 

how information transmitted by electroreceptor afferents is encoded by their postsynaptic 

targets: pyramidal cells. We also computed mutual information rates of pyramidal cells using 

both the direct and indirect methods to gauge the performance of linear decoders. A 

combination of electrophysiological, pharmacological, and modeling reveals the nonlinear 

mechanism used by pyramidal cells for encoding sensory stimuli. Our results show that 

information encoded in a nonlinear manner must also be decoded nonlinearly and we discuss 

potential decoding mechanisms by higher brain centers. Finally, we show in an APPENDIX 

that spike timing jitter does not significantly distort the spike-triggered averages of both 

receptor afferents and pyramidal cells.

METHODS

The weakly electric fish Apteronotus leptorhynchus was used exclusively in this study. 

Animals were housed in groups of 3–10 in 150-l tanks, temperature was maintained between 

26 and 28°C. Experiments were performed in a 30 × 30 × 10-cm-deep Plexiglass aquarium 

with water recirculated from the animal’s home tank. Artificial respiration was achieved 

with a continuous flow of water at a rate of 10 ml/min. Surgical techniques were the same as 

described previously (Bastian 1996a,b), and all procedures were in accordance with the 

University of Oklahoma animal care and use guidelines.

Recording

Recordings techniques were the same as used previously (Bastian et al. 2002). Intracellular 

recordings were made with KCl-filled micropipettes. High-resistance (70- to 150-MΩ) 

micropipettes were used for receptor afferents, whereas lower-resistance (20–35 MΩ) 

micropipettes were used for intracellular pyramidal cell recordings. Extracellular single-unit 

recordings from pyramidal cells were made with metal-filled micropipettes (Frank and 

Becker 1964). For pyramidal cells, recording sites as determined from surface landmarks 

and recording depths were limited to the lateral and centrolateral ELL segments. 

Extracellularly recorded spikes were detected with window discriminators and time stamped 
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(CED 1401-plus hardware and SpikeII software, resolution = 0.1 ms; Cambridge Electronic 

Design, Cambridge UK). Intracellularly recorded spikes were detected in the same manner 

and the membrane potential was A-to-D converted at 10 kHz.

Stimulation

The stimulation protocol was previously described in detail (Bastian et al. 2002); n = 41 

receptor afferents and n = 54 pyramidal cells were studied. The stimuli consisted of 

amplitude modulations (AMs) of an animal’s own electric organ discharge (EOD) that were 

random in nature. Typical contrasts (modulation amplitude to baseline EOD amplitude ratio) 

were similar to those used in previous studies (Bastian et al. 2002; Chacron et al. 2003, 

2005b,c) and ranged between 10 and 20%. The same AM waveform lasting ≥20 s was 

repeated four times to compare responses to different trials. These random AMs were 

produced by multiplying an EOD mimic with zero-mean band limited Gaussian white noise 

with upper cutoff frequency fc = 120 Hz (8th-order Butterworth filter). The EOD mimic 

consisted of a train of single sinusoids of a duration slightly less than that of a single EOD 

cycle synchronized to the zero-crossings of the animal’s own EOD. The resulting signal was 

presented to the animal with either global or local geometry via a World Precision 

Instrument (A395) linear stimulus isolation unit. With global geometry the stimulus was 

applied via silver-silver chloride electrodes ~15 cm from the animal on each side. The 

resulting stimulus is relatively homogeneous over both the ipsilateral and contralateral sides 

to the ELL recorded from. The amplitude of the field was set to 10 mV/cm without the 

animal in place, and this served as the reference stimulus level (0 dB). The typical global 

stimulus amplitude used was −26 dB. With local geometry, the stimulus was applied via a 

small dipole with 3-mm tip spacing positioned typically 2–3 mm lateral to the fish, and the 

typical local stimulus amplitude used was also −26 dB. To achieve spatial saturation of the 

receptive field center, two dipoles spaced 0.5 cm apart were placed in the receptive field 

center as described previously (Chacron et al. 2003).

Analysis

All reported values in the text are given as means ± SD.

Mutual information estimates

All analysis was performed using custom routines in MATLAB (The MathWorks, Natick, 

MA). The stimulus waveform was resampled at 2 kHz. The spike train was digitized and 

also resampled at 2 kHz.

We computed the mutual information rate using the direct method (Reinagel and Reid 2000; 

Strong et al. 1998) for a separate population of n = 15 pyramidal cells. This requires a 

discretization of the stimulus and response probability spaces (Paninski 2003): we divided 

the spike train into nonoverlapping bins of width Δτ. If n action potentials occurred between 

times i Δτ and (i + 1) Δτ, then the value of bin i was set to n. The entropy rate of the 

response H(R) was estimated from an unrepeated 500-s-long presentation of stimulus S. The 

entropy rate of the response given the stimulus H(R/S) was estimated from 250 epochs of the 

same stimulus sample each lasting 2 s. We used Paninski’s best upper bound estimators to 

correct for undersampling bias in the estimates (Paninski 2003), and the mutual information 
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rate was computed as Idirect(Δτ) = H(R)–H(R/S). Idirect depends on Δτ and will increase with 

decreasing Δτ (Paninski 2003; Passaglia and Troy 2004; Reinagel and Reid 2000). Thus 

Idirect(Δτ) is an underestimate of the true information rate of the system. To correct for this, 

we varied Δτ between 2 and 10 ms in increments of 2 ms and linearly extrapolated to Δτ→0 

(Passaglia and Troy 2004) to obtain an estimate of MIdirect.

We also used the indirect method (Rieke et al. 1996) to quantify the amount of information 

that can be decoded linearly. The four spike trains obtained in response to repeated 

presentations of the same stimulus waveform S were labeled R1–R4. We computed the cross-

spectrum SRi(f) between the stimulus S and spike train Ri, the stimulus power spectrum 

SS(f), and the power spectrum RRi(f) of spike train Ri. All these quantities were computed 

using multitaper estimation techniques with eight Slepian sequences (Jarvis and Mitra 

2001). A lower bound on the rate density of information transmission at frequency f can be 

computed from the stimulus-response (SR) coherence (Borst and Theunissen 1999; Marsat 

and Pollack 2004; Rieke et al. 1996)

where CSR(f) is the SR coherence given by (Rieke et al. 1996; Roddey et al. 2000)

The total information rate MIlower is obtained by integrating Ilower(f) between 0 and the 

stimulus’ cutoff frequency fc. A comparison between MIdirect and MIlower gives the relative 

amount of information that can be decoded linearly with respect to the total amount of 

information available. We thus computed the fraction of information that can be recovered 

by linear means as ΔI = 100*MIlower/MIdirect.

Performance of linear and nonlinear encoding models

Roddey et al. (2000) have proposed a method for assessing the performance of neural 

encoding models: the performance of the best linear model can be assessed by the SR 

coherence. However, nonlinear models can outperform linear ones and the response-

response (RR) coherence gives an upper bound on the performance of the optimal nonlinear 

model. A comparison between the SR coherence and the square root of the RR coherence 

will thus quantify the performance of the best linear model with respect to the optimum 

performance theoretically achievable. The RR coherence is given by (Roddey et al. 2000)
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where RRij is the cross-spectrum between spike trains Ri and Rj. RR and SR coherence 

curve estimates were obtained from n = 41 receptor afferents and n = 54 pyramidal cells.

For pyramidal cell intracellular recordings (n = 10), we removed the spike waveforms as 

described previously (Chacron et al. 2003): spikes were removed from the intracellular 

signal by replacing the spike waveform by the average of the membrane potential values 

immediately preceding and following the spike waveform. The resulting signal was then 

low-passed filtered (8th-order Butterworth, 200-Hz cutoff) and resampled at 2 kHz. We 

computed the SR and RR coherence estimates between the resulting membrane potential and 

stimulus in the same manner as for digitized spike trains.

Steps in EOD amplitude were also given to evoke compound excitatory postsynaptic 

potentials (EPSPs) in a separate population of n = 9 E-type pyramidal cells from which we 

also recorded intracellularly. Each step consisted of a 10–20% increase in EOD amplitude 

that was 4 ms in duration. Steps were delivered via each dipole separately as well as through 

both dipoles simultaneously to assess EPSP summation. To prevent spiking, the cell was 

hyperpolarized by intracellular current injection. Typical currents used were −0.4 nA. 

Compound EPSP shapes were obtained by averaging membrane potential over ≥40 stimulus 

presentations.

Spike train dejittering

Aldworth et al. (2005) have proposed a dejittering algorithm to eliminate noise due to spike-

timing jitter. Their results show that dejittering can significantly improve the spike-triggered 

average (STA). To test if spike-timing jitter can significantly influence information 

processing in the electrosensory system, we implemented their algorithm on n = 41 receptor 

afferents and n = 54 pyramidal cells. We refer to Aldworth et al. (2005) for the details of the 

methodology. Briefly, the STA was obtained by taking the stimulus waveform surrounding 

each spike and then averaging over all spikes as done previously (Chacron et al. 2005c). 

Each stimulus waveform was then shifted in time by amounts varying between lmin and 3 σt. 

The notation is the same as the one used by Aldworth et al. (2005). lmin is the minimum 

response latency which one can estimate from the STA. σt is an estimate of the spike-timing 

jitter. Previous studies have estimated spike timing jitter of around 1 ms for pyramidal cells 

(Chacron et al. 2003). We used a range of values between 1 and 5 ms for σt, and the results 

were not sensitive to the value used: we thus present results obtained for σt = 5 ms. The 

optimal shift time t for each segment was obtained by minimizing the distance measure
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Here x is the residual between each stimulus segment and the mean stimulus segment from 

the previous iteration with xT being the transpose of x. C is the covariance matrix of the 

stimulus ensemble. This procedure can be iterated until convergence. We used the same 

convergence criterion as Aldworth et al. (2005). The new STA was then computed from the 

shifted stimulus segments.

Pharmacology

Micropressure ejection techniques (Bastian 1993; Bastian et al. 2004; Chacron et al. 2005c) 

were used to apply the non-N-methyl-D-aspartate (NMDA) glutamate antagonist 1,6-

cyano-7-nitroquinoxa-line-2,3-dione (CNQX) to local regions of the ELL molecular layer 

containing the apical dendrites of a recorded cell. This was attempted separately on n = 10 

pyramidal cells. Multibarrel pipettes were pulled to a fine tip and broken back to a total tip 

diameter of ~10 mm. One barrel was filled with a 1 mM solution of disodium CNQX, and a 

second barrel was filled with 1 mM solution of glutamate. After a well-isolated single-unit 

extracellular recording was established, the pressure pipette was slowly advanced into an 

appropriate region of the ELL molecular layer while periodically ejecting “puffs” of 

glutamate. Typically ejection duration ranged from 50 to 100 ms and ejection pressure was 

usually 40 psi. As described earlier (Bastian 1993), proximity to the apical dendrite of the 

recorded cell was indicated by short-latency increases in firing rate following glutamate 

ejection. Following correct placement, CNQX was delivered as a single dose or series of 

pulses (e.g., 100-ms puffs at 0.5 Hz for 20 s), and this treatment typically resulted in tonic 

alterations in pyramidal cell activity lasting ~5 min.

Modeling

We built a model of receptor afferent input synapsing unto the basilar dendrite of an E-type 

pyramidal cell with feedback input from higher centers. Each of the n = 10 receptor afferents 

is modeled using a leaky integrate-and-fire mechanism with dynamic threshold (Chacron et 

al. 2000, 2001, 2005c). The voltage vi and threshold θi of receptor afferent i obey the 

following differential equations over times between action potentials

with Ii given by

Here, feod is the EOD frequency, Θ(.) is the Heaviside function [Θ(x) = 0 if x < 0 and Θ(x) = 

1 otherwise]), and ξi(t) is Gaussian white noise with zero mean and unit variance that is 
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uncorrelated among different receptors. S(t) is the stimulus with SD 0.2 mV which we take 

to be low-pass filtered Gaussian white noise with the same cutoff (120 Hz) used in the 

experiments. When vi(t) = θi(t), vi is reset to 0, whereas θi is incremented by Δθ and an 

action potential is said to have occurred. Parameter values used were A0 = 0.2613 mV, τv = 

1 ms, τθ = 14.5 ms, θ0 = 0.03, Δθ = 0.05, σ = 0.2, fEOD = 700 Hz. Receptor afferents 

synapse unto the basilar dendrite of an E-type pyramidal cell, the voltage in the basilar 

dendrite is given by

where Mi(t) is the spike count of afferent i at time t. Previous studies using compartmental 

models have shown that the long basilar dendrite of superficial E-cells acts as a low-pass 

filter (Chacron et al. 2005c). Here we implement this in a simple fashion

where Vs is the membrane potential at the soma. Synaptic noise sources are modeled using 

an Ornstein-Uhlenbeck process (Gardiner 1985; Manwani and Koch 1999)

where ξ(t) is Gaussian white noise with mean zero and variance unity. λ is added to the 

somatic membrane potential Vs. Vs(t) + λ(t) and S(t) were both sampled at 2 kHz, and we 

computed upper and lower bounds on the mutual information rate between S(t) and Vs(t) + 

λ(t) in the same manner as for the experimental data. As before (Chacron et al. 2005c), a 

negative image was created by low-pass filtering a delayed stimulus S(t − τdelay) (4th-order 

Butterworth, 20-Hz cutoff frequency). τdelay accounts for conduction times to and from 

higher centers. The negative image was then multiplied by a gain Gneg and subtracted from 

Vs. The negative image mimics feedback input that reduces the low-frequency response of 

pyramidal cells to global stimuli (Bastian 1996a; Bastian et al. 2004; Chacron et al. 2003, 

2005c). To mimic local and global geometry, we varied the number of afferents being 

stimulated Nstim, varied the synaptic noise intensity D, and added the negative image (i.e., 

Gneg > 0). Table 1 summarizes the parameter values used during simulations.

RESULTS

Good performance for linear encoding models of receptor afferent activity

We first assessed the performance of optimal linear encoding models of receptor afferent 

activity by comparing the SR coherence to the square rooted RR coherence. Both measures 

range between 0 and 1. The SR coherence is a measure of linear correlations between the 
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stimulus S and the response R and quantifies the performance of the optimal linear encoding 

model (Roddey et al. 2000). On the other hand, the RR coherence is obtained from different 

responses of the same neuron to repeated presentations of the same stimulus. As such, it is a 

measure of the trial-to-trial variability of the neural response that cannot be accounted by the 

stimulus and an upper bound on the performance of any encoding model is given by the 

square rooted RR coherence (Roddey et al. 2000). A comparison between the SR and square 

rooted RR coherence curves thus allows us to quantify the performance of optimal linear 

encoding models with respect to the maximum theoretically achievable performance. 

Population averaged (n = 41) square rooted RR and SR coherence curves for electroreceptor 

afferents were broadband to weakly low-pass (Fig. 1). We computed the performance index 

PI of optimal linear encoding models by averaging 100*Crs(f)/[Crr(f)]0.5 over f between 0 

and 120 Hz. For receptor afferents, we obtained PI = 86.27 ± 7.48% (all numerical values 

obtained experimentally in the text and in tables are given as means ± SD), indicating an 

overall good performance for linear encoding models. Although conventional tuning curves 

predict a high-pass tuning for receptor afferents (Bastian 1981; Chacron et al. 2005b; Nelson 

et al. 1997) due to their strong adaptation (Benda et al. 2005), previous studies have found 

that lower bound information tuning curves were broadband (Chacron et al. 2005b,c; Wessel 

et al. 1996) because receptor afferents display low amounts of noise at low frequencies due 

to intrinsic dynamics (Chacron et al. 2005b). These dynamics manifest themselves by 

intrinsic negative interspike interval correlations (Chacron et al. 2000, 2001, 2004, 2005b). 

We conclude that despite strong intrinsic dynamics, linear encoding models are adequate for 

receptor afferents.

Optimal linear encoding models of pyramidal cell activity perform better under local 
stimulation than under global stimulation

Unlike receptor afferents, pyramidal cells show sensitivity to the spatial extent of the 

stimulus (Bastian et al. 2002, 2004; Chacron et al. 2003, 2005c; Doiron et al. 2003). We thus 

compared the performance of optimal linear encoding models under both local (spatially 

localized) and global (spatially diffuse) stimulation. As described previously (Chacron et al. 

2003, 2005c), E-cells switch their preferred tuning from low to higher temporal frequencies 

in response to a switch from local to global stimulation geometry (Fig. 2, A and B), and this 

switch is seen in both the SR and the square rooted RR coherence curves. We computed the 

performance index PI as before and obtained PIlocal = 48.63 ± 13.87% for local stimulation 

and PIglobal = 36.80 ± 13.97% for global stimulation (P < 10−3, pairwise t-test, n = 27). 

Overall, linear encoding models thus performed better under local stimulation than under 

global stimulation.

I cells showed a decrease in low-frequency responsiveness on transitioning from local to 

global geometry (Fig. 2, C and D). We obtained PIlocal = 38.59 ± 9.68% and PIglobal = 20.82 

± 7.75% for local and global stimulation geometries, respectively (P < 10−3, pairwise t-test, 

n = 27). Similarly to E cells, optimal linear encoding models performed better under local 

stimulation than global stimulation. Overall, linear encoding models performed significantly 

better for E cells than for I cells for both local (P = 0.01, t-test, n = 27) and global 

stimulation (P < 10−3, t-test, n = 27). The performance index PI was at most 50% and this 
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indicates that nonlinear encoding mechanisms are significant in pyramidal cells. Models of 

their activity must thus take these into account.

Linear decoder performs better under local stimulation than under global stimulation

Information encoded in a nonlinear fashion can sometimes be decoded linearly (Rieke et al. 

1996). To gauge the performance of linear decoders, we computed the mutual information 

rates of pyramidal cells using both the direct and indirect methods. Results obtained under 

both local and global stimulation are summarized in Table 2. The percentage of information 

that can be decoded linearly ΔI was higher under local geometry than under global 

geometry, indicating that at least part of the information nonlinearly encoded by pyramidal 

cells has to be decoded nonlinearly. We will return to this issue in the discussion but for now 

we concentrate on understanding the nature of nonlinear encoding mechanisms present in 

pyramidal cells.

Pyramidal cell dendritic morphology is correlated with nonlinear encoding

We first investigated whether there was any correlation between dendritic morphology and 

nonlinear encoding. Previous studies have demonstrated a negative correlation between 

pyramidal cell dendritic morphology and their firing rate (Bastian and Courtright 1991; 

Bastian and Nguyenkim 2001). We thus plotted PI as a function of firing rate. For local 

stimuli (Fig. 3A), no correlation between the performance index PI of linear encoding 

models and firing rate was observed (R = 0.3065, P = 0.1199, n = 27). On the other hand, 

there was a significant positive correlation between PI and firing rate for global stimuli (R = 

0.746, P < 10−3, n = 27; Fig. 3B). Linear encoding models are thus more apt at describing 

the behavior of cells with higher firing frequencies and, therefore smaller apical dendrites, 

under global stimuli. The situation is similar for I cells: we observed a lack of correlation 

between PI and firing rate for local stimulation (R = 0.2676, P = 0.1771, n = 27; Fig. 3C) 

and a significant correlation under global stimulation (R = 0.477, P = 0.01, n = 27; Fig. 3D). 

These results suggest that dendritic morphology influences linear encoding for both E and I 

cells with lower PI values for cells that had low firing rates.

Blockade of feedback input can affect the performance of linear encoding models

It is known from previous studies that global stimuli can activate correlated patterns of 

synaptic input to pyramidal cells in the form of a negative image that cancels low frequency 

feedforward input (Bastian 1996a,b, 1998; Bastian et al. 2004; Chacron et al. 2005c). This is 

not the case for local stimulation: previous studies suggest that indirect feedback input to 

pyramidal cells is uncorrelated with the stimulus for such stimuli (Bastian et al. 2004; 

Chacron et al. 2005c). As correlated synaptic input into a neuron is known to change its 

integration properties (Salinas and Sejnowski 2000, 2001), we reversibly blocked indirect 

feedback input to pyramidal cells to gauge its effects on nonlinear encoding. It is 

furthermore known from previous studies that the negative image has a similar function in 

both E- and I-type pyramidal cells (Bastian et al. 2002, 2004; Chacron et al. 2005c). For this 

reason and because similar changes were seen for both E- and I-type pyramidal cells, the 

results were pooled.
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Pharmacological blockade of feedback input increased the difference between the square 

rooted RR coherence and the SR coherence under both local (Fig. 4A) and global (B) 

stimulation. However, the percent increase was greater under local stimulation, and this is 

reflected in the performance index PI of optimal linear encoding models. Results are 

summarized in Table 3. Under local stimulation, blockade of feedback input significantly 

reduced the performance index of optimal linear models. A small reduction in PI was seen 

contingent on feedback blockade under global stimulation, but this reduction was not 

statistically significant.

We now hypothesize as to the possible mechanisms that could explain these results. Under 

local stimulation, feedback input could act as synaptic noise for pyramidal cells as it is not 

likely to be correlated with the stimulus (Chacron et al. 2005c). Noise is known to linearize 

the transfer function of nonlinear systems (Stemmler 1996), and high levels of noise will 

make a strongly nonlinear system act like a linear one (Chacron et al. 2000, 2005a; Doiron et 

al. 2004; Lindner et al. 2005). Global stimuli, however, activate feedback input unto 

pyramidal cells in the form of a negative image of the expected afferent input (Bastian et al. 

2004; Chacron et al. 2005c). Feedback input would not be considered as noise in this 

situation as it would be correlated with the stimulus. There would thus be less noise under 

global stimulation implying a stronger effect of system nonlinearities thus explaining why 

linear encoding models perform worse under that geometry. Blocking the negative image 

under global stimulation would not change the amount of noise (as the feedback pathway 

would then presumably be silent), and this might explain why feedback blockade did not 

significantly reduce the performance of linear encoding models under global stimulation.

Receptive field spatial saturation increases nonlinear coding

Local stimuli only impinge on a fraction of the receptive field center of E-type pyramidal 

cells, whereas global stimuli spatially saturate the receptive field center (Chacron et al. 

2003). As such, the fraction of the receptive field center not stimulated might also contribute 

synaptic noise under local stimulation. Therefore spatially saturating the RF center is 

expected to reduce synaptic noise and thus presumably worsen the performance of linear 

encoding models. To test this hypothesis, we spatially saturated the receptive field center of 

pyramidal cells using a second dipole (see METHODS). The effects of receptive field center 

spatial saturation are shown in Fig. 5 for E cells. Spatial saturation significantly decreased 

the performance index PI of linear encoding models (P = 0.003, pairwise t-test, n = 7; Fig. 5, 

A and B). This decreased performance is mostly seen for high frequencies (Fig. 5B, inset) 
and is similar to the decreased performance seen as we transition from local to global 

stimulation geometry. We conclude from this that spatial saturation of the receptive field 

center will decrease the performance index of optimal linear encoding models.

We hypothesize that this is also due to synaptic noise reduction but from feedforward 

sources. It is likely that receptive field center saturation does not activate significant 

feedback input in the form of a negative image (Chacron et al. 2003) and thus would 

presumably not reduce synaptic noise from feedback sources. The number of spontaneously 

active receptor afferents uncorrelated with the stimulus, and therefore contributing 

feedforward synaptic noise will be reduced as receptive field saturation increases. The worse 
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performance of linear encoding models is again a consequence of reduced synaptic noise 

from feedforward sources. Previous studies have shown that this synaptic noise should 

contain more power at high frequencies than at low frequencies (Chacron et al. 2005b). The 

fact that the performance of optimal linear encoding models was mostly degraded for high 

frequencies (Fig. 5, inset) is consistent with this hypothesis.

The results from this and the previous section have shown the respective contributions of 

feedforward and -back input in controlling the amount of synaptic noise in pyramidal cells. 

However, they do not give us the nature of the nonlinear mechanisms by which pyramidal 

cells encode sensory information.

Nonlinear filtering by pyramidal cell dendrites

Previous studies in the retina have suggested that nonlinear information processing could 

simply be the result of action potential generation (Passaglia and Troy 2004). Indeed, the 

firing of single or bursts of action potentials is a very nonlinear phenomenon, and pyramidal 

cells certainly have the capacity to fire bursts of action potentials both in vitro (Lemon and 

Turner 2000) and in vivo (Bastian and Nguyenkim 2001). To test whether action potential 

dynamics were responsible for nonlinear encoding, we recorded intracellularly both from 

pyramidal cell somata and proximal apical dendrites. We then measured the SR and RR 

coherence of the membrane potential with spikes removed. It is seen that linear encoding 

models of the membrane potential performed significantly better under local geometry than 

global geometry (Fig. 6, A and B). We had PIlocal = 59.86 ± 19.34% and PIglobal = 42.71 

± 15.82% under local and global stimulation, respectively (P = 0.002, pairwise t-test, n = 

15). This change is similar to that seen with pyramidal cell spike trains (compare Figs. 2 and 

6).

To ensure that this result was not simply an artifact due to spike removal, we also 

hyperpolarized pyramidal cells by intracellular current injection. Typical current used to 

hyperpolarize the cell were −0.4 nA, and this caused a significant reduction in firing 

frequency that averaged 74.38 ± 14.1% (P <10−3, pairwise t-test, n = 10) and furthermore 

completely eliminated spiking activity in three cells. We compared the relative amount of 

information that could be decoded linearly from the membrane potential with spikes 

removed to the one obtained from the membrane potential with spikes removed under 

hyperpolarization under both local and global stimulation. Results were pooled across local 

and global stimulation because no difference was seen contingent on stimulation geometry. 

The membrane potential with spikes removed and the membrane potential with spikes 

removed under hyperpolarization gave similar PI values that were not significantly different 

from one another (54.76 ± 19.45 and 53.81 ± 18.08%, respectively, P = 0.87, pairwise t-test, 

n = 10), and this argues strongly against the hypothesis that the decrease in performance of 

linear encoding models seen in the membrane potential was an artifact of spike removal.

We conclude that nonlinear filtering by pyramidal cell dendrites is the most likely cause for 

nonlinear encoding of sensory stimuli. The nonlinear filtering is furthermore most likely not 

affected by voltage-gated ion channels located close to the soma as these would have been 

turned off by hyperpolarization. In E cells, nonlinear filtering is probably taking place in 

both basilar and apical dendrites. I cells, however, have no basilar dendrites and instead 
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receive receptor afferent input indirectly on their somata by means of inhibitory interneurons 

that themselves have basilar dendrites (Maler et al. 1981). Nonlinear encoding of sensory 

information by I cells could originate from nonlinear filtering in the inhibitory interneurons’ 

basilar dendrites as well as from apical dendrites.

EPSP summation in pyramidal cell dendrites

Nonlinear temporal integration of synaptic PSPs can be caused by voltage-dependent 

amplification due to sodium currents, and such amplification has been demonstrated in a 

variety of neurons (Andreasen and Lambert 1999; Berman et al. 2001; Crill 1996; Fortune 

and Rose 2003; Lipowsky et al. 1996; Stuart and Sakmann 1995). Receptive field center 

saturation, as occurs with global stimulation, would increase synchrony among receptor 

afferents providing input from the receptive field center of pyramidal cells, thus causing 

larger fluctuations in the membrane potential as already observed (Chacron et al. 2003). 

Increased depolarization might thus activate persistent sodium currents leading to nonlinear 

amplification of EPSPs, which might explain why the performance index of linear encoding 

models is worse under global stimulation. This is plausible as it has been shown in vitro that 

pyramidal cells possess persistent sodium currents and that they can amplify synaptic inputs 

(Berman et al. 1997, 2001; Turner et al. 1994).

Alternatively, the nonlinear filtering could originate from shunting at excitatory synapses 

located in distal dendrites. Sublinear summation of EPSPs will occur as the membrane 

potential is driven toward the reversal potential. This shunting would then be present under 

both local and global stimulation. However, our results suggest that noise in pyramidal cells 

is significantly greater under local stimulation than global stimulation. This noise might 

linearize the system (Chacron et al. 2000; Roddey et al. 2000; Stemmler 1996). Global 

stimuli would decrease both feedforward and -back noise sources revealing the nonlinear 

effects of shunting. To test which of these two hypotheses is correct, we looked at EPSP 

summation in pyramidal cells.

We recorded intracellularly from E-type pyramidal cells as they receive direct receptor 

afferent input on their basilar dendrites (Maler 1979; Maler et al. 1981). Steps in EOD 

amplitude delivered via one or two dipoles positioned in the cell’s receptive field center 

were used to evoke compound EPSPs. A negative bias current was applied through the 

recording electrode to maintain the cell below the threshold for action potential generation: 

note that nonlinear processing is still seen under hyperpolarization. Figure 7 shows the 

results from one example cell. Compound EPSPs evoked by each dipole separately were 

similar in shape (Fig. 7A). The compound EPSP evoked by both dipoles is larger in 

magnitude (Fig. 7B). However, it is not different from the predicted linear sum of compound 

EPSPs evoked by each dipole separately. Similar results were seen for eight additional cells. 

The mean difference between the compound EPSP evoked by both dipoles and the predicted 

linear sum was not statistically difference from zero (P = 0.81, t-test, n = 9). Although this 

result does not rule out the hypothesis that activation of persistent sodium or other voltage-

gated conductances are at least partially responsible for increased nonlinear coding of global 

stimuli, it certainly argues against them being a major source of nonlinear processing in the 

electrosensory system. We note that linear summation of EPSPs in dendrites is possible 
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through the interaction of voltage-dependent conductances and has already been observed 

(Cash and Yuste 1999).

We therefore will concentrate on the second hypothesis: shunting of synaptic EPSPs in distal 

dendrites as a mechanism for nonlinear encoding of sensory information. To demonstrate the 

feasibility of such a mechanism, we built a model of receptor afferents converging onto an E 

cell’s basilar dendrite.

Modeling

In this section, we show that shunting at distal excitatory synapses with varying levels of 

noise is compatible with the experimental results. Using our model, we reproduce the effects 

of receptive field center saturation, feedback blockade, and finally the effects of transitioning 

from local to global stimulation.

We first model the effects of receptive field center saturation. Previous results have shown 

that the negative image is not significantly evoked by either one- or two-dipole stimulation 

(Bastian et al. 2004; Chacron et al. 2003, 2005c). We thus do not include a negative image in 

the model at this time (i.e., Gneg = 0). There is, however, synaptic noise from feedback 

sources (i.e., D > 0) that is not correlated with the stimulus. To mimic local stimulation, only 

a fraction of receptor afferents converging on the model pyramidal cell received stimulation. 

Square rooted RR (black) and SR (gray) coherence curves are shown in Fig. 8A and closely 

resembled the curves obtained experimentally under local stimulation (compare with Fig. 

2A). To mimic receptive field saturation, we increased the percentage of receptor afferents 

receiving stimulation. Square rooted RR (black) and SR (gray) coherence curves are shown 

in Fig. 8B and resembled the curves obtained under receptive field center saturation 

(compare Figs. 8B and 5B). As in the experimental data, there was a significant decrease in 

the performance of linear encoding models: the inset of Fig. 8B shows that the performance 

index PI decreases as a function of the percentage of receptor afferents receiving stimuli. 

Our modeling results so far thus agree qualitatively with the experimental data on receptive 

field center saturation.

We now concentrate on the effects of feedback blockade by adding a negative image to the 

model (i.e., Gneg > 0). Figure 9A shows that adding a negative image does not affect the 

performance of linear encoding models. This is because the negative image is a linear 

transformation of the stimulus that is then added to the membrane potential. The inset of Fig. 

9A shows that addition of the negative image reduced the low-frequency response as seen 

experimentally, and this result also mimics the effects of feedback blockade under global 

stimulation (compare Figs. 9A and 4B).

To clarify the influence of feedback synaptic noise on the performance of linear encoding 

models, we varied the amount of synaptic noise from feedback sources in the model. Figure 

9B shows the performance index PI of linear encoding models as a function of synaptic 

noise intensity D. PI increases as a function of D. Thus decreasing the amount of feedback 

synaptic noise “reveals” the presence of the shunting nonlinearity in the model that then 

causes a decrease in the performance of linear encoding models.
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So far our results suggest that transitioning from local to global geometry has two major 

effects: first, spatial saturation of the receptive field center increases the fraction of receptor 

afferents being stimulated and thus reduces the amount of feedforward synaptic noise. 

Second, activation of the negative image reduces the amount of feedback synaptic noise. We 

thus increased the fraction of receptor afferents being stimulated, added the negative image, 

and reduced the feedback synaptic noise intensity D in the model. Figure 9C shows the 

square rooted RR and SR coherence curves obtained with the model under “global” 

stimulation. A comparison with “local” stimulation (Fig. 8A) shows the same qualitative 

changes as in the experimental data (compare Figs. 8A and 9C with 2, A and B, 

respectively). Our modeling results thus show that shunting at excitatory synapses is 

compatible with the experimental results.

DISCUSSION

Performance of optimal linear encoding models

Although linear encoding models were found to be adequate for receptor afferents, they 

were in general inadequate for pyramidal cells. In particular, linear encoding models 

performed better for E cells than for I cells, and this shows that there are significant 

asymmetries between E and I cells. Previous studies on retinal ganglion cells have shown 

significant asymmetries between ON and OFF type cells (Chichilnisky and Kalmar 2002), 

and these asymmetries maybe a general feature of sensory processing. In the electrosensory 

system, this may be due to the fact that I cells receive receptor afferent input indirectly 

through inhibitory interneurons (Maler 1979; Maler et al. 1981). Further, I cells have a 

significantly smaller receptive field center area than E cells (Bastian et al. 2002). Thus local 

stimulation is expected to stimulate a greater fraction of I-cell receptive field centers than of 

E-cell receptive field centers, possibly explaining why linear encoding models are less apt at 

describing I-cell behavior. Further studies are needed to find the neural mechanisms 

responsible for these asymmetries.

It was seen that linear encoding models were more apt to describe pyramidal cell responses 

to spatially localized stimuli than spatially diffuse stimuli. Similar results are seen in retinal 

ganglion cells (Passaglia and Troy 2004). These spatially diffuse stimuli result in an 

increased effective stimulation of the receptive field center (Chacron et al. 2003) thus 

increasing the net stimulus intensity. Stimulus intensity has been shown to affect the 

performance of linear encoding models in both the cricket cercal (Roddey et al. 2000) and 

auditory (Marsat and Pollack 2004, 2005) systems. Nonlinear encoding models are thus 

necessary to describe neural responses to strong stimuli, and this may be a general feature of 

sensory processing.

Our results show that both feedforward and feedback mechanisms can affect the overall level 

of noise in pyramidal cells. Spatially diffuse stimuli were shown to attenuate feedforward 

noise sources through receptive field center saturation and attenuated feedback noise sources 

through activation of the negative image. This implies that the neural code should be 

different for electrolocation and electrocommunication stimuli. We hypothesize that 

temporal integration of receptor afferent evoked EPSPs might occur under local stimulation 

whereas coincidence detection of synchronized input might occur under global stimulation. 
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The fact that superficial (i.e., low firing rate) pyramidal cells show significantly larger 

integration time constants as assessed from spike-triggered averages under local stimulation 

than under global stimulation (Chacron et al. 2005c) supports this hypothesis.

Pyramidal cell heterogeneities were found to influence the performance of linear encoding 

models. Superficial pyramidal cells with the largest apical dendrites were found to have the 

greatest change in the performance of nonlinear encoding models by transitioning from local 

to global stimulation, whereas deep pyramidal cells showed no significant change. We 

suggest that this may be due to their larger receptive field centers (Bastian et al. 2002) as 

well as the greater amounts of feedback input that they receive (Bastian et al. 2004). Both 

would contribute to greater amounts of noise under local stimulation. The high coefficient of 

variations displayed by superficial pyramidal cells support this hypothesis (Bastian and 

Nguyenkim 2001).

Validity of previous studies in the electrosensory system

The results presented in this study do not invalidate previous results establishing the tuning 

of receptor afferents and pyramidal cells as both the SR and RR coherence curves had 

similar shapes. This is similar to other studies in other systems using broadband noise 

stimuli (Marsat and Pollack 2004; Roddey et al. 2000). Differences between the SR and RR 

coherence curves appear when stronger spatially diffuse as well as narrowband stimuli are 

used (data not shown), and further studies are needed to quantify these effects.

We have shown that previously published mutual information rates using the indirect method 

severely underestimated the information transmission capabilities of pyramidal cells. 

However, the similarity between the SR and RR coherence curves show that previously 

published SR coherence curves were at least qualitatively correct. Some of these previous 

studies found that pyramidal cells transmitted less information than receptor afferents and 

were more adept at detecting features of the stimulus (Gabbiani et al. 1996; Metzner et al. 

1998). Our results show that this is certainly true for superficial pyramidal cells. However, 

deep pyramidal cells are in general broadly tuned (Chacron et al. 2005b,c), and our results 

confirm earlier ones. In particular, deep E-type pyramidal cells were most similar to receptor 

afferents in their tuning. Thus while superficial pyramidal cells are highly selective in their 

responses, deep pyramidal cells are not selective and instead encode every aspect of the 

noise stimulus. In fact, the information from the deep pyramidal cells is used to increase the 

selectivity of superficial pyramidal cells under global stimulation via a feedback mechanism 

(Bastian et al. 2004).

Nature of nonlinear encoding by pyramidal cells

A novel aspect of this study was the investigation of the nature of nonlinear encoding by 

pyramidal cells. Intracellular recordings showed that nonlinear encoding could be 

decomposed into two parts: a nonlinear filtering of the stimulus by distal dendrites followed 

by a mostly linear encoding of the resulting neural signal by the spiking mechanism. 

Because the passive cable equation is linear, it cannot account for the nonlinear processing 

seen in ELL pyramidal cells. Thus either voltage-dependent conductances or synaptic 

processes such as sodium currents (Andreasen and Lambert 1999; Berman et al. 2001; Crill 
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1996; Lipowsky et al. 1996; Stuart and Sakmann 1995), potassium currents (Cash and Yuste 

1999; Magee 1999; Urban and Barrionuevo 1998), shunting inhibition (Ariel and Kogo 

2005; Borg-Graham et al. 1998; Higley and Contreras 2003), or shunting excitation (Kogo 

and Ariel 1999) had to account for nonlinear filtering in dendrites.

Experiments and modeling suggest that the nature of the nonlinear filtering by distal 

dendrites is shunting at excitatory synapses because compound EPSP summation is mostly 

linear. This shunting could occur in the basilar bushes of E cells and inhibitory interneurons 

providing input to I cells as well as the distal apical dendrites of both E and I-cells that 

receive feedback input. Our modeling suggests that shunting would occur in the basilar bush 

at the synapse for E-type pyramidal cells, whereas EPSP summation would occur at branch 

points in the basilar bush. Thus shunting would not in principle preclude linear EPSP 

summation as we observe. Linear EPSP summation could be made possible by voltage-gated 

channels (Cash and Yuste 1999), and further experiments carried out in vitro are necessary 

to verify this. Shunting might cause information loss due to synaptic saturation. However, 

this loss would occur for very strong stimuli and may thus not impinge on the animal’s 

behavioral abilities. Further, shunting would have the advantage of keeping a neuron within 

its dynamic range and thus not compromise the detection of weaker stimuli.

We note that our results do not completely exclude the possibility of nonlinear integration of 

synaptic PSPs via voltage-gated sodium channels. Such nonlinear summation has been 

shown for pyramidal cells in vitro and was mediated by persistent sodium channels (Berman 

et al. 2001), and these might contribute to nonlinear filtering. Finally, other processes such 

as gain control (Bastian 1986) and adaptation (Bastian and Courtright 1991) could also 

contribute to nonlinear encoding of sensory stimuli by pyramidal cells.

Decoding of information transmitted by pyramidal cell spike trains

Our results show that information encoded nonlinearly by pyramidal cells has to at least in 

part be decoded in a nonlinear manner: a linear decoder only has access to a fraction of the 

information transmitted by pyramidal cells. This fraction was greatest for spatially localized 

stimuli and decreased for spatially diffuse stimuli and our results are similar to those 

obtained in other systems (Passaglia and Troy 2004). We note that an upper bound on the 

rate of information transmission can be obtained from the RR coherence curve (Passaglia 

and Troy 2004; Marsat and Pollack 2004,2005). However, this upper bound can overestimate 

the amount of information transmitted by a significant amount (Passaglia and Troy 2004), 

and comparisons obtained using this estimate might underestimate the relative amount of 

information available to a linear decoder. Our results were obtained by comparing the lower 

bound obtained by the indirect method to the information rate estimated using the direct 

method and thus give us a more realistic estimate of the relative amount of information 

available to a linear decoder.

Previous studies of the electrosensory system almost exclusively used linear decoding 

algorithms to establish the tuning of receptor afferents and pyramidal cells to various stimuli 

(Bastian et al. 2002; Chacron et al. 2003, 2005b,c; Gabbiani et al. 1996; Krahe et al. 2002; 

Kreiman et al. 2000; Metzner et al. 1998; Wessel et al. 1996). Metzner et al. (1998) have 

considered a particular nonlinear decoder, a second-order Wiener-Volterra Kernel expansion, 
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and found little improvement as a compared with a linear decoder. In contrast, we used the 

direct method which makes no assumptions on the nature of the neural code (Reinagel and 

Reid 2000; Strong et al. 1998) and found that as much as 60% of the information transmitted 

by pyramidal cells could not be accessed by a linear decoder. This suggests that higher-order 

neurons should perform nonlinear operations on incoming pyramidal cell spike trains to 

access this information. Previous studies of Toral neurons receiving input from pyramidal 

cells have shown nonlinear filtering of sensory input in the form of nonlinear PSP 

summation via voltage-gated sodium currents (Fortune and Rose 2003) as well as short-term 

synaptic depression (Fortune and Rose 1997). Recordings from Toral neurons using stimuli 

similar to those used here are necessary to compare their performance to optimal linear and 

nonlinear decoders.

Conclusion

To conclude, we have shown nonlinear encoding of sensory information by pyramidal cells. 

We have investigated the dependence of this on stimulus intensity by varying the spatial 

extent and found results similar to those obtained in the visual (Passaglia and Troy 2004), 

auditory (Marsat and Pollack 2004, 2005) and cercal (Roddey et al. 2000) systems. The 

mechanisms described here will thus most likely share some commonality with other 

sensory systems. For example, the nonlinear coding in retinal ganglion cells (Passaglia and 

Troy 2004) could be due to nonlinear integration of photoreceptor input. Such nonlinear 

integration has been shown in both modeling (Hennig et al. 2002) and experimental (Lee et 

al. 1989) studies, and it will be interesting to compare nonlinear encoding and decoding 

mechanisms across sensory systems.
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APPENDIX A: EFFECTS OF SPIKE TIMING JITTER

We note that recent results have shown that the spike-triggered average (STA) used for 

computing the SR coherence underestimated the feature selectivity of cricket interneurons 

(Aldworth et al. 2005). Therefore the SR coherence and the lower bound on the mutual 

information rate derived from it could potentially underestimate the information rate of the 

system due to spike timing jitter. We tested for the effects of spike timing jitter on receptor 

afferents and found negligible effects on the STA (Fig. A1). This is consistent with previous 

results showing that spike timing jitter had negligible effects on information transmission by 

receptor afferents (Kreiman et al. 2000). Furthermore, spike timing jitter in pyramidal cells 

is on the order of 1 ms (Chacron et al. 2003), which is much less than the correlation time of 

the stimuli used in this study: 8.33 ms. Thus spike timing jitter is not expected to have much 

of an effect (Aldworth et al. 2005), and Fig. A2 shows that this is indeed the case. Thus 

spike timing jitter does not seem to play a role for the stimuli used in this study. The lower 

bound on the information rate obtained from the SR coherence underestimates the 

information rate of the system estimated from the direct method and this is due to system 

nonlinearities other than spike timing jitter.

APPENDIX B: COMPARISON BETWEEN THE UPPER BOUND AND THE 

DIRECT METHOD

We note that the RR coherence can be used to compute an upper bound MIupper on the 

mutual information rate (Marsat and Pollack 2004, 2005; Passaglia and Troy 2004). This 

upper bound may overestimate the information rate as estimated from the direct method 

(Passaglia and Troy 2004). Table 4 shows population averaged values obtained under local 

and global geometry. Although there was no significant difference seen under local 

geometry, the upper bound method can significantly overestimate the mutual information 

rate as estimated from the direct method. This is similar to what is seen in other systems 

(Passaglia and Troy 2004).
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FIG. 1. 
Population averaged (n = 41) square rooted RR coherence (black) and SR coherence (gray) 

curves for receptor afferents under global stimulation. On a scale ranging between 0 and 1, 

the SR coherence quantifies the performance of linear encoding models while the square 

rooted RR coherence measures the variability that cannot be accounted for by the stimulus 

and thus gives an upper bound on the SR coherence (see text for explanation). Both curves 

are qualitatively similar in shape showing a weakly low-pass response. Light gray bands 

show ± 1 SE.
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FIG. 2. 
A: population averaged (n = 27) square rooted RR coherence (black) and SR coherence 

(gray) for E-type pyramidal cells under local stimulation. B: same quantities under global 

stimulation. C: population averaged (n = 27) square rooted RR coherence (black) and SR 

coherence (gray) for I-type pyramidal cells under local stimulation geometry. D: same 

quantities under global stimulation. Light gray bands show ±1 SE.
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FIG. 3. 
A: performance index PI of optimal linear encoding models as a function of cell firing rate 

for E cells under local stimulation. B: same under global stimulation. C: performance index 

PI of optimal linear encoding models as a function of cell firing rate for I cells under local 

stimulation. D: same under global stimulation.
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FIG. 4. 
A: population averaged (n = 10) differences between the square rooted RR coherence and 

the SR coherence under control (gray) and block (black) for local stimulation. B: population 

averaged (n = 10) differences between the square rooted coherence and the SR coherence 

under control (gray) and block (black) for global stimulation. Vertical bars indicate the SE 

measured at 10 Hz.
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FIG. 5. 
A: population averaged (n = 7) square rooted RR coherence (black) and SR coherence (gray) 

for E-type pyramidal cells under 1-dipole (local) stimulation. B: same quantities under 2-

dipole stimulation. Inset: the square rooted RR coherence of an example pyramidal cell 

under local (black) and 2-dipole (gray) stimulation. Light gray bands show ±1 SE.
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FIG. 6. 
A: population averaged (n = 15) square rooted RR coherence (black) and SR coherence 

(gray) computed from the membrane potential under local stimulation geometry. B: same 

quantities under global stimulation. Light gray bands show ±1 SE.
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FIG. 7. 
A: average compound excitatory postsynaptic potentials (EPSPs) elicited by dipole 

stimulation in the receptive field center of an E cell. Averages were obtained from 40 

stimulus presentations. The stimulus starts at time 0 and lasts for 4 ms. Dipole 1 (gray) 

elicited a compound EPSP that roughly has the same shape as the one elicited by dipole 2 

(black). B: average compound EPSPs elicited by 1-dipole (black) vs. 2-dipole (light gray) 

stimulation. Linear summation of compound EPSPs occurs as seen when comparing the 

compound EPSP elicited by 2-dipole stimulation (light gray) to the predicted linear sum 

(dark gray).
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FIG. 8. 
A: square rooted RR coherence (black) and SR coherence (gray) obtained with the model 

when 40% of receptor afferents received stimulation. Parameter values are given in the 

column “local” of Table 1. B: same quantities when 80% of receptor afferents received 

stimulation. Parameter values are the same as in A except Nstim = 8. Inset: performance 

index PI as a function of the percentage of receptor afferents receiving stimulation.
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FIG. 9. 
A: difference between the square rooted RR coherence and SR coherence curves with 

(black) and without (gray) the negative image in the model. We used Gneg = 1.2 mV when 

the negative image was present and Gneg = 0 mV when it was absent. Inset: SR coherence 

with (black) and without (gray) the negative image. B: performance index PI as a function of 

synaptic noise intensity D. Parameter values were the same as in Fig. 8B. C: square rooted 

RR (black) and SR (gray) coherence curves of the model under “global” stimulation. We 

used D = 0.01 (mV/ms)2 and other parameter values are given in the column “global” of 

Table 1.
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FIG. A1. 
Population averaged (n = 41) raw (black) and dejittered (gray) STAs for receptor afferents 

under global stimulation. Vertical bars indicate 1 SE measured at 10 Hz
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FIG. A2. 
A: population averaged (n = 27) raw (black) and dejittered (gray) STAs for E cells under 

local stimulation. B: same quantities under global stimulation. C: population averaged (n = 

27) raw (black) and dejittered (gray) STAs for I cells under local stimulation. D: same 

quantities under global stimulation. Vertical bars indicate 1 SE measured at 10 Hz.
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TABLE 1

Parameter values used for the pyramidal cell model

“Local” “Global”

Nstim 4 8

τd, ms 50 50

C, nF 1 1

gleak, μS 0.1 0.1

gmax, μS 5 5

Eleak, mV −65 −65

Erev, mV 0 0

τ, ms 1 1

D, mV/ms2 0.09 0.01

τλ ms 20 20

Gneg 0 1.2

τdelay ms 15 15
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TABLE 2

Mutual information rates computed using the indirect and direct methods and the percentage ΔI of information 

that can be decoded linearly

Local Global

MIlower bits/s 14.69 ± 16.51 25.15 ± 24.44**

MIdirect bits/s 23.10 ± 20.73 52.89 ± 37.58**

ΔI (%) 60.72 ± 39.05 39.05 ± 16.37**

**
Statistically significant difference between the values obtained for local and global stimulation using a pairwise t-test at the P = 0.01 level with n 

= 15.
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TABLE 3

PI values obtained under pharmacological blockade of feedback for local and global stimulation geometries

Control, % Block, %

Local 40.21 ± 15.65 27.91 ± 7.33**

Global 25.42 ± 13.27 18.41 ± 8.70

**
Significant change in PI contingent on pharmacological blockade using a pairwise t-test at the P = 0.01 level with n = 10.
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TABLE 4

Mutual information rates computed using the indirect and upper bound methods

MIupper, bits/s MIdirect, bits/s

Local 25.62 ± 25.36 23.10 ± 20.73

Global 72.93 ± 60.68 52.89 ± 37.58*

*
Statistically significant difference between the values obtained using each method using a pairwise t-test at the P = 0.01 level with n = 15.
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