Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Dec 1;89(23):11327–11331. doi: 10.1073/pnas.89.23.11327

Stable heparin-producing cell lines derived from the Furth murine mastocytoma.

R I Montgomery 1, K Lidholt 1, N W Flay 1, J Liang 1, B Vertel 1, U Lindahl 1, J D Esko 1
PMCID: PMC50543  PMID: 1454815

Abstract

Stable cell lines that synthesize heparin have been established from the Furth murine mastocytoma. The parental line (MST) divides in suspension every 14-18 h in growth medium supplemented with fetal bovine serum or defined growth factors. Adherent subclones were selected by adhesion to plastic culture vessels. Both adherent and nonadherent cells contain about 0.4 micrograms of glycosaminoglycan hexuronic acid per 10(6) cells, composed of 80% heparin and 20% chondroitin sulfate E. Deaminative cleavage of MST heparin by HNO2 at pH 1.5 released disaccharides that were similar in composition to those obtained from commercial heparin, except that disaccharides containing 3,6-O-desulfated GlcN units were not found. Greater than 90% of the glycosaminoglycans were stored in cytoplasmic granules, and challenge of the cells with dinitrophenylated bovine serum albumin and anti-dinitrophenyl IgE released a portion of the stored material. Growth studies of subclones showed that MST cells tolerate a 10-fold variation in glycosaminoglycan content. Incubation of cells with sodium chlorate reduced glycosaminoglycan sulfation by > 95% without affecting cell growth. Thus, granule glycosaminoglycans appear to be nonessential for growth of MST cells.

