
Recovery of antigen-specific T cell responses from dogs 
infected with Leishmania (L.) infantum by use of vaccine 
associated TLR-agonist adjuvant

Robert G. Schauta,b,1, Tara L. Grinnage-Pulleya, Kevin J. Eschc,2, Angela J. Toeppa,b, 
Malcolm S. Duthied, Randall F. Howardd, Steven G. Reedd, and Christine A. Petersena,b,*

aDepartment of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA, 
52242

bCenter for Emerging Infectious Diseases, University of Iowa Research Park, Coralville, Iowa, 
USA, 52241

cDepartment of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, 
Ames, Iowa. USA, 50011

dInfectious Disease Research Institute, Seattle, Washington, USA 98102

Abstract

Visceral leishmaniasis (VL), caused by infection with the obligate intracellular protozoan parasite 

Leishmania infantum, is a fatal disease of dogs and humans. Protection against VL requires a T 

helper 1 (Th1) skewed CD4+ T response, but despite this knowledge, there are currently no 

approved-to-market vaccines for humans and only three veterinary-use vaccines globally. As VL 

progresses from asymptomatic to symptomatic, L. infantum–specific interferon gamma (IFNγ) 

driven- Th1 responses become dampened and a state of immune exhaustion established. T cell 

exhaustion and other immunoregulatory processes, starting during asymptomatic disease, are 

likely to hinder vaccine-induced responses if vaccine is administered to infected, but 

asymptomatic and seronegative, individuals. In this study we evaluated how immune exhaustion, 

shown previously by our group to worsen in concert with VL progression, effected the capacity of 

vaccine candidate antigen/toll-like receptor (TLR) agonist combinations to promote protective 
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CD4+ T cell responses during progressive VL. In conjunction with Th1 responses, we also 

evaluated concomitant stimulation of immune-balanced IL-10 regulatory cytokine production by 

these vaccine products in progressive VL canine T cells. Vaccine antigen L111f in combination 

with TLR agonists significantly recovered CD4+ T cell IFN-γ intracellular production in T cells 

from asymptomatic VL dogs. Vaccine antigen NS with TLR agonists significantly recovered CD4+ 

T cell production in both endemic control and VL dogs. Combinations of TLR agonists and 

vaccine antigens overcame L. infantum induced cellular exhaustion, allowing robust Th1 CD4+ T 

cell responses from symptomatic dogs that previously had dampened responses to antigen alone. 

Antigen-agonist adjuvants can be utilized to promote more robust vaccine responses from infected 

hosts in endemic areas where vaccination of asymptomatic, L. infantum-infected animals is likely.
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1. Introduction

Leishmaniasis is a zoonotic disease that affects approximately 1.3 million individuals per 

year leading to 20–30,000 deaths [1, 2]. After malaria, Leishmania is the most common 

cause of parasite-induced mortality [3]. Visceral leishmaniasis (VL) is a severe disease form 

characterized by lymphadenopathy, splenomegaly and hepatomegaly that can be fatal 

without chemotherapy. Treatment is complicated by antimonial-resistant Leishmania strains 

[4], high drug toxicity [5], and treatment failure or relapse [6]. In North America and the 

Mediterranean basin, VL is caused by zoonotic L. infantum; both dogs and humans are 

affected. Vaccination as post-exposure immunoprophylaxis, or immunotherapy, in 

asymptomatic, infected individuals or animals would be an ideal and efficient method to 

mitigate the need for toxic, expensive, treatments and potentially minimize treatment 

challenges. Only two anti-Leishmania vaccines have been licensed in any country for use in 

humans and use to date has been limited. In Uzbekistan, a live parasite vaccine is used for 

prophylaxis [7]. In Brazil, a now discontinued vaccine, had been used for immune therapy 

[8]. L110f, L111f and KSAC are vaccine candidates currently in clinical trials and 

successfully promote a robust IFNγ immune response [9–14]. L111f along with a more 

recently developed subunit peptide vaccine candidate, NS, were used in this study to 

evaluate ex vivo responses in VL infected and non-infected dogs. L111f is a chimeric, three 

Leishmania gene fusion (TSA, LeIF and LmSTI1) [15]. NS is a two gene fusion of the 

Leishmania nucleoside hydrolase (NH) and a sterol 24-c-methyltransferase (SMT) genes 

(Fig. 1).

Dogs have similar VL disease progression to that of human patients from endemic areas, 

making them an ideal population to study vaccine responses [16, 17]. As VL is zoonotic, 

control of L. infantum infection and disease in dogs is critical for overall VL control. Two 

veterinary vaccines are currently available in Europe and Brazil, respectively. Vaccination of 

unowned dogs in endemic areas has been implemented using peptide formulations, DNA 

vaccination or modified-live parasites, with varying degrees of success [18–22].
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While vaccine efficacy has been relatively high (~90%) when immunization has occurred in 

healthy, completely naïve, subjects, efficacy to prevent disease progression declined in 

infected, asymptomatic or symptomatic individuals [23]. Lower efficacy of vaccines in 

endemic settings has been observed in large field trials for malaria and tuberculosis 

vaccination, possibly due to the inclusion of asymptomatic infected individuals [24–26]. 

Control of Leishmania infection requires strong T helper 1 (Th1) responses marked by a 

robust CD4+ T cell proliferative response and IFNγ production. However, chronic 

Leishmania infection in murine models promotes regulatory responses involving production 

of classical CD25+, FoxP3+ regulatory T cells [27], IL-10 producing, regulatory, B cells [28] 

and immune exhaustion characterized by anti-inflammatory responses and an inability to 

proliferate in response to Leishmania-specific antigens [29]. In progressive VL, our data 

[29] and others [17] demonstrate that immune exhaustion starts prior to onset of clinical 

disease. Understanding how to stimulate an exhausted immune system to respond to vaccine 

antigens is essential for successful vaccination/immunotherapy of VL, and perhaps other 

infections, in endemic settings.

Our group has previously demonstrated that TLR agonist adjuvants protect against 

cutaneous leishmaniasis caused by L. major by recovering effector T cell responses during 

active infection in mice [10]. Different clinical presentations of Leishmania species lead to 

different responses to therapy. In these studies, we identify vaccine antigen/adjuvant pairings 

that mount a protective immune response ex vivo from naïve and L. infantum-infected dogs 

across the VL clinical spectrum.

2. Materials and Methods

2.1 Animals

A cohort of hunting dogs from the United States, naturally-infected with L. infantum and a 

long history of active VL surveillance was used in these studies [30]. Pen-matched dogs 

served as endemic controls. The University of Iowa Institutional Animal Care and Use 

Committee approved animal use, which ensure that the National Institutes of Health guide 

for the care and use of laboratory animals have been followed. Canine disease progression 

and VL classification was evaluated as in previous publications (Table 1) [16, 30, 31]. Dogs 

were examined by veterinarians for signs of leishmaniasis (lymphadenomegaly, palpable 

liver or spleen, poor hair coat, cachexia, epistaxis, arthrogryposis, alterations in hepatic or 

renal enzymes on serum chemistry). Dogs with >4 signs of disease were not included in this 

study. Parasite load was quantified by qPCR and immunofluorescence anti-Leishmania 
antibody testing (IFAT) as performed by the Center for Disease Control and Hygiene [32, 

33]. Dogs were stratified into clinical groups: endemic controls (qPCR negative, 0 IFAT 

titer), asymptomatic (qPCR negative/borderline, >1/16 IFAT titer and ≤ 1/128), and 

symptomatic (qPCR positive/borderline, ≥1/256 IFAT titer, and ≥ 2 clinical signs) (Table 1).

2.2 Parasite DNA isolation, diagnostic qPCR, and IFAT serology

Parasite DNA isolation and qPCR was performed as previously described [29, 30, 34]. DNA 

was isolated from canine blood samples with the QIAamp DNA Blood Mini Kit per 

manufacturer’s instruction (QIAGEN, Valencia, CA). Ribosomal primer sequences F (5’-
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AAGCCACCCCAGAGGTAAAAA), and R (5’-GACGGGTCTGACCCTTGGTT) 

(Invitrogen, Life Technologies, Grand Island, NY), and probe: 5’ 6FAM-

CGGTTCGGTGTGTGGCGCC-MGBNFQ (Applied Biosystems, Life Technologies, Grand 

Island, NY) were used as previously described [34]. Primers and probe were used at 10nM. 

Amplification was performed in duplicate using an ABI 7000 qPCR system (Applied 

Biosystems) with Super Mastermix (Rox) (Quanta Biosciences, Gaithersburg, MD) and 

cycling protocol as described previously [34]. Results were analyzed by ABI 7000 System 

SDS Software v1.2.3 (Applied Biosystems). Canine serum samples were stored at −20°C 

and sent to the Centers for Disease Control and Prevention for IFAT based on in vitro 
promastigote antigen culture as previously described [35, 36].

2.3 Stimulation of whole blood with vaccine antigens and TLR agonists ex vivo

Whole blood samples were collected as previously [30] and diluted 1:5 in RPMI. 150 µL of 

diluted whole blood was plated into 96 well plates. Vaccine antigens L111f [15] and NS [37] 

were added to wells at a final concentration of 1 µg/mL (Fig. 1). TLR agonists were added at 

final concentrations as described previously [10]: Glucopyranosyl Lipid Adjuvant (GLA) 

[TLR4; 1 µg/mL] [38], imiquimod (R837) [TLR7;10 µg/mL] [39], resiquimod (R848) 

[TLR7/8; 0.1 µg/mL] [39] (IDRI, Seattle, WA). Concanavalin A (ConA) (Sigma Aldrich, St. 

Louis, MO) [5 µg/mL] was used as a positive control mitogen. Media-only treated cells were 

used for baseline negative control. ConA treatment groups were cultured for 4 days; all other 

treatments were cultured for 7 days.

2.5 Flow cytometry

Flow cytometry was performed as previously described [40] and gating strategy 

demonstrated in Fig S1. Briefly, twenty-four hours prior to cell labeling, EdU (Life 

Technologies, Madison WI) was added to cells to assess proliferation per manufacturer’s 

directions [29]. Six hours prior to cell labling, 1× Brefeldin A (BD Biosciences, Franklin 

Lakes, NJ) was added to all cells. Cells were blocked with whole goat serum for 30 minutes, 

then labeled with anti-CD3 (CA17.2A12), CD4 (YKIX302.9), CD8 (YCATE55.9), (AbD 

Serotec/Bio-Rad, Hercules, California) IFNγ (142529), and IL-10 (138128) (R&D Systems, 

Minneapolis, MN) in 1× Perm/Wash Buffer (Life Technologies) per manufacturer’s 

directions. Cells were analyzed via an LSR II flow cytometer (BD Biosciences). 50,000 

viable events were acquired and analyzed with FlowJo vX Software (Treestar, Ashland, 

CA).

2.6 SYBR Green Quantitative PCR and RNA extraction

SYBR green chemistry was utilized for qPCR assay using methods and primers as 

previously described [40, 41]. Briefly, the 2−ΔΔC
T method was utilized for analysis. RNA 

was extracted using RNeasy extraction kit following manufacturer’s instruction (QIAGEN). 

RNA was quantified and standardized followed immediately by first strand cDNA synthesis 

via iScript cDNA Synthesis Kit (Bio-Rad). qPCR reactions were performed in duplicate.
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2.7 Statistical Analysis

Differences between experimental group means were assessed using one-way ANOVA with 

Tukey’s post-hoc test via GraphPad Prism 6 (GraphPad Software Inc., San Diego, CA). P 
values of ≤ 0.05 were considered statistically significant.

3. Results

3.1 CD4+ T cells from VL symptomatic dogs had reduced responses to vaccine antigens 
compared to those from asymptomatic dogs

Immune exhaustion, specifically a reduced ability to proliferate after exposure to antigen and 

reduced production of IFN-γ, was shown to occur in CD4+ and CD8+ T cells from dogs that 

had progressive VL [29]. CD4+ T cells are largely considered to be the predominant T cell 

subset for protective anti-Leishmania responses[42]; these cells were the primary focus of 

this analysis. Cells isolated from endemic control dogs, and VL asymptomatic and 

symptomatic-infected dogs were stimulated with a mitogen and Leishmania-specific vaccine 

antigens to determine if these cells exhibited signs of T cell exhaustion as demonstrated by 

quantitative PCR (Fig S2). The antigens used were L111f and NS. L111f has been safely 

administered and well-tolerated in subjects with and without evidence of prior Leishmania 
infection [15, 43, 44] and in combination with MPL-SE vaccine as an adjunct 

immunotherapy with standard chemotherapy for both cutaneous and mucocutaneous 

leishmaniasis [45]. NS was recently developed for vaccines targeting VL [37, 46], (Fig 1).

