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Abstract: Variations over time in resting-state correlations in blood oxygenation level-dependent (BOLD) signals
from different cortical areas may indicate changes in brain functional connectivity. However, apparent variations
over time may also arise from stationary signals when the sample duration is finite. Recently, a vector autoregres-
sive (VAR) null model has been proposed to simulate real functional magnetic resonance imaging (fMRI) data,
which provides a robust stationary model for identifying possible temporal dynamic changes in functional connec-
tivity. In this work, we propose a simpler model that uses a filtered stationary dataset. The filtered stationary model
generates statistically stationary time series from random data with a single prescribed correlation coefficient that is
calculated as the average over the entire time series. In addition, we propose a dynamic model, which is better able
to replicate real fMRI connectivity, estimated from monkey brain studies, than the two stationary models. We com-
pare simulated results using these three models with the behavior of primary somatosensory cortex (S1) networks
in anesthetized squirrel monkeys at high field (9.4 T), using a sliding window correlation analysis. We found that at
short window sizes, both stationary models reproduced the distribution of correlations of real signals well, but at
longer window sizes, a dynamic model reproduced the distribution of correlations of real signals better than the sta-
tionary models. While stationary models replicate several features of real data, a close representation of the behavior
of resting-state data acquired from somatosensory cortex of non-human primates is obtained only when a dynamic
correlation is introduced, suggesting dynamic variations in connectivity are real. Hum Brain Mapp 37:3897–3910,
2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Low frequency fluctuations in blood oxygenation level-
dependent (BOLD) functional magnetic resonance imaging
(fMRI) signals may occur spontaneously in functionally
related areas of the cortex in the absence of any specific
task [Biswal et al., 1995]. Biswal et al. [1995] first reported
the correlation in fMRI signal fluctuations between the left
and right motor cortices when the brain was in a resting
state. Functionally related brain regions can be identified
using their synchronous slow fluctuations in signal inten-
sity [Cordes et al., 2000]. Subsequent studies have identi-
fied several consistent resting-state networks, including
motor, auditory, visual, attention, and default mode [Dam-
oiseaux et al., 2006; Greicius et al., 2003].

Various techniques have been used to derive functional
connectivity to reveal functionally related brain regions
[Beckmann et al., 2005; Power et al., 2011; Yeo et al.,
2011]. For example, seed-based region-of-interest (ROI)
analyses, in which the time series of an ROI is used as a
regressor to identify regions of similar temporal behavior
elsewhere in the brain [Biswal et al., 1995; Lowe et al.,
1998], quantify the relationship between two ROIs as a
single correlation coefficient that is calculated from the
entire scan duration. Possible temporal variations in this
value are not captured by this approach. Another com-
mon technique is spatial independent component analysis
[Beckmann et al., 2005; McKeown et al., 1998], a model-
free approach for identifying spatial regions with tempo-
rally coordinated activity. It decomposes the fMRI data
into a prescribed number of components with maximal
spatial independence. While this strategy avoids the
inconvenience and possible inaccuracy from selecting spe-
cific seed regions, it again does not incorporate possible
changes in inter-regional interactions over time. Other
methods for characterizing resting-state networks include
clustering [Mezer et al., 2009; Yeo et al., 2011], phase
relationships [Sun et al., 2005], and graph theory [Achard
et al., 2006; Dosenbach et al., 2007].

Most fMRI studies in the past have assumed that the
correlations between brain regions are constant throughout
the time series of the entire scan in resting-state experi-
ments [Fox et al., 2005; Fransson, 2005; Greicius et al.,
2003]. More recently, there has been an increasing interest
in the detection and characterization of possible dynamic
changes in functional connectivity [Allen et al., 2014;
Chang and Glover, 2010; Hutchison et al., 2013a,b]. Varia-
tions in the degree of coupling between different networks
would seem to be a plausible feature of neural systems,
and the nature of temporal changes in such couplings
could be an important aspect of brain function. However,
the unambiguous detection and quantification of dynamic
changes in correlations are not trivial, and are similar to
the well-known difficulties in classifying data as statisti-
cally stationary or non-stationary. Whether observed
dynamic changes in correlations between distinct brain
regions over time show significantly greater variability

than would be expected if the underlying correlation coef-
ficient between the two signals were stationary (time-
invariant) is a crucial issue. Currently, there is no consen-
sus on which analysis technique is the most effective at
characterizing such temporal variations in resting-state
fMRI signals. The most commonly used strategy for ana-
lyzing dynamic changes in resting-state functional connec-
tivity has been a sliding window correlation approach
[Allen et al., 2014; Chang and Glover, 2010; Handwerker
et al., 2012; Hutchison et al., 2013a,b; Jones et al., 2012;
Sakoglu et al., 2010], which is intended to identify pair-
wise variations in inter-regional time courses. The limita-
tions of this approach are clear and further discussed
below. Other methods, for example, the PsychoPhysiologi-
cal Interactions [PPI; Friston et al., 1997] method studies
the dynamical feature of functional connectivity under the
assumption that the timing of the various contexts or state
changes is known. However, it is often difficult to identify
or specify the timing and duration of the psychological
processes being studied a priori. Cribben et al. introduced
a Dynamic Connectivity Regression technique, which is a
data-driven method for detecting functional connectivity
change points between brain regions where the number of
change points and their locations are unknown in advance
[Cribben et al., 2012]. While this strategy avoids the
assumption of knowing state changes in advance, it does
not estimate details of the dynamic correlation between
the brain regions. Various efforts have also been made to
replicate real resting-state fMRI data using simulated time
series, most notably the vector autoregressive (VAR) null
model [Chang and Glover, 2010; Cribben et al., 2013; Shah
et al., 2012; Zalesky et al., 2014] which avoids possible con-
founds from physiological noise or other sources of
artifact.

The purpose of this study was to evaluate whether cor-
relations in real fMRI data are stationary, and to investi-
gate the existence of dynamic correlations. Our motivation
was to simulate the behavior of the temporal correlations
between different sub-regions in S1 cortex of monkey
brain over an 18-min resting-state scanning session. We
first used a VAR null model and then developed a simpler
model that uses a filtered stationary simulation dataset,
whose behavior could then be compared to real resting-
state fMRI data. The filtered stationary model generates
statistically stationary time series from random data with
a single prescribed correlation coefficient that is calculated
as the average over the entire time series. We then further
modified the model to account for the dynamic features in
connectivity, and used a variant of the Kolmogorov–Smir-
nov (K-S) statistic to quantitatively compare all simulated
results to the behavior of real networks. We used a very
well characterized network for dynamic functional connec-
tivity studies. Our experimental data were obtained from
small regions in the somatosensory (S1) networks in anes-
thetized squirrel monkeys at high field strength (9.4 T)
[Chen et al., 2011; Friedman et al., 2011; Wang et al., 2013;

r Shi et al. r

r 3898 r



Zhang et al. 2007]. The hand–face region within the S1 cor-
tex of the squirrel monkey has been previously well
mapped with functional imaging, electrophysiological and
anatomical methods, and the orderly topographic map of
the hand region is characterized by a lateral to medial rep-
resentation of individual digits in three sub-regions of
areas 3a, 3b, and 1 [Chen et al., 2011].

MATERIALS AND METHODS

Animal Preparation

Three squirrel monkeys (three sessions each) were pre-
anesthetized with ketamine hydrochloride (10 mg/kg)/
atropine (0.05 mg/kg) and then anesthetized with 0.5–
1.5% of isoflurane to maintain a stable physiological condi-
tion for MRI scans. Although the actual level may vary
across animals, we typically maintained anesthesia under
a light stable level around 0.7–0.8% during our functional
data acquisition. The anesthetized animals were intubated
and artificially ventilated. After intubation, each animal
was placed in a custom-designed MR cradle with its head
secured using ear bars and an eye bar. Lactated Ringer’s
solution was infused intravenously (2–3 mL/h/kg) to pre-
vent dehydration during the course of the study. Arterial
blood oxygen saturation and heart rate (Nonin, Plymouth,
MN), electrocardiogram, end-tidal CO2 (ET-CO2; 22–
26 mm Hg; Surgivet, Waukesha, WI), and respiration (SA
Instruments, Stony Brook, NY) were externally monitored
and maintained. Temperature (37.5–38.58C) was monitored
(SA Instruments) and maintained via a circulating water
blanket (Gaymar Industries, Orchard Park, NY). Real-time
monitoring was maintained from the time of induction of

anesthesia until full recovery. Detailed procedures have
been described in a previous publication [Chen et al.,
2007]. All procedures were in compliance with and app-
roved by the Institutional Animal Care and Use Commit-
tee of Vanderbilt University.

