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Abstract A number of fluorescent dyes based on BODIPY
(4,4′-difluoro-4-bora-3a,4a-diaza-s-indacene) have been stud-
ied theoretically. This paper presents the results of calculations
of these BODIPY dyes in their ground and excited states,
performed using DFT and TD-DFT methods, respectively.
The influences of N,N-dimethylaminobenzyl, ortho-
fluorophenol, and methyl substituents as well as the solvent
polarity on the positions of the absorption and emission bands
of the dyes were analyzed. The computational data obtained in
this work were compared to the corresponding experimental
data. The trends in the experimental data were found to agree
with those shown by the computational data. Differences be-
tween the potential curves obtained when using linear-
response (LR) and state-specific (SS) approaches for the
ground and excited states are also reported.
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Introduction

This paper presents a quantum-mechanical study of fluorescent
dyes based on 4,4′-difluoro-4-bora-3a,4a-diaza-s-indacene
(BODIPY) [1]. Photophysical studies of these compounds and
the design of novel compounds of this type have become very
popular over the last decade [2–4]. Such interest is due to the
ability to efficiently model the spectral properties of BODIPY
derivatives obtained by introducing different types of substituents
onto the 4,4′-difluoro-4-bora-3a,4a-diaza-s-indacene core, or by
modifying the core in other ways [5]. These compounds are also
popular due to their potential application in optoelectronics [6],
medicine [7], and biology [8]. Indeed, laborious quantum-
mechanical calculations of BODIPY dyes in the excited state
using time-dependent density functional theory (TD-DFT)
methods are being applied more and more [9–17]. The use of
the PBE0 and M06-2X functionals in such studies is motivated
by the investigations presented in [14–17].

The task of the work reported in this paper was to compu-
tationally study the effects of solvents of various polarities,
and the impact of introducing different substituents onto the
BODIPY core, on the positions of the absorption (S0→S1) and
emission (S1→S0) bands of dyes based on BODIPY using
TD-DFT with the PCM approach. The substituents chosen
for this study were selected because we obtained relevant ex-
perimental data on the corresponding BODIPY derivatives in
our previous work [18]. We were able to theoretical derive an
accurate description of these dyes, which will make it possible
to model such dyes and to determine the nature of the dye–
environment interrelations, as well as to identify novel dyes
with required spectral characteristics.

Computational details

The calculations were carried out with the Gaussian09 program
[19]. The PBE0 [20] and M06-2X [21] functionals and the 6-
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31 +G(d,p) basis set [22–31] were used for calculations. The
structures of the studied compounds were optimized in the
ground (S0) and excited (S1) states by DFT [32, 33] and TD-
DFT [34, 35] methods, respectively. The absorption (i.e., the
S0→ S1 transition) and emission (the S1→ S0 transition) bands
were calculated for the compounds in the gas phase and in
various solvents with a range of polarities. The absorption spec-
tra were obtained by calculating the first six low-lying excited
states within the vertical linear-response, nonequilibrium TD-
DFT approximation. The state-specific nonequilibrium solva-
tion approach was applied by saving the solvent reaction field
from the ground state. Solvent effects in the ground and excited
states were taken into account with the polarizable continuum
model [36–38] (PCM), using the integral equation formalism
variant (IEFPCM) as a default SCRF method. The states with
the largest oscillator force values were optimized in the excited
state, and emission spectra were calculated within a linear-re-
sponse, equilibrium TD-DFT approximation and using state-
specific non-equilibrium solvation. The contribution of solvent
effects was computed with both the linear-response (LR) [39,
40] and state-specific (SS) [41] quantum mechanical ap-
proaches. The selected data and structures are collected in
Tables S1–S4 of the BElectronic supplementary material^
(ESM).

Results and discussion

Impact of the substituents

As stated in the BIntroduction,^ the aims of this work were to
verify the data afforded by TD-DFT and DFT methods for the
dyes of interest in a wide range of solvents (ranging from
hexane to DMSO), and to analyze the impact of substitution
at position 5 of the BODIPY core with various substituents on
the positions of the absorption and emission bands of the dyes.
To achieve these aims, three compounds based on BODIPY
were studied (Scheme 1).

