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Summary

The lack of persistence of infused T cells is a principal limitation of adoptive

immunotherapy in man. Interleukin (IL)-15 can sustain memory T cell

expansion when presented in complex with IL-15Ra (15Ra/15). We

developed a novel in-vitro system for generation of stable 15Ra/15

complexes. Immunologically quantifiable amounts of IL-15 were obtained

when both IL-15Ra and IL-15 genes were co-transduced in NIH 3T3

fibroblast-based artificial antigen-presenting cells expressing human

leucocyte antigen (HLA) A:0201, b2 microglobulin, CD80, CD58 and CD54

[A2-artificial antigen presenting cell (AAPC)] and a murine pro-B cell line

(Baf-3) (A2-AAPC15Ra/15and Baf-315Ra/15). Transduction of cells with IL-15

alone resulted in only transient expression of IL-15, with minimal amounts

of immunologically detectable IL-15. In comparison, cells transduced with

IL-15Ra alone (A2-AAPCRa) demonstrated stable expression of IL-15Ra;

however, when loaded with soluble IL-15 (sIL-15), these cells sequestered

15Ra/15 intracellularly and also demonstrated minimal amounts of IL-15.

Human T cells stimulated in vitro against a viral antigen (CMVpp65) in the

presence of 15Ra/15 generated superior yields of high-avidity CMVpp65

epitope-specific T cells [cytomegalovirus-cytotoxic T lymphocytes (CMV-

CTLs)] responding to � 102 13 M peptide concentrations, and lysing targets

cells at lower effector : target ratios (1 : 10 and 1 : 100), where sIL-15, sIL-2

or sIL-7 CMV-CTLs demonstrated minimal or no activity. Both soluble and

surface presented 15Ra/15, but not sIL-15, sustained in-vitro expansion of

CD62L1 and CCR71 central memory phenotype CMV-CTLs (TCM). 15Ra/

15 complexes represent a potent adjuvant for augmenting the efficacy of

adoptive immunotherapy. Such cell-bound or soluble 15Ra/15 complexes

could be developed for use in combination immunotherapy approaches.

Keywords: adoptive immunotherapy, cancer immunotherapy, cytokine,

immunomodulation, T cell memory, immune adjuvant

Introduction

The clinical success of adoptive immunotherapy has

been hampered due to the limited persistence of infused

self tumor antigen-specific [1] or virus-specific T cells

[2] leading to recurrence of cancer or infection. TCM

phenotype T cells expressing high levels of L-selectin

(CD62L), CCR7 and CD44 can home to and persist

within lymphoid tissues, and therefore represent a desir-

able T cell population for adoptive immunotherapy that

have the potential to provide durable protection from

disease by virtue of their prolonged in-vivo survival [3].

In both animal models and humans, adoptively trans-

ferred TCM phenotype T cells directed against viral anti-

gens such as cytomegalovirus (CMV) have demonstrated

prolonged in-vivo persistence and durable protection

from infection [4–6]. Common gamma-chain cytokines,

in particular interleukin (IL)27 and IL-15, can potenti-

ate memory T cell survival and proliferation, respectively

[7]. Accordingly, cytokine cocktails incorporating IL-7

and/or IL-15 have been evaluated for their effect on

supporting the in-vitro expansion of memory phenotype
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antigen-specific T cells for adoptive immunotherapy

applications [8,9].

Interleukin-15 has been shown to be critical for the

homeostatic proliferation of CD81 memory T cells [10,11],

and it also functionally stimulates both memory T and nat-

ural killer (NK) cells [12,13]. Therefore, IL-15 promises to

be a valuable catalyst for augmenting the efficacy of adop-

tive immunotherapy. In animal models, IL-15 treatment

delivered by NK cells [14], intravenously [15,16] or via

transduced tumour cells [17], induced significant tumour

regressions shown to be mediated by host-derived or adop-

tively transferred CD81 T cells and NK cells. Recent in-

vitro and animal model studies indicate that IL-15 is most

potent in stimulating CD81 memory T cell and NK cell

proliferation when it is bound exclusively with IL-15Ra,

forming an 15Ra/15 complex [18,19]. Such 15Ra/15 com-

plexes, when infused into tumour-bearing animals, have

been shown to induce significant tumour regressions that

are mediated by the sustained proliferation of memory

CD81 T cells [20–23]. These data suggest that 15Ra/15

would be a useful adjuvant for immunotherapy.