fMRI Data Acquisition and Preprocessing

MRI imaging was performed on a 9.4 T 21 cm bore Var-
ian Inova magnet (Varian Medical Systems, Palo Alto,
CA), using a 3-cm surface transmit–receive coil secured
over the sensory cortex. Scout images obtained using a
fast gradient-echo sequence were used to define a volume
covering primary somatosensory cortex in which static
magnetic field homogeneity was optimized, and to plan
four oblique slices for structural and functional imaging
(Fig. 1, only the top slice shown). T2*-weighted gradient-
echo structural images [repetition time (TR), 200 ms; echo
time (TE) 516 ms, four slices, 512 3 512 matrix; 68 3 68
3 2000 mm3 resolution; number of excitations 5 6] were
acquired to identify venous structures on the cortical sur-
face used to help locate S1, and as structural features for
coregistration of fMRI images. fMRI data were acquired
from the same slice. For each monkey, three runs of 720
continuous functional gradient echo-planar image (EPI)
functional volumes (TE 516 ms; 64 3 64 matrix; 547 3

547 3 2000 mm3 resolution) were acquired. Acquisition
time of each run was 18 min, and the TR was 1.5 s. Images
were reconstructed on the MR console (Varian VnmrJ) and
imported into Matlab (Mathworks, Natick, MA) for analy-
sis. The raw echo-planar images were spatially smoothed
with a 3 3 3-voxel Gaussian window with a standard
deviation of 312 mm, and then interpolated to a 256 3 256

Figure 1.

Anatomic images for studying S1. (a) Major landmarks (such as

central and lateral sulci) used to identify S1 are visible on squir-

rel monkey brain. The red box indicates the location of ROIs.

(b) A high-resolution coronal image is collected to locate soma-

tosensory cortices and to guide placement of an oblique slice

parallel to S1 (locations indicated by rectangles, overlaid, or cor-

onal scout image). This oblique orientation was used for both

high-resolution anatomical and functional imaging.(c) In an image

acquired with T2* weighting, sulci and vascular structures appear

dark. Both central and lateral sulci are readily identified in the

most superficial slice. c, caudal; m, medial; r, rostral. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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matrix for overlay on anatomical images. Time courses
were drift corrected using a linear model fitted to each
time course and temporally smoothed with a low-pass
filter.

Identification of ROI Seeds

Specific ROI seeds were identified according to the
vibrotactile stimulus evoked activation maps, which were
obtained by separate fMRI runs within the same imaging
session. A stimulus-evoked fMRI activation map was used
to locate the finger pad regions in areas 3a, 3b, and 1 (see
Fig. 2). The fingers were secured by gluing small pegs to
the fingernails and fixing these pegs firmly in plasticine,
leaving the glabrous surfaces available for vibrotactile
stimulation by a rounded plastic probe (2 mm diameter)
connected to a piezoelectric device (Noliac, Kvistgaard,
Denmark). Piezos were driven by Grass S48 square wave
stimulators (Grass-Telefactor, West Warwick, RI) at a rate
of 8 Hz with 30 ms pulse duration. Stimulation was
applied in blocks of 30 s on and then 30 s off. The timing
of the presentation of stimuli was externally controlled by
the MR scanner. The correlation of each functional EPI
time course to a reference waveform was calculated and
activation maps (Fig. 2) were generated by identifying
voxels whose correlation with the reference waveform was
significant at least at P� 1024 (uncorrected for multiple
comparisons). Voxels with the highest P values were cho-

sen as seeds (small blue boxes in Fig. 2), from which fil-
tered resting-state fMRI time courses were extracted for
the dynamic functional connectivity analysis.

Vector Autoregressive Null Model

The VAR model used to capture linear interdependen-
cies among multiple time series [Hacker and Hatemi,
2008] is described in the following text [Chang and Glover,
2010]:

Let x and y represent the BOLD signal time series from
two different ROIs in S1 cortex. We first fit a (stationary)
VAR model to x and y:

xðtÞ5
Xp

i51

ax
i xðt2iÞ1

Xp

i51

bx
i yðt2iÞ1ExðtÞ

yðtÞ5
Xp

i51

a
y
i xðt2iÞ1

Xp

i51

b
y
i yðt2iÞ1EyðtÞ

;

8>>>>><
>>>>>:

(1)

where the optimal model order p (p 5 9) is chosen accord-
ing to the Bayesian information criterion (BIC) score, and t

is a time index. Coefficients of the VAR model are esti-
mated using least squares. Next, we generate 1,000 boot-
strap time series pairs having the same VAR coefficients
(i.e., same stationary relationship) as Eq. (1).

Filtered Stationary (FTS) Null Model

Let xc represent the common signal in the BOLD signal
time series x1 and x2 from two different ROIs in S1 cortex.
xc, w1, and w2 are stationary Gaussian zero-mean signals,
low-pass filtered to contain frequencies only in the BOLD
range 0.01–0.1 Hz. Each time course is independent, and
contains 720 time points with an effective TR 5 1.5 s.

x1ðtÞ5xcðtÞ1b � w1ðtÞ

x2ðtÞ5xcðtÞ1b � w2ðtÞ

corrðx1ðtÞ; x2ðtÞÞ5rðconstantÞ

b25
1

jrj21

;

8>>>>>>><
>>>>>>>:

(2)

where the coefficient b is determined by the correlation
coefficient between the BOLD signal time series from two
different ROIs, and t is a time index. Then we generate
1,000 trials based on Eq. (2).

Sliding Window Correlation Analysis

A sliding window correlation analysis is a method for
capturing variations in inter-regional synchrony [Hutchi-
son et al., 2013a,b], and is commonly used to investigate
dynamic changes in correlations between fMRI time series.
In this approach, a time window of fixed length is
selected, and data points within that window are used to

Figure 2.

Localization of digit regions with fMRI mapping in the S1 cortex

of squirrel monkeys. One case is shown here. BOLD activation

in response to vibrotactile stimulation of the D2 tip. Activated

voxels are observed in areas 3a, 3b, and 1. Correlation maps

were thresholded at r> 0.7, with a peak correlation value of

0.9. Dotted black line indicates approximate inter-area borders.

Blue boxes show the seed voxels. Scale bar, 1 mm. c, caudal; m,

medial. [Color figure can be viewed at wileyonlinelibrary.com]
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calculate correlation coefficients between two time series (x
and y), which are defined as r(t) 5 corr (xt 1 s21, yt 1 s21),
where s is the window size, xt 1 s21 and yt 1 s21 represent
the parts of the time series from time t to t 1 s 2 1, and corr
() denotes computation of the Pearson’s correlation coeffi-
cient. The window is then shifted in time by a fixed num-
ber of data points (ranging from a single data point to the
length of a window) that defines the amount of overlap
between successive windows. The correlations between the
time series derived from sub-regions 3a, 3b, and 1 of S1 cor-
tex in monkeys were calculated for window sizes of 30s (20
volumes), 45s (30 volumes), 90s (60 volumes), 135s (90 vol-
umes), 180s (120 volumes), 225s (150 volumes), and 270s
(180 volumes). The window was then shifted in time by
1.5s (1 volume) along the entire time series and the correla-
tion coefficient was recalculated. Figure 3 shows an exam-
ple of the sliding window correlation analysis comparing
real fMRI data and two stationary (the VAR and the filtered
stationary) null model simulations, with a window size of
60s. This procedure was repeated for all possible window
positions within the 720 images of a run. The pairwise slid-
ing window correlations between each of the three sub-
regions were calculated for all animals and all scans.

Underlying Dynamic Null Model

To obtain better approximations than stationary null
models of the potential dynamic behavior of real data, we
first computed correlation coefficients between two ROIs
in monkey brain using a sliding window technique with a
window size of 135s, and performed a median filtering of
the time course of the correlation coefficient. Each time
point then contained the median value in the neighbor-
hood of 20 values around the corresponding pixel in the
input image. We then fit the smoothed underlying correla-
tions with a sum of 4 sine functions (an example is illus-

trated in Fig. 4). We define this function as an underlying
non-stationary correlation function r(t) between these two
ROIs. Next, we generated 1,000 trials based on Eq. (3).
This dynamic simulation can then be compared to the real
data.

x1ðtÞ5xcðtÞ1b � w1ðtÞ

x2ðtÞ5xcðtÞ1b � w2ðtÞ

corrðx1ðtÞ; x2ðtÞÞ5rðtÞðnon-stationaryÞ

bðtÞ25
1

jrðtÞj21

;

8>>>>>>><
>>>>>>>:

(3)

A Two-Sample Kolmogorov–Smirnov Statistic

Above, we have described the methods to compute the
VAR, filtered stationary, and underlying dynamic null
model of a given pair of time series. In this section, we
quantify the resemblance of the temporal variations in the
correlations between the real and simulated data. We per-
form a sliding window analysis at one window size and
construct the empirical cumulative distribution function
(ECDF) for each pair of time series. A two-sample Kolmo-
gorov–Smirnov (K-S) statistic [Chakravart, 1967] may be
used to evaluate whether two samples come from the
same population with a specific distribution, based on
measurements of the distance between two ECDFs. It is
sensitive to differences in both the location and shape of
the ECDFs of the two samples [Marsaglia et al., 2003; Ste-
phens, 1974]. Therefore, lower K-S values between real
and simulated data suggest increased accuracy of the
model in representing the nature of the real data.

Centering z-Scores

As the sampling distribution of Pearson’s r is not nor-
mally distributed, correlation values were converted to z-
scores using Fisher’s z transform. The K-S results are
affected by two main factors, one is the location, and the
other is the shape of distribution. To compare distribution
shapes, z-scores were centered by subtracting their mean
values (Fig. 5).

Illustrative Example of Stationary Models

All sub-region ROI pairs from nine sessions in three
monkeys were quantified. Figures 3 and 6 illustrate exam-
ples of the results of the sliding window correlation analy-
sis and correlation distributions of actual data and
simulated time series, respectively. The correlation coeffi-
cient between sub-regions 3b and 1 in S1 cortex of one
randomly selected squirrel monkey calculated from the
time series of the entire 20-min scan is 0.8144. To simulate
fMRI data using the filtered stationary null model, only
this correlation coefficient is required. We thus generated

Figure 3.

Example of the sliding window correlation analysis comparing

real fMRI data and two stationary (the VAR and the filtered sta-

tionary) null models, with a window size of 60s (40 TRs). [Color

figure can be viewed at wileyonlinelibrary.com]
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two time-series of random signals with correlation coeffi-
cient of 0.8144, and used a low-pass filter in the same fre-
quency range as used for BOLD preprocessing (0.01–0.1
Hz). To simulate real data using the VAR null model, we
first fit a (stationary) VAR model to the BOLD signal time
series from sub-regions 3b and 1 of the same monkey.
Then we generated simulated signals using those derived
coefficients and performed a sliding window correlation
analysis over a range of window sizes (30s, 45s, 90s, 135s,
180s, 225s, 270s) to both sets of simulated data. The
dynamic behavior of resting-state functional connectivity
between sub-regions 3b and 1 of S1 cortex in the monkey
was estimated using the same sliding window technique
as for the simulated data. Figure 6 shows that the correla-
tion ECDF between sub-regions 3b and 1 in a monkey
dataset is similar to the correlation ECDF derived from the
filtered stationary null model.

The Behavior of Connectivity

in Different Monkeys

To test whether different monkeys have similar correlation
trends in the same ROI pairs, VAR, filtered stationary, and
underlying dynamic simulations were conducted on a single
random monkey dataset. We then applied a sliding window
analysis to both simulated data and the monkeys’ real fMRI
data over a range of window sizes, and compared the distri-
butions of their z-scores using the two-sample K-S statistic.

RESULTS

Stationary Model Simulations

Pre-processing of resting-state BOLD-fMRI time series
usually includes low-pass filtering to remove artifacts and

Figure 4.

(a) Example of correlations between sub-regions area 3b and 1 in one monkey using the

sliding window technique with a window size of 135s, along with a median filtering smoothing.

(b) Example of fitted underlying correlation function: a sum of sines, the number of terms is 4.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 5.

Example of the probability density function of the z-score between sub-regions pair 3a–3b of S1 in two differ-

ent monkeys before and after centering the z-score. [Color figure can be viewed at wileyonlinelibrary.com]
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to emphasize frequencies of interest. Such filtering, how-
ever, affects the data by introducing autocorrelations in
the BOLD time series themselves [Hindriks et al., 2016].
To match the relative strength of this low-pass filtering
effect, the filtered stationary null model simulates the low-
pass filter performed on the monkey data by matching the
BOLD frequency range from 0.01 to 0.1 Hz. We have
found this step to be one of the most important for repli-
cating monkey fMRI connectivity in the filtered stationary
model (Supporting Information Appendix).

As expected, simulations of stationary random signals
show that the variance of correlation coefficients decreases
as window size increases [Hutchison et al., 2013a,b]. In
addition, the variance decreases for stronger correlation
coefficients. The behavior of the correlation coefficients
between stationary signals was similar to in vivo monkey
data when using smaller window sizes, such as 60s. As
shown in Figure 7, correlations between functionally
related sub-region pairs (e.g., area 3a and area 1 in the
same monkey brain) of the monkey data are distributed
similarly to the correlations derived from simulated sta-
tionary data for short window sizes, but depart

Figure 6.

Example of the ECDF of the correlations between two sub-

regions of S1 in one monkey, along with the ECDF of the fil-

tered stationary model simulation, KS value 5 0.1280. [Color fig-

ure can be viewed at wileyonlinelibrary.com]

Figure 7.

Example of the two-sample K-S statistic on correlations of monkey data and the filtered stationary null

model simulation over a range of window sizes. [Color figure can be viewed at wileyonlinelibrary.com]
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substantially for larger window sizes such as 180s (smaller
K-S value indicates less difference).