Exposure to the vaccine antigen L111f stimulated significant 5.4- and 7.1-fold increases in 

percent of CD4+ T cells undergoing proliferation from asymptomatic (p <0.001) and 

symptomatic (p <0.01) dogs, respectively compared to mock-treated cells. L111f exposure 

induced significant (p< 0.001) 8.0- and 8.7-fold increases in percentage of CD4+ T cells 

with intracellular IFNγ using the same comparisons as proliferation (Fig. 2A). NS 

stimulated less, yet still significant increase in percent CD4+ T cell proliferation; 3.6-fold (p 
<0.001) in cells from asymptomatic animals. Similarly there were significant increases in 

the percentage of CD4+ T cells producing IFNγ of 4.4- (p <0.001) and 4.7-fold (p <0.01) in 

samples from asymptomatic and symptomatic dogs (Fig. 2B). Similar trends were observed 

in vaccine antigen responses from CD8+ T cells by clinical group (Fig. S3).

CD4+ T cells from all groups responded significantly (p <0.001) to mitogen (ConA). IFNγ 
production levels also significantly (p <0.001) increased (Fig. 2C). The percent of CD4+ T 

cells positive for both IFNγ production and proliferation from VL-symptomatic dogs 

underwent significant (p <0.001), two-fold, reduction relative to populations of cells from 

asymptomatic dogs (Fig 2C). This likely indicates a global T cell exhaustion (Fig S2), rather 

than simply antigen-specific exhaustion, similar to previous observations [29, 30].

3.2 TLR agonist/L111f vaccine antigen modestly increased CD4+ T cell IFNγ responses

Vaccines incorporating multiple TLR agonists significantly stimulated murine CD4+ T cell 

IFNγ responses during experimental L. major infection. We examined if ex vivo incubation 

with Leishmania vaccine antigens and TLR agonists could recover effector functions from 

populations of exhausted symptomatic dog CD4+ T cells. Glucopyranosyl Lipid Adjuvant 

Schaut et al. Page 5

Vaccine. Author manuscript; available in PMC 2017 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(TLR4 agonist) (triangles, Fig. 3A) with L111f modestly (p <0.05) increased CD4+ T cell 

proliferation 1.6-fold in VL-asymptomatic dogs and IFNγ responses 2.8-fold in CD4+ T cell 

populations from endemic control dogs, compared to L111f alone in cells from either 

clinical group (circles, Fig. 3A). Relative to L111f alone, this combination did not enhance 

recovery of exhausted CD4+ T cell function in VL-symptomatic dogs (Fig. 3A). Addition of 

imiquimod (TLR7 agonist) or resiquimod (TLR7/8 agonist) did not increase CD4+ T cell 

proliferation in CD4+ T cells from any clinical group, compared to treatment with L111f 

alone (Fig. 3B, C). Addition of TLR7 agonist to CD4+ T cells from endemic control dogs 

compared to cells exposed to L111f alone significantly increased (p <0.01) the percentage of 

CD4+ T cells producing IFNγ 3.5-fold (Fig. 3B). TLR7/8 agonist addition increased the 

percentage of endemic control CD4+ T cells producing IFNγ 1.6-fold (Fig. 3C). TLR 

agonists did not improve CD8+ T cell responses to L111f (Fig. S4). Addition of exogenous 

TLR agonists to L111f produced significant increases in CD4+ T cell responses from 

uninfected dogs, likely due to the TLR2 ligating potential of this vaccine antigen, but gave 

modest or no improvement in L111f-specific responses from cells of VL-asymptomatic or 

symptomatic dogs.

3.3 TLR agonists with NS significantly increased all CD4+ T cell responses

As NS is a more recently developed vaccine antigen [37, 46], we did not know how NS 

would perform with other TLR agonists when exposed to canine cells. While NS alone did 

not induce responses in uninfected dogs, NS with TLR4 agonist stimulated significant (p 
<0.01) increases in the population of proliferative CD4+ T cells, 4.3-, 1.7-, and 5.8-fold in 

cells from endemic control, VL-asymptomatic, and symptomatic dogs, respectively (Fig. 

4A). Similar significant increases in CD4+ T cell populations were seen for IFNγ production 

(Fig. 4A; 5.0-, 1.7-, and 2.8-fold). NS with TLR7 or TLR7/8 agonists elicited similar percent 

population responses across clinical groups, with the most significant alterations in the L. 
infantum-infected dog CD4+ T cell populations producing IFNγ. Symptomatic dog CD4+ T 

cell percent proliferation increased 4.6-fold and 7.2-fold for TLR7 and TLR7/8 agonists 

respectively compared to vaccine alone (Fig. 4B and C, left, black triangles). Combination 

NS and TLR agonist stimulation similarly increased the CD4+ T cell population responses in 

both asymptomatic and symptomatic dogs. T cells from symptomatic dogs were 

significantly less responsive to NS alone (Fig. 2), underscoring dramatic improvement of 

these exhausted T cells from VL symptomatic animals (Fig. 4B and C). CD8+ T cells did not 

have altered NS vaccine antigen responses after addition of TLR4 agonist in cells from 

endemic control or symptomatic dogs. CD8+ T cells from VL asymptomatic dogs had 

decreased populations of proliferative and IFNγ-producing cells after addition of TLR7 or 

TLR7/8 agonists (Fig. S5), perhaps due to the earlier shift to non-recoverable exhaustion 

observed in CD8+ T cells vs. CD4+ T cells during progressive VL [17, 29]. In fact, our 

studies did demonstrate an increase in gene transcription of exhaustion makers LAG3, 

CLTA4, PD1 and TIM3 as well as secreted IL-27 (Fig S2), which in addition to IL-10 will 

drive immunoregulatory responses during visceral leishmanaisis [47]. CD4+ T cells from 

VL-symptomatic dogs were able to recover significant effector function with addition of 

TLR7 agonist to NS to populations equivalent to those seen from CD4+ T cells from healthy 

VL-asymptomatic dogs.
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3.4 Percent of CD4+ T cell IL-10 positive population significantly increased after L111f 
exposure

IL-10, a regulatory cytokine, can dampen harmful effects of unchecked pro-inflammatory 

responses, but excess IL-10 can suppress leishmanicidal responses leading to progressive 

disease [48–50]. The percent of CD4+ T cells producing IL-10 significantly increased 3.9-

fold in VL-symptomatic dog cells (p < 0.001), but only 1.7-fold in asymptomatic dog cells 

(p < 0.05) after stimulation with L111f alone compared to mock-treated cells (Fig. 5A, 

L111f). This increase in symptomatic dog cells was also a significantly (p < 0.001) 2.5-fold 

larger percent population than observed in endemic control CD4+ T cells following 

treatment with L111f (Fig. 5A, L111f). Further addition of TLR agonists did not 

significantly increase the percent population of IL-10 producing CD4+ T cells in endemic 

control or symptomatic dog cells compared to L111f alone, but there was a significant (p< 

0.05) 1.7-fold increase in response to L111f and TLR 7/8 in asymptomatic dog CD4+ T 

cells. The lack of increase in IL-10 observed from symptomatic cells treated with L111f- 

TLR agonist combinations may be due to the fact that L111f alone causes significant IL-10 

production in these cells. IL-10 production to L. infantum antigen is not unheralded, as 

canine CD4+ T cells from symptomatic dogs have previously been shown to respond to 

freeze-thawed L. infantum antigen stimulation with robust IL-10 production [29, 30]. 

However, when combination treatments were evaluated the percent CD4+ T cell IL-10 

population was significantly higher in symptomatic dogs compared to similarly treated 

endemic controls at 2.1-, 2.9-, and 3.4-fold respectively for TLR4 (p < 0.01), TLR7 (p < 

0.001), and TLR7/8 (p < 0.001) agonists (Fig 5B–D, L111f). There was no significant 

difference between symptomatic and asymptomatic cells treated with combination 

treatments. This suggests that L. infantum infection, regardless of disease progression, has 

altered the ability of CD4+ T cells to produce IL-10. CD8+ T cells from symptomatic dogs 

showed similar IL-10 population responses after exposure to L111f compared to mock-

treated control CD8+ T cells (Fig S6 A, L111f). IL-10-producing CD8+ T cell populations 

significantly decreased from symptomatic dogs after exposure to L111f with TLR4 agonist 

(p < 0.01), but in asymptomatic dogs this addition of TLR agonists significantly increased 

IL-10 production. CD8+ T cell IL-10 populations increased 7.5-fold for TLR4 (p < 0.001) 

and 4.7-fold respectively for both TLR7 (p < 0.05) and TLR7/8 (p < 0.001) agonists addition 

(Fig 5B–D, L111f). Concomitantly with the Th1 response, L111f induces a balanced Il-10 

regulatory response.