It is now recognized that both secreted and cell surface-

expressed forms of IL-15 exist in complex with IL-15Ra

[24]. These 15Ra/15 complexes can function in both cis

and trans configurations and stimulate responding T and

NK cells [25,26]. However, it remains unclear if the

secreted 15Ra/15 differs from membrane bound 15Ra/15

in its functional effects on lymphocyte responses when

exposed to antigen [27]. To develop this agent appropri-

ately for immunotherapy applications, we examined the

soluble and membrane bound forms of 15Ra/15 in a series

of in-vitro experiments to determine the most functionally

active form of 15Ra/15 that supports expansion of human

antigen-specific T cells. We developed and employed a

novel cell based-artificial antigen-presenting cell (AAPC)

system expressing human 15Ra/15, which permitted a con-

trolled evaluation of soluble and membrane-bound 15Ra/

15 in comparison to soluble IL-15 (sIL-15). Genetically

modified NIH 3T3-based human leucocyte antigen (HLA)

A21 AAPC (A2-AAPC) cell lines [28], as well as a third-

party murine pro-B cell line Baf-3 [29], were transduced to

co-express either human IL-15Ra alone or IL-15Ra in

complex with IL-15 (A2-AAPC15Ra, A2-AAPC15Ra/15and

Baf-315Ra/15).

These studies established that co-expression of IL-15Ra

and IL-15 is essential for stable expression of 15Ra/15.

Using cell lines transduced to co-express IL-15Ra and IL-

15, we examined the differential effects of soluble versus

membrane-bound 15Ra/15 in comparison to sIL-15 in

stimulating the in-vitro expansion of memory phenotype

epitope-specific T cells in response to a viral antigen such

as CMVpp65. We demonstrated that both soluble and

secreted 15Ra/15 complexes can sustain the expansion of

antigen-specific TCM cells, more efficiently than soluble

cytokine supplementation with IL-15 or IL-7. These data

underscore the advantage of 15Ra/15 in stimulating the

expansion of highly functional antigen-specific TCM cells

for adoptive immunotherapy applications. Such complexes

could be harnessed for appropriate immunotherapy appli-

cations in conjunction with cell, vaccine or other immuno-

modulating agents.

Materials and methods

Donors

Blood was collected from six HLA A 02:01-positive healthy,

CMV-seropositive, volunteer donors consenting to

approved protocols by the Institutional Review Board at

Memorial Sloan-Kettering Cancer Center (MSKCC) after

high-resolution HLA typing (HLA Laboratory – MSKCC).

Generation of AAPC and Baf-3 cells co-expressing
IL-15Ra and IL-15

Cloned plasmids encoding IL-15 and IL-15Ra genes and

containing the CD8 leader sequence were inserted into SFG

retroviral vectors at HindIII and BamHI sites and trans-

duced sequentially into A2-AAPC [55]. The Kozak

sequence (GCCGCCACC) inserted prior to the AUG initia-

tor codon ensured enhanced expression of the transduced

gene [56]. IL-15Ra transduced cells (A2-AAPC15Ra) were

isolated by fluorescence activated cell sorter (FACS) and

stored [anti-IL-15Ra fluorescein isothiocyanate (FITC);

BD Biosciences, San Jose, CA, USA]. Some aliquots of A2-

AAPC15Ra cells were then transduced with IL-15, and cells

expressing both IL-15Ra and IL-15 were cloned out by

serial dilution. High-expressing clones were isolated further

by FACS [anti-IL-15 phycoerythrin (PE) and anti-IL-15Ra

FITC; BD Biosciences], expanded in Dulbecco’s modified

Eagle’s medium (DMEM; Invitrogen Inc., Carlsbad, CA,

USA) 1 10% heat-inactivated defined calf serum (DCS;

Hyclone, Logan, UT, USA) and stored in aliquots for T cell

sensitization (A2-AAPC15Ra/15). Similarly, the mouse pro-B

cell line Baf-3 [29], passaged in RPMI-1640 with 10% fetal

calf serum (FCS) (Life Technologies, Grand Island, NY,

USA) was transduced sequentially with retroviral vectors

containing the plasmid DNA for IL-15Ra and IL-15 genes

(Baf-315Ra/15), and irradiated aliquots were used in T cell

cultures (Supporting information, Fig. S1).

Generation of CMV-cytotoxic T lymphocytes (CMV-
CTLs)

T cells were enriched from Ficoll Hypaque separated

peripheral blood mononuclear cells (PBMC) (Accurate

Chemical and Scientific Corporation, Westbury, NY, USA)

using immunomagnetic beads (Pan T cell Isolation Kit II;

Miltenyi Biotec Inc., Auburn, CA, USA) [28]. CMV-CTLs

were then generated as described previously [28] using A2-

AAPC at a stimulator to effector ratio of 1 : 10 in AIM-V
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medium in eight different conditions: (1) A2-AAPC 1 sIL-

2, (2) A2-AAPC 1 sIL-15, (3) A2-AAPC 1 sIL-2 1 sIL-15,

(4) A2-AAPC 1 sIL-7 1 sIL-4, (5) A2-AAPC15Ra 1 sIL-2,

(6) A2-AAPC15Ra 1 sIL-15, (7) A2-AAPC15Ra/15 and (8)

A2-AAPC 1 Baf15Ra/15. T cells were restimulated every 10

days. T cells were supplemented with IL-2 (20 U/ml) and

or IL-15 (10 ng/ml) or IL-7 (10 ng/ml) 1 IL-4 (1666 U/ml)

(R&D Systems, Inc., Minneapolis, MN, USA) based on the

assigned groups. Cytokines were first supplemented on day

8 and then three times per week. Group 8 received 1 3 106

irradiated Baf-315Ra/15 cells at each restimulation, and

group 7 was restimulated with A2-AAPC15Ra/15 every 10

days without additional soluble cytokine supplementation.

Transwell T cell cultures

Parallel T cell co-cultures were set up from three HLA-

A02011 donors with irradiated A2-AAPCs in Transwell tis-

sue culture plates consisting of two chambers in each well

separated by a 3 mm permeable membrane (Corning Costar

#3414). The permeable membrane in each well allowed the

passage of soluble cytokines as well as secreted soluble

15Ra/15, while separating the T cell co-cultures from cell

surface-expressed 15Ra/15. In parallel co-cultures, T cells

stimulated with A2-AAPCs were supplemented with (1)

irradiated Baf-315Ra/15 cells (106/ml), (2) irradiated A2-

AAPC15Ra/15 (106/ml), (3) sIL-15 (10 ng/ml) or (4) sIL-2

(20 units/ml). Soluble cytokines were added at day 8 and

then thrice a week, and irradiated Baf-315Ra/15 or

A2AAPC15Ra/15 were replenished every 10 days.

Epstein–Barr virus (EBV)-B lymphoblastoid cell lines
(BLCLs)

Autologous EBV-BLCLs were generated for each donor, as

described previously [57]. The cells were maintained in

RPMI-1640 1 10% FCS (Life Technologies, Grand Island,

NY, USA).

CMV pp65 peptides

The HLA A 02:01 presented nonamer NLVPMVATV (NLV)

within CMVpp65 was synthesized by the microchemistry

and proteomics core facility at MSKCC, stored in small ali-

quots (2�4 mg/10 ml) and used to assess the responses in

functional T cell assays.

Isolation and quantitation of IL-15, IL-15Ra and
15Ra/15 complexes

IL-15 in all samples was quantitated by human IL-15

Quantikine enzyme-linked immunosorbent assay (ELISA)

kit (R&D Systems, Inc., Minneapolis, MN, USA). Concen-

trated (3 kDa filtration units; Millipore Corp., Billerica,

MA, USA) serum-free cell supernatants (RPMI-1640) were

fractionated into 1 ml fractions running over a Superdex

200 10/30 column at 0�5 ml/min in 20 mM Tris, 50 mM

NaCl, pH 8�0 buffer using a classic fast protein liquid chro-

matography (FPLC) system (GE Healthcare Bio-Sciences

Corp., Piscataway, NJ, USA). Bovine serum albumin (BSA)

(66�4 kDa) and lysozyme (4�3 kDa) (1 mg/ml; Sigma-

Aldrich, St Louis, MO, USA), served as molecular weight

(MW) markers (confirmed by Bradford protein assay and

gel electrophoresis with Coomassie staining). FPLC frac-

tions were analysed for IL-15. Baf-315Ra/15 supernatants

were subjected to12�5% sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) to distin-

guish free IL-15 from 15Ra/15. Heat-denatured, reduced

and non-reduced supernatants were then analysed by West-

ern blot using anti-human IL-15 Ra and IL-15 antibodies

(R&D Systems, Inc.).

Phenotypical analysis of CMV-CTLs

Quantitation of tetramer1 CD81CMV-CTLs. HLA A 02:01–

NLV major histocompatibility complex (MHC)-peptide

tetramers (MSKCC tetramer core) were used to quantitate

CMVpp65 NLV-responsive T cells at days 0, 7, 14, 21 and

28 in culture, as described previously [28]. HLA A 24:02-

QYDPVAALF and HLA B 07:02 TPRVTGGGAM peptide-

MHC tetramers (MSKCC tetramer core) were used as

controls.

Memory phenotype of tetramer1 T cells. T cells were incu-

bated with anti-CD8 peridinin chlorophyll (PerCP), APC-

labelled tetrameric MHC–peptide complexes, anti-CD62L

FITC, anti-CD45RA phycoerythin (PE) and anti-CCR7 PE-

cyanin 7 (Cy7). CD81 and Tet1 T cells were analysed to

determine the proportion of CD45RA–CD62L1 or CCR71

(TCM) or CD45RA–CD62L– or CCR7– (TEM). All antibod-

ies for FACS analysis were purchased from BD Biosciences.

Cell proliferation and apoptosis

Carboxyfluorescein diacetate succinimidyl ester (CFSE) dilu-

tion assay. Day 14-stimulated T cells were resuspended in

phosphate-buffered saline (PBS)/0�1% BSA at 107 cells/ml

and incubated with a 5 mM dimethylsulphoxide (DMSO)

stock solution of CFSE (Invitrogen) to achieve a final con-

centration of 10 lM CFSE for 10 min at 378C. Labelled T

cells were washed with 5 vol ice-cold RPMI-1640/10% FBS,

incubated on ice for 5 min for quenching, then washed

three times in T cell medium (AIM V 1 5% DCS). Aliquots

of 1–2 3 106/ml CFSE-labelled T cells were then co-

cultured with irradiated A2 AAPC in separate six-well

plates supplemented with the same cytokines as previous

stimulation: sIL-2 (20 U/ml), sIL-15 (10 ng/ml), sIL-7 (10

ng/ml) 1 sIL-4 (1666 U/ml), 1 3 106 irradiated Baf-315Ra/

15 or with irradiated A2-AAPC15Ra/15. Primary T cells

stimulated with CD3-CD28 beads at a 1 : 1 ratio 1 50 U/

ml sIL-2 served as positive control. CFSE-labelled T cells

were then stained with CD3, CD8 and A2-NLV tetramer

and analysed by FACS at 2 and 7 days in culture after CFSE

labelling.

IL-15Ra/IL-15 & memory T cell avidity
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Apoptosis assay

Non-viable T cells in the different culture conditions were

assessed by FACS using the dead cell stain 7-

aminoactinomycin D (7AAD). Epitope specific A2-NLV

tetramer 1 T cells labelled with 7AAD were quantitated.

Functional analysis of CMV-CTLs

T helper type 1 (Th1) cytokine generation. T cell responses

to the nonamer peptide (NLV) were evaluated by quanti-

tating interferon (IFN)-g1 CD81 T cells upon secondary

stimulation with peptide-loaded autologous APCs (PBMC

or BLCL), as described previously [57,58]. Autologous

APCs loaded with serial dilutions of NLV peptide (10 nM–

0�1 pM) were also used to elicit differential T cell

responses.

Intracellular granzyme B. NLV peptide-loaded autologous

BLCL were co-incubated with CMV-CTLs for 4–6 h at a

5 : 1 responder to stimulator ratio in the presence of brefel-

din A. Fluorescent antibody-labelled T cells (anti-CD3,

CD4, CD8; BD Biosciences) were fixed, then permeabilized

(BD Biosciences fix and perm kit) and labelled with anti-

human granzyme B antibody (GB11, eBiosciences, San

Diego, CA, USA) and analysed by FACS.

In-vitro cytotoxicity. T cell cytotoxic activity was evaluated

in a standard in-vitro 51Cr release assay [57]. T cell targets

included: autologous EBV-BLCLs (1) loaded with titrated

concentrations of the NLV peptide (2�4 mg–2�4 ng/106

EBV-BLCLs), (2) loaded with 2�4 mg/106 EBV-BLCLs at

progressively diminishing effector : target (E : T) ratios, (3)

NLV peptide-loaded HLA mismatched EBV-BLCL and (4)

BLCL lines without peptide. Groups 3 and 4 served as

controls.

Statistics

Wilcoxon’s rank sum test was used to compare groups.

Results

Soluble IL-15 augments expansion of CMV-CTLs in
vitro and prevents T cell apoptosis

Our goal has been to develop strategies for robust in-vitro

expansion of antigen-specific T cells. We initially compared

the effects of the prosurvival cytokine IL-15 in comparison

to IL-2 on the enrichment and overall expansion of

CMVpp65-specific T cells in our AAPC model system. This

panel of HLA class-I-expressing AAPCs is designed specifi-

cally for the expansion of CD81 CMV-CTLs responding to

HLA class-I-presented epitopes [28]. To generate CMV-

CTLs, T cells from six healthy CMV-seropositive HLA

A02:011 donors were stimulated using A2-AAPC and sup-

plemented with either sIL-2 (20 U/ml) or sIL-15 (10 ng/

ml). Using this approach, CTLs supplemented with sIL-15

demonstrated a steady enrichment through 28 days of

epitope-specific T cells responding to the HLA A02:01-pre-

sented NLV epitope in MHC-peptide tetramer binding

assays. Strikingly, sIL-15 supplementation maintained a

high proportion of Tet1 T cells even beyond 21 days of

continuous antigenic stimulation (Fig. 1a shows one repre-

sentative example). In comparison, the enrichment of Tet1

T cells in sIL-2-supplemented CMV-CTLs peaked at 21

days, after which Tet1 T cells underwent an attrition in

both proportion and numbers between 21 and 28 days

(Fig. 1b). As a result, sIL-15 generated a significantly higher

overall yield of Tet1 T cells with a median of 1�8 3 107

compared to 3�4 3 106 Tet1 T cells in sIL-2 CTLs

(P < 0�01) (Fig. 1b,c), providing a median fold expansion

of 900 versus 375 (Table 1). This also correlated with pro-

portionately lower numbers of 7AAD1 apoptotic T cells

observed in sIL-15 CTLs compared to sIL-2 CTLs (3–5%

and 24–32%, respectively) (P < 0�001) (Fig. 1d). We exam-

ined simultaneously combinations of g-chain cytokines for

their effect on overall yields of Tet1 T cells. When sIL-15

was supplemented together with sIL-2, an augmented yield

of Tet1 T cells was achieved at 28 days in comparison to

sIL-2 CTLs, but the yield remained below that obtained

with sIL-15 alone (median 5 1 3 107 and 1�8 3 107,

respectively or 550- versus 900-fold expansion with sIL-15

alone) (P < 0�01) (Fig. 1b,c). We then also examined sIL-

7 1 sIL-4 in three separate T cell donors based on previ-

ously reported T cell expansion in short-term in-vitro cul-

tures [8]. As shown in Fig. 1a, although this combination

led to an excellent overall T cell expansion CTLs expanded

in the presence of sIL-7 and sIL-4 contained a sizable pro-

portion of CD41 T cells (38–51%). Importantly, enrich-

ment of Tet1 T cells was achieved in these cultures within

the first 15–21 days that then reached a plateau between 21

and 28 days. This resulted in an overall higher yield of Tet1

T cells with sIL-7 1 sIL-4 than in sIL-2-supplemented

CTLs, but also remained lower than in sIL-15-only CTLs in

our AAPC system, which fosters expansion of CD81 T cells

(Fig. 1b,c). The proportion of apoptotic T cells in sIL-

7 1 sIL-4 cultures was low, as with sIL-15-supplemented

CTLs (Fig. 1d,e). Overall, in this in-vitro system, supple-

mentation with sIL-15 demonstrated the most robust CTL

expansion.

Generation of an AAPC system providing IL-15Ra/
IL-15 complex for robust expansion of antigen-
specific T cells requires both IL-15 and IL-15Ra genes

Previous studies have shown that the stimulatory effect of

IL-15 on CD81 memory T cell expansion is mediated

through the 15Ra/15 complex, which is also expressed on

DCs. We therefore sought to develop an off-the-shelf APC

system providing molecules for both in-vitro expansion of

antigen-specific T cells as a strategy to provide potentially
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superior and more physiological T cell stimulation. The

requisite in-vitro conditions for the formation and cell sur-

face expression of 15Ra/15 were examined initially. We

transduced A2AAPC as well as Baf-3 cells with the IL-15

gene alone and evaluated the expression and secretion of

IL-15. In several independent experiments, IL-15

transduced cells lost expression after a few in-vitro pas-

sages, and minimal amounts of IL-15 (64–145 pg/ml) were

detected in the supernatants of these cells by ELISA (Fig.

2a). This suggested that the IL-15 gene is unstable when

transduced alone, and requires IL-15Ra to form a stable

complex. Thereafter, A2 AAPC transduced with IL-15Ra

alone (A2-AAPC15Ra) were generated, which demonstrated

stable expression of IL-15Ra. These cells were then loaded

with saturating doses of sIL-15 (10–50 ng/ml) to evaluate

the expression of 15Ra/15 and secretion of IL-15. Surpris-

ingly, sIL-15-loaded A2-AAPC15Ra cells also demonstrated

a markedly lower level of immunologically detectable IL-15

(94–270 pg/ml IL-15) in comparison to A2-AAPC superna-

tants supplemented with the same concentrations of sIL-15

(6000–10 000 pg/ml) (Fig. 2b), and did not express 15Ra/

15 on the cell surface. In T cell co-cultures, sIL-15-loaded

A2-AAPC15Ra elicited a lower yield of epitope-specific Tet1

T cell numbers compared to sIL-15 supplemented A2-

AAPC (Fig. 2c). To elucidate reasons for lower IL-15 con-

centrations detected in A2-AAPC15Ra cells, we performed

time–sequence studies quantitating cell surface-expressed

IL-15 and observed that all detectable IL-15 was intracellu-

lar, suggesting that A2-AAPC15Ra cells bound and rapidly

internalized the supplemented sIL-15 from the cell

medium, without recycling for surface presentation (data

not shown). The inferior T cell expansion in A2-AAPC15Ra

co-cultures was therefore ascribed to the non- availability

of IL-15 due to intracellular sequestration within these

AAPCs. Although, in other systems, IL-15Ra-expressing

cells loaded with sIL-15 have demonstrated surface expres-

sion of 15Ra/15 complexes [30], these data suggested that,

in this system, both IL-15 and IL-15Ra genes would be

required within the same cell for secretion of IL-15 and sta-

ble expression of 15Ra/15 complexes. Accordingly, we gen-

erated AAPC transduced to express both IL-15 and IL-

15Ra genes (A2-AAPC15Ra/15). These cells demonstrated

high expression levels of 15Ra/15 complex on the cell sur-

face (Supporting information, Fig. S1) and also secreted

detectable quantities of IL-15 by ELISA (3000–6000 pg/ml

of IL-15) (Fig. 2a).

IL-15 detected in the supernatants of A2-AAPC15Ra/15,
Baf-315Ra/15 and A2-AAPC15 Ra is bound predominantly
to IL-15Ra

Studies in various mouse and in-vitro models have sug-

gested that IL-15 exists preferentially as a complex bound

to IL-15Ra. We examined if this was true for the genetically

modified cells expressing both human IL-15 and IL-15Ra

genes (A2-AAPC15Ra/15 and Baf-315Ra/15) and compared

this to sIL-15-loaded A2-AAPC15Ra. In Western blot analy-

sis, performed on concentrated cell supernatants that had

retained all detectable IL-15 (see Methods), both IL-15 and

IL-15Ra proteins were detected as a high molecular weight

(HMW) band under non-reducing conditions in

Baf-315Ra/15, A2-AAPC15Ra/15 and A2-AAPC15Ra cultures

(Fig. 3a). Upon fractionation of the concentrated superna-

tants and FPLC analysis, we confirmed that the immu-

nologically detectable IL-15 was present exclusively in

the HMW fractions (Fig. 3b). Nevertheless, in sIL-15

supplemented supernatants of A2-AAPC, IL-15 was

detected only in low molecular weight (LMW) fractions

(Fig. 3c). Based on these data, we inferred that IL-15

existed as a complex with IL-15Ra in both Baf-315Ra/15 and

A2-AAPC15Ra/15 (Fig. 3b,c).

AAPC co-expressing IL-15Ra and IL-15 support
continuous enrichment of antigen-specific CD81

T cells during prolonged in-vitro expansion

We next wished to compare the enrichment of antigen-

specific T cells when stimulated in the presence of 15Ra/15

complexes versus sIL-15 or sIL-2. CMV-CTLs from six

seropositive donors were expanded in vitro in parallel

co-cultures with A2 AAPC15Ra/15 with A2 AAPC

Table 1. Summary of in-vitro analysis of T cells cultured under different cytokine conditions

Culture condition

Fold expansion

Tet1 CD81

Fold expansion

Tet[1] CD62L[1] CD81

IFN-g1CD8[106]

NLV % in vitro cytotoxicity

nM 0.1pM E : T 5 1 : 1 E : T 5 1 : 10

A2-AAPC1 IL-2 200–600 0 1–2 0 12–21 0

A2-AAPC1 IL-15 300–1300 3–5 2–4 < 1–2 15–23 0

A2-AAPC1 IL-21 IL-15 250–750 0 1–3 < 1 11–19 0

A2-AAPC1 IL-71 IL-4 330–675 7–11 1–4 1–2 17 221 3

A2-AAPCIL-15Ra1 IL-2 25–100 0 < 1–2 0 8–14 0

A2-AAPCIL-15Ra1 IL-15 100–300 7–10 1–4 1–2 13–24 3–5

A2-AAPCIL-15Ra/IL-15 1200–2300 600–1000 10–16 7–12 52–73 12–20

A2-AAPC 1 Baf-3IL-15Ra/IL-15 1100–1600 550–700 10–14 7–10 40–60 16–25

A2-AAPC 5 A2-artificial antigen-presenting cells; IFN 5 interferon; IL 5 interleukin.
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supplemented with sIL-2 or sIL-15. As shown in a repre-

sentative example in Figs 4a and 1a, in the first 7 days after

culture initiation we observed a lower proportion of Tet1 T

cells within A2-AAPC15Ra/15-stimulated T cells (5�8%)

compared to sIL-15 or sIL-2 supplemented A2-AAPC T

cell cultures (21 and 16%, respectively, Fig. 1a). However,

after the initial week, A2-AAPC15Ra/15 sensitized T cells

demonstrated robust enrichment of NLV epitope-specific

Tet1 T cells from 5�8 to 92% at 28 days, thus achieving the

highest enrichment within all conditions. This enhanced

enrichment of Tet1 CMV-CTLs with A2-AAPC15Ra/15 was

confirmed in triplicate analyses of CTLs from each donor

(P < 0�01). In T cell proliferation assays measuring CFSE

dilution, Tet1 T cells within T cells stimulated with

A2-AAPC15Ra/15 or with A2-AAPC 1 Baf-315Ra/15 demon-

strated a higher proliferative rate compared to sIL-15, sIL-7

or sIL-2 supplemented T cells. A higher proliferation of

TetNeg T cells was also observed within A2-AAPC 1 Baf-

315Ra/15 and IL-71 IL-4-stimulated T cells. However, for

A2-AAPC1 Baf-315Ra/15, the proliferation of Tet1 T cells

remained higher than the TetNeg T cells (Fig. 4c). The

delayed enrichment of Tet1 T cells with A2-AAPC15Ra/15

could therefore be attributed to early non-specific

expansion of T cells mediated by the 15Ra/15 complexes.

Expansion of non-specific T cells within sIL-71 sIL-4-

stimulated T cells would also explain the lower

enrichment of Tet1 T cells compared to IL-15-stimulated T

cells.

Soluble and membrane-bound 15Ra/15 complexes are
equally efficient in stimulating high proportions of
antigen-specific T cell expansion

Previous work has demonstrated that 15Ra/15 complexes,

either expressed on cells or secreted, can engage responsive
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Fig. 3. Interleukin (IL)-15 detected in the supernatants of A2-

artificial antigen-presenting cells (AAPCs)15Ra/15, Baf-315Ra/15 and

A2-AAPCIL-15 Ra is bound predominantly to IL-15Ra. Concentrated

supernatant samples were analysed by Western blot under non-

reducing non-heat-denaturing [no dithiothreitol (DTT), 100’ at

room temperature]; reducing, heat-denaturing conditions (50 m M

DTT, 10’ at 95�C or 98�C); non-reducing, heat-denaturing

conditions (no DTT, 10’ at 95�C). (a) Representative Western blots

of Baf-315Ra/15 supernatants are shown. Baf-315Ra/15 cells were first

incubated in serum-free RPMI for 48 h, then 20 ml of concentrated

supernatant was subjected to 12�5% sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) under: (i) non-

reducing, non-heat-denaturing conditions; (ii), reducing, heat-

denaturing; and (iii), non-reducing, heat-denaturing conditions.

15Ra/15 complex and IL-15Ra were detected using antibody against

IL-15Ra (left panels) and against IL-15 (right panels). (b) Baf-315Ra/15

cells were incubated in serum-free RPMI for 24 h, filtered and

concentrated. Serum free (RPMI-1640; Life Technologies) cell

supernatants were concentrated 14–20-fold using 3 kDa filtration units

(Millipore Corporation). One-ml fractions of the supernatants were

obtained a classic fast protein liquid chromatography (FPLC) system.

Recombinant human soluble IL-15 (10 ng/ml) (R&D Systems) in RPMI

was prepared in parallel. Conditioned media (Baf-315Ra/15 supernatants

and sIL-15 10 ng/ml) was run through the FPLC system using bovine

serum albumin (BSA) [molecular weight (MW) 66 kDa] and lysozyme

(MW 14 kDa) as MW markers. IL-15 was detected in each fraction by

enzyme-linked immunosorbent assay (ELISA). FPLC fractions (volumes

8–30 ml, ranging from retention volumes below BSA and above lysozyme)

were analysed for IL-15. As shown, all IL-15 activity in Baf-315Ra/

15supernatants was detected in fractions containing molecules greater than

66 kDa MW (BSA). Medium containing recombinant human sIL-15 was

detected in fractions comparable to MW of lysozyme (14 kDa). (c)

Concentrated supernatants from A2-AAPC15Ra/15and A2-AAPCIL-15Ra or

sIL-15 (10 ng/ml)-loaded A2-AAPC were run in parallel through the

FPLC system using BSA and lysozyme as MW markers, and fractions

analysed for IL-15 by ELISA. In both A2-AAPC15Ra/15and sIL-15-loaded

A2-AAPCIL-15Ra, IL-15 was detected exclusively in the high MW

fractions> 66 kDa (BSA). In contrast, IL-15 detected in sIL-15-loaded

A2-AAPC was exclusively in the low MW fractions� 16 kDa, similar to

the peak for recombinant human IL-15.
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Fig. 4. Artificial antigen-presenting cells (AAPCs) co-expressing interleukin (IL)215Ra and IL-15 support continuous enrichment of antigen-

specific CD81 T cells during prolonged in-vitro expansion. T cells from human leucocyte antigen (HLA) A 02:011 and cytomegalovirus (CMV)-

seropositive donors were sensitized in parallel using (a) A2-AAPC15Ra/15and A2-AAPC1 Baf-315Ra/15with no exogenously supplemented

cytokines. Tet1 T cells were quantitated by fluorescence activated cell sorter (FACS) analysis at 7, 21 and 28 days after incubation with anti-CD3,