Figure 8 shows the K-S statistic for group of cross-
correlations between two functionally related sub-regions
of S1 cortex and their corresponding models, and the K-S
statistic for cross-correlation between functionally unre-
lated subregions and the filtered stationary model at the
window sizes of 60s and 180s. The correlations between
functionally related subregion pairs in the monkey data
are distributed similarly to the correlations derived from
VAR and filtered stationary models at the window size of

60s, but depart substantially at the window size of 180s.
However, the correlations between functionally unrelated
subregions (two sub-regions from two different monkeys,
for example, area 3a from monkey A, and area 3b from
monkey B) in the monkey data are distributed similarly to
the correlations derived from the filtered stationary model
at both window sizes of 60s and 180s.

Additional window sizes can be seen in Figure 9. Figure
9a illustrates the K-S statistic for group of cross-
correlations between two functionally related sub-regions
area 3a–3b and its corresponding stationary models. The

Figure 8.

Group analysis on K-S statistic between functionally related

monkey data and the VAR, filtered stationary, underlying

dynamic models, along with K-S statistic between functionally

unrelated monkey data and the filtered stationary model at win-

dow sizes 60s and 180s. Sliding window correlations in real data

differed from stationary simulations only at the longer window

size, as shown by the high K-S statistic (blue, black). Introducing

a dynamic component to the simulation eliminated the differ-

ence (green), meaning that correlation distributions derived

from dynamic simulations matched the real data. Sliding window

correlations between two different monkeys’ time series (uncor-

related by construction) were reproduced well by the stationary

simulations and served as the negative control (red). Error bars

indicate standard deviations. [Color figure can be viewed at

wileyonlinelibrary.com]
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correlations between sub-region pair 3a–3b in the monkey
data are distributed more similarly to the correlations
derived from the filtered stationary null model than those
derived from the VAR model. Specifically, K-S values of
correlation coefficients between area 3a–3b of the monkey
data and the filtered stationary null model (blue line) are
always smaller than those between the same monkey data
and the VAR null model (black line). Moreover, these K-S
values increase as window sizes increase, which indicates
that neither of these two stationary models matches real
fMRI data very well at large window sizes. However, the
correlations between functionally unrelated sub-regions
are distributed similarly to the stationary data from the fil-
tered stationary null model simulation at all window sizes.
Specifically, the red line, which represents K-S values
between unrelated sub-regions of monkey data and the fil-
tered stationary null model is always flat over a range of
different window sizes.

Underlying Dynamic Model Simulation

In the dynamic correlation study, we generated an
underlying dynamic null model and applied the same slid-
ing window technique, the Fisher’s z-transform and the
two-sample K-S statistic. Figure 9b illustrates that correla-
tions between functionally related sub-regions in the mon-
key data are distributed similarly to the correlations
derived from the underlying dynamic null model at all
window sizes. Specifically, the green line, which repre-
sents K-S values between functionally related ROIs in the
monkey data and the underlying dynamic null model is
flat over all different window sizes.

The Behavior of Connectivity in Different

Monkeys

Figure 10a,b shows a group analysis of the K-S statistic
between sub-region pair area 3a–3b within different mon-
keys and the stationary and dynamic models before cen-
tering the z-score. Figure 10c,d shows a K-S statistic
between the same subregion pair in different monkeys
and three models after centering the z-score. From Figure
10a–d, it can be seen that the K-S values decreased dra-
matically after z-score centering. This is because the aver-
age correlation coefficients of the nine datasets are
different from each other, while their correlation distribu-
tions shapes are similar. From Figure 10c,d, it can be seen
that the K-S values over different window sizes are as fol-
lows: the VAR model (black line) has the largest values,
followed by the filtered stationary model (blue line), fol-
lowed by the dynamic model (green line), and followed
by the functionally unrelated monkey data simulation (red
line). The two stationary models do not capture the similar
correlation features across monkeys as closely as the
dynamic model. However, the underlying dynamic model
is good at simulating the trend of correlation functions
across all three monkeys (9 sessions).

To verify whether dynamic correlation similarities
existed within identical subregion pairs of monkey data,
we plotted the four major frequency components derived
from the underlying dynamic model. These components
were chosen based on the underlying correlations, which
were fit using a sum of four sine functions. From Figure
11, it can be seen that different monkey datasets have sim-
ilar dynamic correlation frequency components within

Figure 9.