In contrast to L111f, stimulation with NS alone or in combination with TLR agonists had 

minimal, non-significant effects on CD4+ T cell IL-10 populations from control, 

asymptomatic, or symptomatic dogs (Fig. 5, NS). CD8+ T cell IL-10 populations were not 

affected by NS with or without additional exposure to TLR agonists in control or 

symptomatic dogs. (Fig. S6, NS). CD8+ T cell IL-10 populations from asymptomatic dogs 

had mild significant decreases (p<0.05) of 2.4- and 2.9-fold in response to stimulation with 

TLR4 and TLR7, respectively, in combination with NS. In parallel with production of robust 

Th1 responses, NS with TLR agonist exposure did not result in major decreases in IL-10 

producing populations, particularly in control and symptomatic dog cells.
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4. Discussion

Vaccine-induced responses have been studied in depth under experimental Leishmania 
conditions [48, 51–60], but little is known regarding how these vaccines would serve as a 

post-exposure prophylaxis or immunotherapy to boost existing responses in already infected 

animals. This study used dogs, a natural host of Leishmania infantum, to demonstrate 

possible outcomes of vaccination during subclinical and clinical VL, approximating vaccine 

responses within an endemic population where vaccination could or would often occur after 

infection. Prophylactic vaccination against Leishmania and subsequent protection against 

experimental infection is enhanced by appropriate formulation with TLR agonists [9, 10]. 

Our data demonstrate that the inclusion of TLR agonists enhanced IFNγ production and 

proliferation of CD4+ T cells isolated from VL-infected dogs after stimulation with 

Leishmania vaccine antigens.

The vaccine antigens used in this study are proprietary chimeric fusion proteins currently in 

(human) clinical trials [9, 13, 37]. Previous studies of L111f demonstrated an ability to 

stimulate murine CD4+ T cells to produce IFN-γ and TNF-α and when used 

prophylactically in conjunction with TLR4 agonist MPL-SE, prevented clinical progression 

of canine VL [14, 55]. Controlling disease in domestic animal reservoirs is important for 

overall VL control. Provided the close association of human and canine VL, dogs are a 

commonly targeted vaccine population in L. infantum endemic areas. In our U.S. canine 

cohort NS with TLR-adjuvant supplementation induced greater CD4+ T cell proliferative 

and IFNγ responses across L. infantum-infected groups compared to vaccine L111f. 

Interestingly, L111f contains a LeIF, a TLR2 agonist glycoprotein, as one of its antigenic 

components. As TLR2 when paired with TLR6 as a heterodimer can lead to Th2 skewed 

responses, this TLR agonist effect may dampen antigen-specific responses to produce a less 

robust CD4+ T cell population responses, as is suggested in this study. Consistent with 

antigen specific dampening properties, L111f, with or without TLR agonist, significantly 

increased IL-10 in symptomatic dogs. We hypothesize that this IL-10 increase represents 

and immune balancing effect, serving to buffer pro-inflammatory Th1 responses induced by 

the vaccine and/or agonists to prevent immunopathology [61]. IL-10 production has also 

been demonstrated as being an important prognosticator of disease severity and 

immunological outcomes [62, 63], nonetheless is an important factor to be observed in 

response to cellular stimulation. Interestingly, we did not observe elevations in IL-10 

responses to NS upon the addition of TLR4, TLR7 or TLR7/8 agonists, suggesting that the 

TLR2 activating component of L111f may contribute to this response.

Vaccination has been previously studied as an immunotherapy for leishmaniasis in Brazil, 

with conflicting results. These studies demonstrated success following TLR agonist 

supplementation [64] and contrarily that inclusion of a TLR4 agonist was not successful in 

halting disease progression [65, 66]. Vaccine dosage, scheduling, or route of infection, could 

account for these discrepancies. Perhaps more importantly, infected animals progressing to 

clinical VL have immune exhaustion [29], which our data identify does interfere with 

vaccine/immunotherapeutic responses. VL symptomatic dog CD4+ T cells had reduced 

proliferative and IFNγ-production responses to vaccine antigens and mitogen compared to 

those from asymptomatic dogs (Fig. 2A). While these data are encouraging for use as a post-
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exposure prophylactic to prevent Leishmania infection progressing to disease in yet 

asymptomatic hosts, it is imperative to use targeted vaccine formulation able to recover 

exhausted T cell responses before consideration as a treatment of VL.

5. Conclusion

The foremost challenge in development of VL vaccines is successfully mounting protective 

immunity in populations with parasite exposure; not naïve hosts. Appropriate pairing of 

TLR agonists with vaccine antigens may be a way to overcome this challenge as the right 

pairing(s) were able to ameliorate T cell exhaustion in cells from VL asymptomatic and 

symptomatic dogs and promote a productive CD4+ T cell response. In vivo trials in naturally 

infected dogs to assess the ability of vaccine constructs with TLR agonist adjuvants may be 

merited.
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Highlights

• Vaccine-specific T cell responses limited during clinical VL.