These compounds were selected because a considerable
amount of experimental data on them is available [18].
Compound 2 plays the role of a reference compound in which
a methyl group has been inserted at position 5 (σR+ = −0.08
[42]). For compounds 1 and 3, N,N-dimethylaminobenzyl and
ortho-fluorophenol moieties, respectively, were added at po-
sition 5 instead of the methyl group. According to computa-
tional and experimental data, the N,N-dimethylaminobenzyl
substituent has the strongest effect on the positions of the
absorption and emission bands (i.e., the largest bathochromic
shift), which is due to the strong electronic effect [42] of this
substituent. However, although the ortho-fluorophenol moiety
of 3 has a weaker electronic impact than the N,N-
dimethylaminobenzyl fragment, 3 does still show
bathochromic shifts in the absorption and emission bands with

respect to 2. Note that the data calculated using the PBE0 and
M06-2X functionals show similar trends to the experimental
data (see Fig. 1 and Fig. S1 in the ESM).

Based on the results of the calculations and the correspond-
ing experimental data, we can conclude that the total electron-
ic effect of the –CH=CH–(fluorophenol) substituent is much
stronger than the electronic effect of the methyl group
(σR+(CH=CH2) = −0.16, σR+(C6H5) = −0.22, σR+(F) = 0.34,
and σR+(OH) = 0.12; all data from [42]); the same is true when
the –CH=CH–(N,N-dimethylaminobenzyl) substituent is
compared to the methyl substituent (σR+(CH=CH2) = −0.16,
σR+(C6H5) = −0.22, and σR+(N(CH3)2) = −0.64; all data from
[42]). When the –CH=CH–(fluorophenol) substituent is pres-
ent, the hydroxyl group of the substituent has only a minor π-
electronic effect on the BODIPY core because the hydroxy
group is meta with respect to the –CH=CH– bridge. The π-
electronic effect of the fluorine atom present on this substitu-
ent is also not significant. Indeed, the M+ and M− effects
exerted by the fluorine atom and the hydroxyl group cancel
each other out to some extent, weakening their influence on
the BODIPY core. Therefore, the moiety that has the greatest
influence on the bathochromic shifts of the absorption and
emission bands of compound 3 with respect to compound 2
is the –CH=CH–C6H5 fragment (σR+(CH3) = −0.08, σR+(–
CH=CH2) = −0.16, σR+(−C6H5) = −0.22; all data from [42]).

The substituent that has the strongest effect on the spectral
p a r am e t e r s i s f o u n d t o b e –CH=CH – (N ,N -
dimethylaminobenzyl). This substituent causes significant
bathochromic shifts of the absorption and emission bands
(Δλ ∼ 100–200 nm) for compound 1 with respect to those
of compounds 2 and 3. This phenomenon is due to the strong
π-electronic effect of theN,N-dialkylamine group on the spec-
tral characteristics of compound 1, which is described in detail
in [43, 44].

All of the calculations performed in this work utilized the
two most reliable functionals for boron compounds:
PBE0 andM06-2X [45, 46]. A comparison of the data provided
by the PBE0 and M06-2X functionals when using the LR
approach with the corresponding experimental data shows that
the calculated absorption bands are the closest to the experi-
mentally determined absorption bands for compound 1.
However, compound 1 also shows the largest deviation
between the results obtained using the PBE0 andM06-2X func-
tionals; the deviation for compound 3 is smaller, and there is
almost no deviation for compound 2. Both PBE0 and M06-2X
give almost the same positions for the absorption bands of
compound 2 (Fig. 1). It is also clear that the results obtained
using the SS approach (Fig. 1) are more accurate (i.e., they
deviate less from the corresponding experimental data) than
those yielded by the LR approach. However, there are some
problems with the trend in absorption band shifts obtained
using the SS approach. The computational results obtained with
the LR approach exhibit a satisfactory trend regardless of the
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functional used (Fig. 1), whereas the results obtained using the
SS approach suggest that increasing the solvent polarity causes
very small changes in λabs for compounds 2 and 3 , which is not
correct. Increasing the solvent polarity actually increases the
bathochromic shifts of the absorption bands, but this phenom-
enon is barely apparent in the data obtained using the SS
approach with both functionals (PBE0 and M06-2X) (Fig. 1).

Before comparing the calculated emission band data with the
corresponding experimental data, a conformational analysis was
performed. Three rotamers with similar potential energies were
calculated for compound 2 in the excited state (Fig. 2). These
rotamers differ in the position of the phenyl ring at the meso
position. In the first rotamer (A), which is also the least stable,
the phenyl ring is almost perpendicular to the core of the
BODIPY chromophore, whereas the phenyl ring is significantly
twisted in the second (B) and third (C) rotamers (θA = 89.8°;
θB = 24.9°; θC = 63.6°). It should be pointed out that the position

of this phenyl ring is determined by the relative strengths of two
contradictory effects: (1) a steric effect between the phenyl ring
and the twomethyl groups at positions 1 and 7, which causes the
phenyl ring to attempt to adopt a perpendicular position, and (2)
π-electronic coupling between the core of the chromophore and
the phenyl ring, which leads to a flattening of the molecule.The
steric effect predominates in the excited state, resulting in a de-
crease in the energy of themolecule of 0.99 kcal/mol. Choosing a
less stable conformer can lead to an error of about 22 nm in the
position of the emission band. The second (B) and third (C)
rotamers possess almost the same energies, and the positions of
their emission bands are also very similar. However, the struc-
tures of these rotamers are different: the torsion angle of the
phenyl ring is 24.9° for rotamer B and 63.6° for C. Therefore,
the core of the chromophore is flat in C and curved in B. The
abovementioned results suggest that it is possible to twist the
phenyl ring to transition from one rotamer to another, and that
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bending the chromophore core leads to a transition from rotamers
B andC:ΔEA-B =ES1(A) –ES1(B);ΔEA-C =ES1(A) –ES1(C) =
0.99 kcal/mol. Based on the results of the conformational analy-
sis, conformer C was used in subsequent calculations.

It is important to underline that the calculations performed
using the LR approach overestimated the shifts in the emission
bands for compounds 2 and 3 (Fig. 1) that occur upon increas-
ing the solvent polarity. In terms of the slope of the curve, the
data for compound 1 are the closest to the corresponding ex-
perimental emission band data. As also seen for the absorption
bands, the positions of the emission bands obtained by the
PBE0 method are closer to the corresponding experimental
data (630–700 nm for the calculated data vs 640–720 nm for
the experimental data; Fig. 1) than the data obtained by the
M06-2Xmethod (590–670 nm for the calculated data vs 640–
720 nm for the experimental data) when using the LR and SS
approaches. However, the correlation between the data and the
trend line is better when using M06-2X than when using
PBE0. The calculations performed for compounds 2 and 3
using both the M06-2X and PBE0 functionals with the LR
approach overestimate the influence of the solvent: note that
the data points for each compound in the bottom left plot of
Fig. 1 (which represent data obtained for the same compound
in various solvents) are distributed in an almost vertical line,
indicating that varying the solvent has a far greater effect on
the calculated value of λem for a particular compound than on
the corresponding experimental value. On the other hand,
when the SS approach is used with either functional, increas-
ing the polarity of the solvent leads to relatively small shifts in
the emission bands for compounds 2 and 3, which agrees well
with the trend seen in the corresponding experimental data.
The shifts seen in the calculated data for compound 1 are only
in satisfactory agreement with the corresponding experimen-
tally observed shifts, however.

Analysis of the influence of the solvent on the spectral
characteristics of the dyes

To describe the influence of the solvent on the positions of
both the absorption and emission bands calculated by the TD-
DFT method, the dependencies of λabs and λem on the Lippert
solvent parameterΔf were examined (see Figs. 3 and 4). The
Lippert–Mataga parameter can be defined as [48–50]

Δ f ¼ f εð Þ– f n2
� �

¼ ε–1ð Þ= 2εþ 1ð Þ− n2–1
� �

= 2n2 þ 1
� �

; ð1Þ

where the parameters ε and n are the dielectric constant and
the refractive index of the solvent, respectively.

These relationships (derived using the SS and LR ap-
proaches) between the positions of the absorption and emission
bands and Δf reflect the interactions between ground- and
excited-state dye and solvent molecules. According to previous
reported experimental data [18], significantly increasing the sol-
vent polarity (i.e., changing the solvent from hexane to DMSO)
does not cause a visible shift in the absorption bands of the
compounds of interest (see the graph labeled EXP in Fig. 3).

Remarkably, the TD-DFT calculations also indicate that
shifts in the absorption bands with increasing solvent polarity
are rather small (regardless of whether the PBE0 or M06-2X
functional and the SS or LR approach are used; Fig. 3). This
effect indicates that significant structural changes (e.g., proton
transfer, isomerization, etc.) are absent in the ground state. On
the other hand, replacing the substituent (i.e., 2 → 3 → 1)
strongly influences the position of the absorption band, caus-
ing a bathochromic shift of this band (Fig. 3). As mentioned
above, this phenomenon is caused by differences in the
electron-donor strengths of the substituents. The order of ab-
sorption-band bathochromic shifts (compound 1 > 3 > 2) ob-
tained using TD-DFT calculations is in good agreement with
the experimentally observed order [18]; see the graphs in
Fig. 3. However, the TD-DFT calculations performed using
the SS approach with both functionals [see the (M06-2X, SS)
and (PBE0, SS) graphs in Fig. 3] overestimate the influence of
the solvent polarity on the position of the absorption band of
compound 1.