Group analysis on K-S statistic between functionally related

monkey sub-region pair area 3a–3b and the stationary and

dynamic models, along with K-S statistic between functionally

unrelated monkey data and the filtered stationary null model

over a range of window sizes. Correlation distributions are

indistinguishable from stationary simulations at the shortest win-

dow (30s) but begin to differ at longer windows (90s and up;

blue and black). Dynamic simulations reproduce the correlation

distributions of real data at all window sizes (green). Error bars

indicate standard deviations. [Color figure can be viewed at

wileyonlinelibrary.com]
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identical subregion pairs. For these three sub-region pairs,
it was observed that variation frequency components
between 0 and 0.003 Hz had significant contributions to
the correlation coefficients.

DISCUSSION

The aim of this study was to investigate the existence of
dynamic correlations in real fMRI data acquired from
somatosensory cortex of new world monkeys. It is widely
accepted that apparent variations over time may arise
from stationary signals when the sample duration is finite
[Kiyani and Chapman, 2009; Nason, 2006]. Considering
this factor, sliding window correlation analysis should be
simulated with appropriate models and statistical tests
[Chang and Glover, 2010]. Based on our filtered stationary
null model and the commonly used VAR model simula-

tions for sliding window technique, we found that both
stationary models reproduced the distribution of correla-
tions of real fMRI signals well at short window sizes, but
diverted at longer window sizes. This suggests that short
window sizes are less reliable than long window sizes for
detecting dynamic changes in functional correlations. In
addition, a close representation of the behavior of resting-
state data is obtained only when a dynamic correlation is
introduced, suggesting that dynamic variations in connec-
tivity are real.

Implication for the K-S Statistic on

Correlations Between Monkey Data and

the Filtered Stationary or VAR Null Model

As shown in Figures 7–9, correlations between function-
ally related sub-regions in the monkey data are distributed

Figure 10.

Group analysis on K-S statistic between sub-region pair area 3a–3b within different monkeys and

the stationary and dynamic models before (a, b) and after (c, d) centering the z-score. Error

bars indicate standard deviations. [Color figure can be viewed at wileyonlinelibrary.com]
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similarly to the correlations derived from simulated sta-
tionary data at short window sizes, but depart substan-
tially at larger window sizes. One possible explanation is
that because we generated the filtered stationary null sam-
ples with only one prescribed single correlation coefficient
that was calculated from the time series of the entire scan,
the probability of realizing that prescribed correlation coef-
ficient goes up as window size increases. The variance of
the correlation coefficients decreases with larger window
sizes, so the shape of the probability density function of
correlations in the filtered stationary null model becomes
narrower and taller. However, the probability density
function of correlations in real fMRI data does not change
as much with different window sizes, possibly because
there are real dynamic changes within correlations
between functionally related sub-regions. There clearly are
some characteristics of correlations between functionally
related sub-regions in the monkey data that the stationary
null model cannot replicate. Given that the filtered station-
ary data are statistically stationary, these apparent
dynamic changes at small window sizes arise from sam-
pling variations and more rigorous analysis is required to
establish the existence of dynamic changes in connectivity.

The Underlying Dynamic Null Model

in Time-Varying Correlations

As discussed above, correlations between functionally
related sub-regions in monkeys are distributed similarly to
the correlations derived from both stationary null models
at short window sizes, but depart substantially at larger
window sizes. Simultaneously, correlations between func-
tionally unrelated pairs in the monkey data are distributed
similarly to the stationary data from the filtered stationary
null model simulation at all window sizes. One explana-
tion for this phenomenon is that correlations between
functionally related sub-regions are dynamically changing,
while both stationary null models generate a static correla-
tion through the entire series. However, for functionally
unrelated sub-region pairs, it is clear that no correlation or
dynamic changes exist within the data, so our filtered sta-
tionary null model can replicate it very well over a range
of window sizes. To validate this hypothesis, we generated
a dynamic null model using the underlying correlation
function of the monkey data, applied the same sliding
window technique, z transform and the two-sample K-S
statistic as done to other two stationary null models.

Figure 11.

Spectral decomposition of the correlation coefficients for sub-region pairs of area 3a–3b, 3a–1,

and 3b–1. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 9b shows that correlations between functionally
related sub-regions in the monkey data are distributed
similarly to the correlations derived from the underlying
dynamic null model regardless of window sizes, which
indicates the underlying dynamic null model can replicate
correlations between different functionally related subre-
gions in the monkey data well. The underlying dynamic
model is straightforwardly obtained by modifying the fil-
tered stationary null model. Figure 10 indicates that the
two stationary models do not simulate the trend of
dynamic correlations within the monkey data. A closer
representation of the behavior of monkey resting-state
data is obtained only when a dynamic correlation is intro-
duced. Whether there are additional features within the
real monkey fMRI data that are not present in the underly-
ing dynamic model simulated data remains unclear, but
exploration of additional statistical metrics is underway.

Potential Limitations concerning Sliding Window

Correlation Analysis

A sliding window correlation analysis is intended to
identify pairwise variations in inter-regional time courses,
but several potential limitations must be considered in
applying this method and interpreting results. One limita-
tion is that white noise can exhibit fluctuations in common
functional connectivity metrics that are as large as those
observed in real fMRI data. Before interpreting results
about whether or not functional connectivity varies over a
scan, one might need to consider whether the range of
sliding window variability between ROIs is significantly
different between two control populations (null model).
Another limitation is the arbitrary manner in which win-
dow sizes are chosen. While many researchers tend to
gravitate toward a short window size to better detect tran-
sient changes in connectivity, a large window is often nec-
essary to allow for robust estimation of the correlation
coefficient [Hutchison et al., 2013a,b; Sakoglu et al., 2010].
As shown in the results of this article, a decrease in win-
dow size can lead to an overall increase in the variability
of the functional connectivity since there are fewer time
points available for computing correlation coefficients.
Thus it will be difficult to distinguish between real phe-
nomena related to brain signals and physiological noise. In
our article, we developed a method for testing appropriate
window sizes using a filtered stationary null model and
K-S statistic.

Hand–Face Region of the Primary

Somatosensory Cortex (S1) of the Monkey

The S1 cortex of squirrel monkey is a unique experimen-
tal model for studies of brain activation and connectivity,
with several advantages. First, the orderly topographic
map of the S1 cortex serves as an anchor for our under-
standing of cortical organization. This orderly map is espe-

cially reflected in the hand region which is characterized
by a lateral to medial representation of individual digits in
three subregions of area 3a, 3b, and 1. This has been well
established by studies of neuronal receptive field proper-
ties and of the effects of preferred stimuli and histological
characterizations [Chen et al., 2011; Wang et al., 2013;
Zhang et al., 2007]. Each area has distinct stimulus prefer-
ences, suggesting their different roles in specific somato-
sensory functions. In addition, stimulus evoked activations
in the hand region can easily be detected and quantified in
“single condition” maps. This type of quantification elimi-
nates unnecessary ambiguities in designing orthogonal
stimuli that are commonly used to reveal modular struc-
tures in the visual system. Second, Wang et al. have previ-
ously mapped the functional organization of this region at
sub-millimeter scale for touch processing, and have dem-
onstrated that single digit fMRI activations can be reliably
mapped, their responses scale with the magnitude of the
vibrotactile stimuli, and confirm that digit activations are
organized in a somatotopic manner. Finally, the subre-
gions (areas 3a, 3b, and 1) of S1 cortex have been inten-
sively mapped with electrophysiological and histological
methods in this species.

Implications of Resting-State Functional

Connectivity in Primary Somatosensory Cortex

The spectral decomposition analysis for the functional
connectivity of three sub-region pairs (area 3a and 3b, area
3a and 1, area 3b and 1) has shown that the frequencies
that dominated the cross-correlation coefficients for the
functionally related sub-regions were below 0.003 Hz,
which is reproducible across sub-region pairs and subjects.
This may indicate that fluctuations in resting-state func-
tional connectivity in primary somatosensory cortex are
very slow.

CONCLUSION

The filtered stationary null model that we developed is
not derived from any specific fMRI data but requires
knowledge only of a correlation coefficient that is calcu-
lated from the time series of the entire scan. From our
results, the dynamic model matches the real monkey fMRI
data well and significantly supports the exploration of
underlying correlations. Moreover, analysis of dynamic
components shows that variation frequency components
between 0 and 0.003 Hz contribute significantly to the cor-
relation coefficients, which indicates that variations in
resting-state primary somatosensory cortex functional con-
nectivity are very slow. In addition, time series generated
by the filtered stationary null model appear to behave
very similar to real fMRI data from S1 of monkey cortex,
and exhibit dynamic changes when analyzed using the
sliding window technique. Sliding window estimates of
variations in correlation between non-stationary signals
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may reveal dynamic changes but also may be confounded
by statistical variations. While stationary models replicate
several features of real data, a closer representation of the
behavior of resting-state data acquired from S1 in new
world monkeys is obtained only when an underlying
dynamic or non-stationary correlation is introduced. This
suggests that dynamic changes in resting-state connectivity
within the primary somatosensory cortex of non-human
primates are not artifacts of limited sampling duration.
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