Full text

PDF
11327

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atha D. H., Lormeau J. C., Petitou M., Rosenberg R. D., Choay J. Contribution of monosaccharide residues in heparin binding to antithrombin III. Biochemistry. 1985 Nov 5;24(23):6723–6729. doi: 10.1021/bi00344a063. [DOI] [PubMed] [Google Scholar]
  2. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  3. Baeuerle P. A., Huttner W. B. Chlorate--a potent inhibitor of protein sulfation in intact cells. Biochem Biophys Res Commun. 1986 Dec 15;141(2):870–877. doi: 10.1016/s0006-291x(86)80253-4. [DOI] [PubMed] [Google Scholar]
  4. Bame K. J., Esko J. D. Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J Biol Chem. 1989 May 15;264(14):8059–8065. [PubMed] [Google Scholar]
  5. Bienkowski M. J., Conrad H. E. Structural characterization of the oligosaccharides formed by depolymerization of heparin with nitrous acid. J Biol Chem. 1985 Jan 10;260(1):356–365. [PubMed] [Google Scholar]
  6. Buck C. A., Horwitz A. F. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol. 1987;3:179–205. doi: 10.1146/annurev.cb.03.110187.001143. [DOI] [PubMed] [Google Scholar]
  7. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Esko J. D., Montgomery R. I., Lindahl U. Secretory heparin in murine mastocytoma cell lines. Biochem Soc Trans. 1990 Oct;18(5):807–809. doi: 10.1042/bst0180807. [DOI] [PubMed] [Google Scholar]
  9. Esko J. D. Replica plating of animal cells. Methods Cell Biol. 1989;32:387–422. doi: 10.1016/s0091-679x(08)61183-8. [DOI] [PubMed] [Google Scholar]
  10. FURTH J., HAGEN P., HIRSCH E. I. Transplantable mastocytoma in the mouse containing histamine, heparin, 5-hydroxytryptamine. Proc Soc Exp Biol Med. 1957 Aug-Sep;95(4):824–828. doi: 10.3181/00379727-95-23375. [DOI] [PubMed] [Google Scholar]
  11. Hök M., Riesenfeld J., Lindahl U. N-[3H]Acetyl-labeling, a convenient method for radiolabeling of glycosaminoglycans. Anal Biochem. 1982 Jan 15;119(2):236–245. doi: 10.1016/0003-2697(82)90580-2. [DOI] [PubMed] [Google Scholar]
  12. Jacobsson K. G., Lindahl U. Degradation of heparin proteoglycan in cultured mouse mastocytoma cells. Biochem J. 1987 Sep 1;246(2):409–415. doi: 10.1042/bj2460409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacobsson K. G., Riesenfeld J., Lindahl U. Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells. J Biol Chem. 1985 Oct 5;260(22):12154–12159. [PubMed] [Google Scholar]
  14. Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
  15. Kohler T. R., Kirkman T., Clowes A. W. Effect of heparin on adaptation of vein grafts to arterial circulation. Arteriosclerosis. 1989 Jul-Aug;9(4):523–528. doi: 10.1161/01.atv.9.4.523. [DOI] [PubMed] [Google Scholar]
  16. Krilis S. A., Austen K. F., Macpherson J. L., Nicodemus C. F., Gurish M. F., Stevens R. L. Continuous release of secretory granule proteoglycans from a cell strain derived from the bone marrow of a patient with diffuse cutaneous mastocytosis. Blood. 1992 Jan 1;79(1):144–151. [PubMed] [Google Scholar]
  17. Kusche M., Torri G., Casu B., Lindahl U. Biosynthesis of heparin. Availability of glucosaminyl 3-O-sulfation sites. J Biol Chem. 1990 May 5;265(13):7292–7300. [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. LeBaron R. G., Hök A., Esko J. D., Gay S., Hök M. Binding of heparan sulfate to type V collagen. A mechanism of cell-substrate adhesion. J Biol Chem. 1989 May 15;264(14):7950–7956. [PubMed] [Google Scholar]
  20. Lindstedt K. A., Kokkonen J. O., Kovanen P. T. Soluble heparin proteoglycans released from stimulated mast cells induce uptake of low density lipoproteins by macrophages via scavenger receptor-mediated phagocytosis. J Lipid Res. 1992 Jan;33(1):65–75. [PubMed] [Google Scholar]
  21. Love L. D. Fluorescence microscopy of viable mast cells stained with different concentrations of acridine orange. Histochemistry. 1979 Aug;62(2):221–225. doi: 10.1007/BF00493322. [DOI] [PubMed] [Google Scholar]
  22. Murphy-Ullrich J. E., Mosher D. F. Interactions of thrombospondin with endothelial cells: receptor-mediated binding and degradation. J Cell Biol. 1987 Oct;105(4):1603–1611. doi: 10.1083/jcb.105.4.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ogren S., Lindahl U. Metabolism of macromolecular heparin in mouse neoplastic mast cells. Biochem J. 1976 Mar 15;154(3):605–611. doi: 10.1042/bj1540605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pejler G., Bäckström G., Lindahl U., Paulsson M., Dziadek M., Fujiwara S., Timpl R. Structure and affinity for antithrombin of heparan sulfate chains derived from basement membrane proteoglycans. J Biol Chem. 1987 Apr 15;262(11):5036–5043. [PubMed] [Google Scholar]
  25. Rapraeger A. C., Krufka A., Olwin B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991 Jun 21;252(5013):1705–1708. doi: 10.1126/science.1646484. [DOI] [PubMed] [Google Scholar]
  26. Reynolds D. S., Serafin W. E., Faller D. V., Wall D. A., Abbas A. K., Dvorak A. M., Austen K. F., Stevens R. L. Immortalization of murine connective tissue-type mast cells at multiple stages of their differentiation by coculture of splenocytes with fibroblasts that produce Kirsten sarcoma virus. J Biol Chem. 1988 Sep 5;263(25):12783–12791. [PubMed] [Google Scholar]
  27. Riesenfeld J., Hök M., Lindahl U. Biosynthesis of heparin. Concerted action of early polymer-modification reactions. J Biol Chem. 1982 Jan 10;257(1):421–425. [PubMed] [Google Scholar]
  28. Rosenberg R. D., Damus P. S. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem. 1973 Sep 25;248(18):6490–6505. [PubMed] [Google Scholar]
  29. Schwarz M. A., Juliano R. L. Two distinct mechanisms for the interaction of cells with fibronectin substrata. J Cell Physiol. 1985 Jul;124(1):113–119. doi: 10.1002/jcp.1041240118. [DOI] [PubMed] [Google Scholar]
  30. Shieh M. T., WuDunn D., Montgomery R. I., Esko J. D., Spear P. G. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol. 1992 Mar;116(5):1273–1281. doi: 10.1083/jcb.116.5.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shively J. E., Conrad H. E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry. 1976 Sep 7;15(18):3932–3942. doi: 10.1021/bi00663a005. [DOI] [PubMed] [Google Scholar]
  32. Tsai M., Takeishi T., Thompson H., Langley K. E., Zsebo K. M., Metcalfe D. D., Geissler E. N., Galli S. J. Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell factor. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6382–6386. doi: 10.1073/pnas.88.14.6382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES