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MicroRNAs (miRNAs) are one family of short (21–23 nt) regulatory non-coding
RNAs processed from long (70–110 nt) miRNA precursors (pre-miRNAs). Iden-
tifying true and false precursors plays an important role in computational iden-
tif ication of miRNAs. Some numerical features have been extracted from precursor
sequences and their secondary structures to suit some classif ication methods; how-
ever, they may lose some usefully discriminative information hidden in sequences
and structures. In this study, pre-miRNA sequences and their secondary structures
are directly used to construct an exponential kernel based on weighted Levenshtein
distance between two sequences. This string kernel is then combined with support
vector machine (SVM) for detecting true and false pre-miRNAs. Based on 331
training samples of true and false human pre-miRNAs, 2 key parameters in SVM
are selected by 5-fold cross validation and grid search, and 5 realizations with
different 5-fold partitions are executed. Among 16 independent test sets from 3
human, 8 animal, 2 plant, 1 virus, and 2 artif icially false human pre-miRNAs, our
method statistically outperforms the previous SVM-based technique on 11 sets,
including 3 human, 7 animal, and 1 false human pre-miRNAs. In particular, pre-
miRNAs with multiple loops that were usually excluded in the previous work are
correctly identif ied in this study with an accuracy of 92.66%.

Key words: string kernel, support vector machine, microRNA, precursor, weighted Levenshtein
distance

Introduction

MicroRNAs (miRNAs) are short (∼22 nt) endogenous
non-coding RNA molecules that regulate protein-
coding gene expression in animals, plants and viruses
through the RNA interference pathway. There are
three main steps to form a mature miRNA: (1) an
miRNA gene is transcribed into a primary miRNA
(pri-miRNA) by Pol II enzyme; (2) this pri-miRNA is
cleaved to a 70–110 nt miRNA precursor (pre-miRNA)
with a stem-loop hairpin structure by Drosha RNase
III endonuclease in animals or by Dicer-like enzyme
in plants; (3) such a pre-miRNA is cleaved into
miRNA:miRNA* duplex and a mature miRNA is re-
leased to regulate targeted gene expression (1–4 ).
Since experimental cloning methods for searching new
miRNAs are low efficient, time consuming and very
expensive, computational approaches are more and
more popular to choose miRNA candidates for fur-
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ther experimental validation (5–8 ).
It has been observed that pre-miRNAs and their

secondary structures encode more discriminative and
characteristic information than their corresponding
mature miRNAs do (5–8 ). Thus, most computa-
tional methods utilize pre-miRNA sequences and/or
their secondary structures to detect miRNAs or pre-
miRNAs. It is noted that secondary structures are
also depicted as sequences by using brackets and dots
in RNAfold (9 ). In this study, we regard the compu-
tational identification of miRNAs or pre-miRNAs as a
pattern classification problem and group the existing
methods into two categories: gradually hierarchical
approaches and directly discriminative ones.

The gradually hierarchical computational tech-
niques mainly include miRscan (10 , 11 ), miRSeeker
(12 ) and miRAlign (13 ) for animals, and miRCheck
(14 ) and miRFinder (15 ) for plants. Their basic
strategy is to combine comparative genomics infor-
mation with pre-miRNA sequences and/or their sec-
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ondary structures to filter the putative pre-miRNA
candidates step by step. For each step, a proper cri-
terion based on a single feature (minimal folding free
energy) or a simply linear combination of several fea-
tures (GC content, length of hairpin loop, etc.), is de-
signed to eliminate most of the hairpins that are not
conserved in related species. At last, the remainder
becomes miRNA candidates to be further validated by
some cloning experiments. However, some true pre-
miRNAs may be excluded in the early steps (6 , 13 ).
Furthermore, these methods rely on comparative ge-
nomics and are unable to identify new miRNA genes
without homologues (16 , 17 ).

In the discriminative identification methods, a
classifier is trained by using positive and negative
samples of pre-miRNAs. The former is constructed
from true pre-miRNAs and/or their secondary struc-
tures, and the latter is from sequence segments with
similar stem-loop structures but have not been rec-
ognized as true pre-miRNAs (16 , 18 ) or other known
RNAs (mRNAs, tRNAs or rRNAs) (17 ). Machine
learning techniques, such as support vector machine
(SVM) (19 , 20 ) and random forest (21 ), have been
used to detect true and false pre-miRNAs. In or-
der to fit SVM, Xue et al (16 ) extracted 32 triplet
features from sequences and secondary structures of
true and false pre-miRNAs, while Sewer et al (17 ) ob-
tained 40 features from pre-miRNA secondary struc-
tures. In Jiang et al (18 ), two additional features,
P-value and minimal free energy, were combined with
the 32 triplet features from Xue et al (16 ). However,
it is difficult for them to deal with those secondary
structures with multiple loops that were excluded in
their studies (16 , 18 ).

In bioinformatics, there are a large number of
datasets consisting of symbols (for instance, DNA,
RNA and protein sequences) rather than numerical
features, thus more attention has been paid to con-
structing a kernel from two strings or sequences for
SVM (22–24 ). It was illustrated that some useful
information was missed during converting a DNA se-
quence into a numerical feature vector for identifying
splice junction types (22 ). Accordingly, several ker-
nels based on weighted Levenshtein distance (WLD)
between two DNA sequences were designed and the
corresponding classification accuracy was obviously
improved on benchmark datasets (22–24 ). To some
extent, directly handling sequence data in SVM is bet-
ter than converting sequences into numerical features
in some real applications (22–24 ).

In this study, we utilize pre-miRNA sequences and

their secondary structures simultaneously to build a
multiplicative string kernel consisting of two exponen-
tial kernels, in which the distance measure between
two vectors is replaced by the WLD between two se-
quences (pre-miRNA sequences or secondary struc-
ture sequences). Such a kernel is referred to as an
exponential string kernel based on WLD. Then we
combine this string kernel with SVM to detect true
and false pre-miRNAs. We use the same datasets
as those in Xue et al (16 ) in order to compare our
method with it. Trained by 331 true and false human
pre-miRNAs, the optimal algorithmic parameters are
determined by 5-fold cross validation and grid search
scheme, and 5 realizations with different 5-fold parti-
tions are executed. Among 16 independent test sets
from 3 human, 8 animal, 2 plant, 1 virus, and 2 ar-
tificially false human pre-miRNAs, our method sta-
tistically outperforms Xue’s method (16 ) on 11 sets,
including 3 human, 7 animal, and 1 false human pre-
miRNAs. Particularly, our method can identify those
pre-miRNAs with multiple loops that were excluded
in the previous studies (16 , 18 ) with a satisfactory
accuracy of 92.66%.

Results and Discussion

Our training set for designing the SVM classifier con-
sists of 331 samples as those in Xue et al (16 ), in
which 163 positive samples come from true human
pre-miRNAs and 168 negative ones from artificially
false human pre-miRNAs. There exist three key pa-
rameters, including a regularization constant C and
two width parameters of exponential kernels γsequence

and γstructure, which affect our classification accu-
racy. To save computational time, the two ker-
nel widths are forced to be identical, that is, γ =
γsequence= γstructure. Using 331 training samples, we
combine 5-fold cross validation with grid search stat-
egy to find out the optimal values of these param-
eters. Here C and γ are taken as 20, 21, ..., 210,
respectively. Therefore 11×11=121 parameter pairs
are executed. The parameter pair corresponding to
the highest accuracy based on left-out training sam-
ples is considered as an optimal one. When there
exist several optimal pairs, all of them are utilized to
design the SVM classifier using all training samples,
and the accuracies on independent test sets are aver-
aged on all classifiers. In order to enhance statistical
significance, 5 realizations with different 5-fold parti-
tions are fulfilled and overall accurcies are averaged
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on them again.
Tables 1 and 2 list our experimental results on 16

independent test sets, where the best results are in-
dicated by the bold type. Since the SVM classifier
is trained by human pre-miRNAs, it is firstly used
to detect true and false pre-miRNAs of five test sets
from true human (homo sapiens) and artificially false
human pre-miRNAs. In Table 1, for the first four
sets, our method outperforms Xue’s method (16 ) on
three sets; whereas for one set (Conserved-hairpin), it
is 6.23% lower than Xue’s. This would inspire us to
improve our approach and analyze this dataset fur-
ther. Remarkably, those pre-miRNAs with multiple
loop secondary structures that were not considered in
Xue et al (16 ) are identified with a satisfactory over-
all accuracy of 92.66%. This means that our method
can directly deal with pre-miRNAs with multiple loop
hairpin structures.

In Table 2, an amount of 581 pre-miRNAs from
11 species ranging from animals, plants and virus are
tested in order to demonstrate the identification abil-
ity of this method across species, and the results are
compared with those in Xue et al (16 ). It shows that

our method outperforms Xue’s method (16 ) on eight
animal species except mouse (Mus musculus). For
two plant species, satisfactory accuracies (86.72% and
88.00%) are achieved, but they are lower than those
in Xue et al (16 ). This phenomenon possibly results
from the more variable lengths of plant pre-miRNAs.
Our method fails to detect virus pre-miRNAs with
only 46.36% overall accuracy. One reason is that the
average length of five virus pre-miRNAs (65.60 nt) is
shorter than that of positive training samples (86.49
nt) and is more close to that of negative training sam-
ples (82.81 nt). Another reason is that the human
being and the virus belong to two distinct kindoms,
thus the SVM classifier trained by human being pre-
miRNAs is possibly not suitable for detecting virus
pre-miRNAs.

The above results show that our method is a better
pre-miRNA predictor for animal species. In addition,
using 5 realizations with different 5-fold partitions,
our results have more reliable statistical significance
than those in Xue et al (16 ). However, when it is
applied to predict virus pre-miRNAs, we have to be
cautious.

Table 1 Identif ication accuracies (%) on human datasets

Test set Type Realization Overall Xue’s

1 2 3 4 5 (16 )

TE-C (Pseudo) False 92.97 93.11 93.10 93.21 93.15 93.11 88.1

Conserved-hairpin False 84.66 82.84 81.71 81.62 83.00 82.77 89.0

Homo sapiens (TE-C-real) True 100.0 96.97 93.33 93.33 96.67 96.06 93.3

Homo sapiens (Updated) True 94.87 94.87 94.87 94.87 94.87 94.87 92.3

Homo sapiens (Multiple loops) True 91.84 92.86 92.86 92.86 92.86 92.66 –

Table 2 Identif ication accuracies (%) on datasets from 11 species

Test set Realization Overall Xue’s

1 2 3 4 5 (16 )

Animal Caenorhabditis briggsae 98.43 98.63 100.0 100.0 99.32 99.28 95.9

Caenorhabditis elegans 86.88 90.00 91.82 91.82 90.00 89.98 86.4

Drosophila melanogaster 95.77 98.46 97.18 94.68 97.89 96.80 91.5

Drosophila pseudoobsura 96.98 95.62 92.96 92.02 94.37 94.39 90.1

Dnio rerio 83.33 83.33 83.33 83.33 83.33 83.33 66.7

Gallus gallus 78.02 91.61 92.31 92.31 88.47 88.54 84.6

Rattus norvegicus 75.43 83.64 80.00 80.00 82.00 80.21 80.0

Mus musculus 93.65 91.67 88.89 88.89 90.28 90.68 94.4

Plant Arabidopsis thaliana 76.57 85.82 92.00 94.52 84.67 86.72 92.0

Oryza sativa 78.15 89.97 91.67 92.71 87.50 88.00 94.8

Virus Epstein Barr Virus 60.00 41.82 40.00 40.00 50.00 46.36 100.0

Overall 87.35 91.64 92.43 92.51 90.80 90.95 90.9

Geno. Prot. Bioinfo. Vol. 6 No. 2 2008 123



MicroRNA Precursor Identification

Conclusion

The computational identification of true and false
pre-miRNAs plays an important part in searching
new miRNAs. In this study, we construct an ex-
ponential string kernel based on WLD between two
sequences, in which pre-miRNA sequences and their
secondary structures are considered simultaneously as
sequences. Combined with this string kernel, SVM is
used to detect true and false pre-miRNAs. The op-
timal algorithemic parameters are selected by 5-fold
cross validation and grid search approach. Accord-
ing to our experimental results with five realizations
mentioned above, we draw the following conclusions:

(1) Our SVM classifier trained only by human pre-
miRNA samples is very effective to identify human
and animal pre-miRNAs. Among 16 independent test
sets from 3 human, 8 animal, 2 plant, 1 virus, and 2
artificially false human pre-miRNAs, our method sta-
tistically outperforms Xue’s method (16 ) on 11 sets,
including 3 human, 7 animal, and 1 false human pre-
miRNAs. However, the identification accuracies on
two species of plant pre-miRNAs are a little lower.
We also note that our classifier is not suitable for de-
tecting virus pre-miRNAs. It is possible that there
exist some distinct characteristics between virus and
human pre-miRNAs.

(2) Our exponential string kernel can capture more
discriminative and characteristic information hidden
in pre-miRNA sequences and their secondary struc-
tures than numerical features did. For animal pre-
miRNAs, our string kernel improves the identification
accuracies obviously, compared with the general RBF
kernel with numerical features used in Xue et al (16 ).

(3) The identification performance depends on the
optimal choice of key parameters. It is demonstrated
that combining 5-fold cross validation with grid search
scheme is an effective method for parameter selection
in this study. Five realizations with different parti-
tions make our experimental results more statistically
significant.

(4) Those secondary structures with multiple loops
excluded in previous studies (16 , 18 ) can be identified
correctly with up to 92.66% overall accuracy in this
study. This illustrates that our method can deal with
multiple loop secondary structures directly.

In short, it could be concluded that combining
SVM and exponential string kernel based on WLD
can effectively identify true and false pre-miRNAs by
using both pre-miRNA sequences and their secondary
structures simultaneously. Our further work will deal

with more new test sets, elaborately select all algo-
rithmetic parameters in SVM and WLD, and use this
method to search new miRNA candidates.

Materials and Methods

Datasets of pre-miRNAs and their sec-

ondary structures

In order to compare our method with Xue’s
method, we use the same datasets as they did
(16 ) (Table 3), which can be downloaded from
http://bioinfo.au.tsinghua.edu.cn/mirnasvm. Their
true miRNAs and pre-miRNAs of 12 species were
mainly from the miRNA registry database (release
5.0, Sep. 2004) (25 , 26 ). There contained 207 human
miRNAs at that time, in which 163 and 30 miRNAs
without multiple loop hairpin structures were used in
Xue et al (16 ) as positive training and test samples,
respectively, as shown in Table 3 as positive samples
(hsa) and TE-C-real. In this study, we pick up the
14 miRNAs with multiple loops that were excluded
in Xue et al (16 ) as one of our test sets. The other
11 species were involved in the same database release
5.0, although 39 updated human miRNAs have been
reported after this release.

The artificially false pre-miRNAs consisted of se-
quence segments (protein coding regions of human
RefSeq genes and gene regions on human chromo-
some 19) that had similar stem-loop hairpin struc-
tures as true pre-miRNAs but had not been recog-
nized as true pre-miRNAs. In Xue et al (16 ), 8,494
false pre-miRNAs were constructed from the protein
coding sequences of human RefSeq genes, in which 168
and 1,000 of them were selected as negative training
samples and test samples [TE-C (pseudo)]. Mean-
while, from gene regions on human chromosome 19,
2,444 false pre-miRNAs with the same length of 100
nt were built as a test set (Conserved-hairpin) in Xue
et al (16 ).

It is noted that only 331 training samples includ-
ing 163 positive and 168 negative samples are used to
design the SVM classifier in this study, just as in Xue
et al (16 ), while the other 16 independent datasets
are left out to validate the identification accuracies of
our method.

The pre-miRNA sequences consist of four nu-
cleotides (A, U, G, C). Their secondary structures
predicted by RNAfold (9 ) are depicted as sequences
with brackets and dots indicating two kinds of status
of each nucleotide: “paired” and “unpaired”. The left
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Table 3 Summary of 18 true and false pre-miRNA datasets

Dataset Type Size Length (nt)

Minimal Maximal Average

Human Positive training samples (hsa) True 163 62 119 86.49

Negative training samples (pseudo) False 168 63 110 82.81

TE-C (pseudo) False 1,000 62 119 84.27

Conserved-hairpin False 2,444 100 100 100

TE-C-real True 30 62 110 84.80

Updated True 39 58 95 78.49

Multiple loops True 14 80 110 96.29

Animal Caenorhabditis briggsae True 73 72 116 97.96

Caenorhabditis elegans True 110 72 110 98.05

Drosophila melanogaster True 71 63 110 86.35

Drosophila pseudoobsura True 71 62 110 86.70

Dnio rerio True 6 73 99 89.17

Gallus gallus True 13 64 107 90.00

Rattus norvegicus True 25 68 105 90.64

Mus musulusi True 36 61 108 83.06

Plant Arabidopsis thaliana True 75 80 263 127.81

Oryza sativa True 96 82 207 123.28

Virus Epstein Barr Virus True 5 62 70 65.60

Overall 4,439

bracket “(” implies that the paired nucleotide is lo-
cated near the 5′-end and can be paired with the other
nucleotide at the 3′-end, which is denoted by a right
bracket “)”. In Figure 1, the pre-miRNA sequence, its
secondary structure and sequence depiction, and the
mature miRNA sequence of human miRNA has-mir-
25 are illustrated. Figure 2 shows the “U, G, C, A”
contents in pre-miRNA sequences and the “.” and
“(” contents in secondary structures of 18 datasets.
It can be observed that the upper four plots could
not illustrate the obvious difference between false pre-
miRNAs (from the second set to the fourth one de-
noted by dash lines) and true pre-miRNA (the first
set and the others). In the lower two plots, the rel-
ative distinction between true and false pre-miRNAs
is visual. However, such discriminative information is
not enough to detect true and false pre-miRNAs sat-
isfactorily. The existing methods attempt to extract
more useful information from pre-miRNA sequences
and/or their secondary structures to further improve
the identification performance (16–18 ).

In this study, both pre-miRNA sequences with
four nucleotides and their secondary structure se-
quences with brackets and dots are directly consid-
ered as symbol sequences and are used to construct
an exponential string kernel based on WLD for SVM.

SVM

SVM is a nonlinearly supervised classification method
for binary problem (19 , 20 ). For a given training set
{xi, yi}, xi ∈ Rd, yi ∈ {+1,−1}, i = 1, ..., l, where
+1 or −1 corresponds to positive or negative train-
ing samples, respectively, SVM is given to solve a
quadratic programming as follows:

min
αi

1
2

l∑
i,j=1

αiαjyiyjk(xi, xj) −
l∑

i=1

αi

s.t.
l∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, ..., l

(1)

where αi (i = 1, ..., l) is the coefficients to be solved,
C is the regularization constant that can control the
trade-off between the number of errors and the com-
plexity of classifier, and k(xi, xj) is the kernel func-
tion between two vectors. Those training samples
with αi > 0 (i = 1, ..., l) are referred to as support
vectors.

For a new input vector x, the SVM classifier as-
signs it to one of two classes according to the following
nonlinearly discriminant function:
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Fig. 1 Illustration of the pre-miRNA sequence, its secondary structure and sequence depiction, and the mature miRNA

sequence of human miRNA has-mir-25.

Fig. 2 Plots of the U, G, C, A contents in pre-miRNA sequences and the “.” and “(” contents in secondary structures of

18 datasets, where the horizontal axis denotes 18 datasets listed in Table 3 and the vertical axis indicates the mean and

standard deviation of content for each dataset. The second to fourth datasets (dash lines) are three false pre-miRNA

sets, while the others represent 15 true pre-mRNA sets.

f(x) = sign

⎛
⎝ l∑

i=1,αi>0

αiyik(xi, x) + β

⎞
⎠ (2)

where the threshold β is calculated for some support
vectors (0 < αi < C) using KKT condition:

⎛
⎝ l∑

j=1,αj>0

αjyjk(xi, xj) + β

⎞
⎠ yi = 1 (3)

In order to fit WLD conveniently, we choose an
exponential kernel (22 ) as:

k(x, y) = exp
(−‖x − y‖

γ

)
(4)

where generally ‖x − y‖ denotes the Euclidean dis-
tance between two numerical vetors and γ denotes
the kernel width. In the next step, this distance is
replaced by WLD between two sequences or strings
with different lengths.
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Exponential string kernel based on

WLD

For two given strings or sequences a and b, there are
three string-to-string correction operations: (1) dele-
tion, where some symbols in string a are removed; (2)
insertion, where some symbols are added into string
b; and (3) substitution, where some symbols in string
a are replaced by someone in string b. Through the
three operations, the string a can be transformed into
the string b step by step.

In bioinformatics, the widely used similarity mea-
sure between two sequences is edit distance (or Lev-
enshtein distance) (27 ), which is defined as the small-
est number of correction operations converting a into
b. When three operations indicate different biological
meanings, it is necessary to choose different weights
for different operations. WLD is defined as the min-
imal total weights of single symbol deletions, inser-
tions and substitutions to convert a into b (28 , 29 ).
It is noted that when the insertion weight is identical
to the deletion one, WLD still satisfies the distance
definition in functional analysis.

Let ai and bj be two substrings from the first i

and j symbols of a and b, respectively. The WLD be-
tween them (di,j) can be calculated according to the
following dynamic programming algorithm (29 , 30 ):

d0,0 = 0
di,0 = di−1,0 + wD

d0,j = d0,j−1 + wI

di,j = min(di−1,j + wI , di−1,j−1 + wS , di,j−1 + wD)
i = 1, ..., |a| , j = 1, ..., |b|

(5)
where wI , wD and wS denote different weights for in-
sertion, deletion and substitution operations, and |a|
and |b| are the lengths of two strings. In this case, the
WLD between strings a and b is d|a|,|b|, which is used
to replace the Euclidean distance between two vectors
in Equation 4 in this study.

In our experiments, we utilize wI = wD=1 for in-
sertion and deletion operations. For substitution op-
eration, wS=0 if two symbols in a and b are identical,
otherwise wS=3. This implies that the substitution
operation between two different symbols is inhibited.
Thus, the WLD d|a|,|b| varies from 0 to |a|+ |b|, which
denotes the length summation of two strings. In order
to eliminate the impact of string length, the original
WLD is divided by |a| + |b|. In this case, the new
WLD’s value ranges between 0 and 1, but we still call
this normalized WLD as WLD.

In RNAfold (9 ), the secondary structure of pre-
miRNA is still depicted as a sequence as shown in
Figure 1. In our study, pre-miRNA sequences and
their secondary structures are taken into account si-
multaneously, therefore the corresponding exponen-
tial string kernel is defined as the multiplication of
two exponenntial kernels based on WLD:

k(pi,pj) = exp
(
−dsequence(pi,pj)

γsequence

)
exp

(
−dstructure(pi,pj)

γstructure

)
(6)

where dsequence and dstructure represent WLD be-
tween two sequences and between two secondary
structures for pre-miRNA pi and pj , and γsequence

and γstructure denote their kernel widths, respectively.
A quadratic programming solver “pr-loqo” in C

language (http://www.kernel-machines.org/software)
was used to train the SVM classifier and a function
for WLD was developed by us in C language. The
whole software was executed on a computer of P4 3.0
G with 1,024 M RAM using VC6.0 compiler.
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