When it is used to calculate the influence of the solvent on
the position of the emission band, the LS approach (with both
functionals) indicates that there is a systematic bathochromic
shift in the emission band of compound 1 with increasing sol-
vent polarity (i.e., increasingΔf; Fig. 4), but not for compounds
2 and 3. The dependency of λem on Δf was illustrated more
precisely by applying the M06-2X functional and the SS ap-
proach. Increasing solvent polarity led to small changes in the
positions of the emission bands for compounds 2 and 3 and a
significant bathochromic shift for compound 1. Thus, to sum
up, calculations performed using the LR approach (with both
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functionals) gave more accurate results (i.e. data closer to the
corresponding experimental data) than the SS approach, al-
though the data obtained using the SS approach (with the
M06-2X functional) showed more precise trends. Notably, the
LR and SS approaches yield different potential curves in the
ground and excited states. The calculations performed using the
LR approach led to wider potential curves for the ground and
excited states than those obtained using the SS approach
(Fig. S2 in the ESM).

It is important to note that the solvent polarity parameter
EN

T(30) more accurately describes hydrogen bonds than the
parameter Δf does; see [47]. When we explored the depen-
dency of the Stokes shift Δν on ENT(30), we obtained rather
complicated results, because it was necessary to account for
the polarity of the solvent before the positions of the absorp-
tion and emission bands could be determined accurately.

The experimental dependency reported in [18] shows that
for compounds 2 and 3, the Stokes shift remains almost con-
stant with increasing solvent polarity (see the EXP graph in
Fig. 4). This phenomenon indicates that the molecule is weak-
ly polarized during the transition from the ground state to the
excited one. However, the Stokes shift is observed to increase

significantly for compound 1 with increasing solvent polarity.
That said, these changes in the Stokes shift are not stable,
because the Stokes shift value for compound 1 decreases no-
tably when this compound is placed in a protic solvent. This
decrease in Stokes shift is the result of hydrogen bonding
between the N,N-diethylamine moiety and the protic solvent.
These interactions reduce the effect of the π-conjugated cou-
pling between the N,N-diethylamine fragment and the
BODIPY core, which, in turn, leads to an increase in the
polarization of the dye and thus an increase in the Stokes shift.
Unfortunately, not all of the calculations give results that agree
well with the corresponding experimental results. The calcu-
lations performed using the M06-2X functional with the LR
approach reveal sudden decreases in the Stokes shift for all
three compounds (Fig. 5). However, satisfactory results were
obtained using the M06-2X functional with the SS approach.

We also report here on the difference between the potential
curves obtained using the SS and LR approaches for the
ground and excited states (Fig. S2 in the ESM). We found that
that potential curves obtained using the SS approach were
wider for the ground and excited states than those obtained
using the LR approach.
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Conclusions

This paper presents a comparison of the results of calculations
of BODIPY dyes performed using the M06-2X and PBE0
functionals and the LR and SS approaches with the corre-
sponding experimental data.

An analysis of the influence of the substituent (either N,N-
dimethylaminobenzyl, ortho-fluorophenol, or methyl) at posi-
tion 3 of the BODIPY core was accomplished. It was found
that the presence of the N,N-dimethylaminobenzyl substituent
induced the largest shifts of the absorption and emission bands
of the dyes to the bathochromic region, in good agreement
with the experimental data [18, 51, 52].

A conformational analysis of the studied compounds in
the excited state was performed, based on TD-DFT calcu-
lations. It was found that the three identified conformers
do not differ significantly in energy. A similar conclusion
was drawn by Mennucci and coworkers [53] following
calculations of BODIPY dyes performed using the LR
and cLR approaches.

The positions of the absorption and emission bands calcu-
lated using the PBE0 and M06-2X functionals with both ap-
proaches tend to show bathochromic shifts, where the shifts
increase according to the sequence: compound 2 < compound
3 < compound 1, which is in accordance with the experimen-
tal results. As for the dependencies of the spectral parameters
(λabs and λem) on the Lippert solvent parameterΔf, we found
that (1) the trend for λabs vs Δf observed experimentally is
accurately reproduced by calculations utilizing the PBE0
and M06-2X functionals and the LR approach (the SS ap-
proach provides only satisfactory results), and (2) the trend
in λem vs Δf observed experimentally is well described by
calculations performed using the M06-2X functional and the
SS approach. It is a remarkable fact that only calculations
carried out using the M06-2X functional and the SS approach
were able to describe the dependency of Δν on the solvent
polarity parameter EN

T(30) even fairly well. Therefore, the
influence of the solvent on the absorption and emission bands
of the dyes of interest should be determined using two func-
tionals: the PBE0 functional (with the LR approach) and the
M06-2X functional (with the SS approach).
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