• TLR agonists recovered T cell effector functions in cells from 

Leishmania-infected dogs.

• Rational vaccine selection to improve antigen-fatigued responses 

crucial for endemic areas.
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Fig. 1. Construction of anti-Leishmania vaccine antigens used for ex vivo stimulation of canine 
whole blood
L111f is an 111kD fusion protein produced from a fusion of the L. major homologue of 

eukaryotic thiolspecific antioxidant (TSA), the L. major stress inducible protein-1 (LmSTI1) 

and the L. braziliensis elongation and initiation factor (LeIF) genes. NS is a 75kD fusion 

protein produced from the L. infantum nucleoside hydrolase (NH) and L. infantum sterol 24-

c-methyltransferase (SMT) genes.
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Fig. 2. VL clinical status altered CD4+ T cell response to recombinant Leishmania protein 
vaccine stimulation ex vivo
Whole blood from dogs across the VL clinical spectrum was stimulated ("stim") with 1 µg 

vaccine L111f (A) or 1 µg vaccine NS (B) or 1 µg ConA (C), or left untreated (“mock”). 

Each dot represents an individual dog. EC = endemic control (open), AS = asympatomatic, 

L. infantum positive (grey), SY = symptomatic, L. infantum positive (black). Error bars are 

± SEM. N=7–10 per group. * p<0.05, **p<0.01, ***p<0.001 via one way-ANOVA.
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Fig. 3. Vaccine L111f and TLR agonists moderately increased Th1-responses in CD4+ T cells 
from asymptomatic dogs
Whole blood was stimulated with either 1 µg Vaccine L111f (circles) or Vaccine L111f and 

TLR agonists (triangles). TLR agonists were added at 1µg for Glucopyranosyl Lipid 

Adjuvant [TLR4] (A), 0.1 µg for imiquimod [TLR7] (B) or 10 µg for resiquimod [TLR7/8] 

(C). Each dot represent an individual dog. EC = endemic control (open), AS = 

asympatomatic, L. infantum positive (grey), SY = symptomatic, L. infantum positive 

(black). Error bars are ± SEM. N=5–9 per group. * p<0.05, **p<0.01, ***p<0.001. 

Statistical analysis was performed via one way-ANOVA.
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Fig. 4. Vaccine NS and TLR agonists increase Th1-responses in CD4+ T cells from asymptomatic 
and symptomatic dogs
Whole blood was stimulated with either 1 µg vaccine NS (circles) or vaccine NS and TLR 

agonists (triangles). TLR agonists were added as in figure 3. Each dot represents an 

individual dog. EC = endemic control (open), AS = asympatomatic, L. infantum positive 

(grey), SY = symptomatic, L. infantum positive (black). Error bars are ± SEM. N=4–6 per 

group. * p<0.05, **p<0.01, ***p<0.001. Statistical analysis was performed via one way-

ANOVA.
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Fig. 5. Vaccine L111f increased IL-10 secretion from CD4+ T cells of symptomatic dogs
Whole blood was stimulated (A) 1 µg vaccine (circles), or left untreated “mock” (squares) 

for 7 days. Vaccine, L111f or NS, used for stimulation is indicated in each column. In B to D 

whole blood was stimulated with either 1 µg vaccine L111f or NS alone (circles) or vaccine 

with TLR agonists (triangles). TLR agonists were added at 1 µg for TLR4 (B), 0.1 µg for 

TLR7 (C) or 10 µg for TLR7/8 (D). Each dot represents an individual dog. EC = endemic 

control (open), AS = asympatomatic, L. infantum positive (grey),SY = symptomatic, L. 
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infantum positive (black). Error bars are ± SEM. * p<0.05, **p<0.01, ***p<0.001. 

Statistical analysis was performed via one way-ANOVA.

Schaut et al. Page 20

Vaccine. Author manuscript; available in PMC 2017 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Schaut et al. Page 21

Ta
b

le
 1

C
lin

ic
al

 g
ro

up
s 

by
 d

ia
gn

os
tic

 s
ta

tu
s;

 q
PC

R
 a

nd
 s

er
ol

og
y1

Se
x

G
ro

up
(I

nf
ec

te
d)

G
ro

up
(C

lin
ic

al
)

7/
20

13
IF

A
T

2
7/

20
13

qP
C

R
2

12
/2

01
3

IF
A

T
3

12
/2

01
3

qP
C

R
3

F
In

fe
ct

ed
Sy

m
pt

om
at

ic
51

2
Po

si
tiv

e
25

6
Po

si
tiv

e

F
In

fe
ct

ed
Sy

m
pt

om
at

ic
51

2
Po

si
tiv

e
51

2
B

or
de

rl
in

e

F
In

fe
ct

ed
Sy

m
pt

om
at

ic
51

2
Po

si
tiv

e
25

6
Po

si
tiv

e

M
In

fe
ct

ed
Sy

m
pt

om
at

ic
12

8
Po

si
tiv

e
51

2
Po

si
tiv

e

F
In

fe
ct

ed
Sy

m
pt

om
at

ic
12

8
N

eg
at

iv
e

25
6

B
or

de
rl

in
e

F
In

fe
ct

ed
Sy

m
pt

om
at

ic
25

6
N

eg
at

iv
e

25
6

Po
si

tiv
e

F
In

fe
ct

ed
Sy

m
pt

om
at

ic
25

6
N

eg
at

iv
e

51
2

B
or

de
rl

in
e

M
In

fe
ct

ed
Sy

m
pt

om
at

ic
0

Po
si

tiv
e

51
2

Po
si

tiv
e

M
In

fe
ct

ed
A

sy
m

pt
om

at
ic

12
8

N
eg

at
iv

e
32

N
eg

at
iv

e

F
In

fe
ct

ed
A

sy
m

pt
om

at
ic

64
N

eg
at

iv
e

16
N

eg
at

iv
e

M
In

fe
ct

ed
A

sy
m

pt
om

at
ic

12
8

N
eg

at
iv

e
64

N
eg

at
iv

e

M
In

fe
ct

ed
A

sy
m

pt
om

at
ic

0
N

eg
at

iv
e

12
8

N
eg

at
iv

e

M
In

fe
ct

ed
A

sy
m

pt
om

at
ic

32
N

eg
at

iv
e

16
N

eg
at

iv
e

F
In

fe
ct

ed
A

sy
m

pt
om

at
ic

16
N

eg
at

iv
e

0
B

or
de

rl
in

e

F
In

fe
ct

ed
A

sy
m

pt
om

at
ic

0
N

eg
at

iv
e

32
B

or
de

rl
in

e

M
E

C
4

N
eg

at
iv

e
0

N
eg

at
iv

e
0

N
eg

at
iv

e

F
E

C
N

eg
at

iv
e

0
N

eg
at

iv
e

0
N

eg
at

iv
e

F
E

C
N

eg
at

iv
e

0
N

eg
at

iv
e

0
N

eg
at

iv
e

F
E

C
N

eg
at

iv
e

0
N

eg
at

iv
e

0
N

eg
at

iv
e

F
E

C
N

eg
at

iv
e

0
N

eg
at

iv
e

0
N

eg
at

iv
e

1 Se
ro

lo
gy

 b
y 

IF
A

T
 p

er
fo

rm
ed

 b
y 

th
e 

C
en

te
rs

 f
or

 D
is

ea
se

 C
on

tr
ol

, A
tla

nt
a,

 G
A

.

2 st
at

us
 6

 m
on

th
s 

pr
io

r 
to

 b
lo

od
 c

ol
le

ct
io

n.

3 st
at

us
 a

t t
im

e 
of

 b
lo

od
 c

ol
le

ct
io

n 
fo

r 
va

cc
in

e 
an

tig
en

 e
xp

os
ur

e.

4 E
C

- 
en

de
m

ic
 c

on
tr

ol
, p

en
-m

at
ch

ed
, d

og
s

Vaccine. Author manuscript; available in PMC 2017 October 17.


	Abstract
	1. Introduction
	2. Materials and Methods
	2.1 Animals
	2.2 Parasite DNA isolation, diagnostic qPCR, and IFAT serology
	2.3 Stimulation of whole blood with vaccine antigens and TLR agonists ex vivo
	2.5 Flow cytometry
	2.6 SYBR Green Quantitative PCR and RNA extraction
	2.7 Statistical Analysis

	3. Results
	3.1 CD4+ T cells from VL symptomatic dogs had reduced responses to vaccine antigens compared to those from asymptomatic dogs
	3.2 TLR agonist/L111f vaccine antigen modestly increased CD4+ T cell IFNγ responses
	3.3 TLR agonists with NS significantly increased all CD4+ T cell responses
	3.4 Percent of CD4+ T cell IL-10 positive population significantly increased after L111f exposure

	4. Discussion
	5. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Table 1