anti-CD8 and A2-NLV tetrameric complexes at 4�C for 20 min. (b) The mean total yield of Tet1 T cells calculated after FACS analysis is plotted

for each time-point (error bars 5 standard error of the mean). For cultures sensitized with either A2-AAPC15Ra/15 or A2-AAPC1 Baf-315Ra/IL-15,

the yield of Tet1 T cells was 5–6 3 107 compared to 1�8–2�3 3 107 for T cells sensitized with A2-AAPC or A2-AAPCIL-15Ra and supplemented

with soluble IL (sIL)215 (P < 0�01). (c) T cells stimulated for 14 days with A2-AAPC15Ra/15, A2-AAPC1 Baf-315Ra/IL-15, sIL-2, sIL-15 or sIL-

7 1 sIL-4-loaded A2-AAPC were labelled with carboxyfluorescein succinimidyl ester (CFSE), and then further stimulated for 5 days in the same

condition: i.e. with A2-AAPC15Ra/15, A2-AAPC1 Baf-315Ra/IL-15 or sIL-2, sIL-15 or sIL-7 1 sIL-4-loaded A2-AAPC. sIL-2-loaded A2-AAPC T cells

stimulated with CD3/CD28 beads (1 : 1) were used as a positive control. T cells in each condition were then stained with CD3 fluorescein

isothiocyanate (FITC), CD8 phycoerythrin (PE) and A2-NLVPMVATV (NLV) antigen-presenting cell (APC) tetrameric complexes and analysed

by FACS. CFSE dilution was analysed within A2-NLV Tet1 T cells as well as TetNeg CD81 T cells to compare the proliferative potential of

antigen-specific and non-specific CD81 T cells in each condition. (d) T cells from three HLA A21 donors were co-cultured in six Transwell

plates containing a 3-mm permeable membrane with (i) A2-AAPC supplemented with either sIL-2 or sIL-15 or Baf315Ra/15 or A2-AAPC15Ra/15

separated from T cell co-cultures by the permeable membrane and (ii) A2-AAPC15Ra/15co-cultured with T cells in direct contact. The proportion

of antigen-specific T cells in each culture condition were quantitated at 7, 14, 21 and 28 days by tetramer analysis and the total yield of

tetramer1 T cells, calculated based on the proportion within the total CD31 T cells is shown.
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CD81 T cells [18,31]. Thus far, we could demonstrate

secretion of significant quantities of IL-15, existing pre-

dominantly as a stable 15Ra/15 complex, in cell super-

natants of A2-AAPC15Ra/15 and Baf-315Ra/15. We next

examined whether 15Ra/15 complexes presented on

neighbouring non-APC cells or soluble/secreted com-

plexes could mediate the same effects as APC-expressed

15Ra/15. We established parallel T cell co-cultures with

A2-AAPC in Transwell culture plates where the supple-

mented cytokines were separated from the T cell co-

cultures by a 3 lm permeable membrane that would

permit the diffusion of soluble cytokines (sIL-15, sIL-2)

and secreted 15Ra/15 complexes from Baf-315Ra/15 or

A2-AAPC15Ra/15, but would not enable cellular contact

with the membrane-bound 15Ra/15 complexes. Within

T cells stimulated by A2-AAPCs in the presence of solu-

ble 15Ra/15 permeating through the Transwell mem-

brane, we observed a significantly higher enrichment of

Tet1 T cells compared to sIL-2 or sIL-15 supplemented

T cells (P < 0�01). These yields were similar to the

overall yields of Tet1 T cells obtained with CMV-CTLs

generated by direct co-culture with A2-AAPC15Ra/15

(Fig. 4d).

15Ra/15 stimulation supports the expansion of
central memory phenotype antigen-specific T cells

The above data demonstrated clearly that 15Ra/15 sup-

ported superior enrichment of antigen-specific T cells. For

adoptive immunotherapy applications, we asked if 15Ra/

15 could potentiate the enrichment antigen-specific T cells

bearing a central memory phenotype that would have lon-

ger in-vivo persistence after infusion. We examined the

expression of CD62L and CCR7 within A2-NLV Tet1 T

cells expanded in vitro under different cytokine conditions.

As with sIL-2, within the first 14 days all sIL-15 CMV-

CTLs also had minimally detectable proportions of

CD62L1 and CCR71 T cells (Fig. 5a), but because of the

overall T cell stimulatory effects of sIL-15, these residual

CD62L1/CCR71 Tet1 T cells (TCM) expanded three- to

fivefold between 14 and 21 days in culture (Table 1), at

which time no Tet1 TCM cells could be detected in sIL-2

CTLs. In contrast, A2-AAPC15Ra/15 stimulated CMV-CTLs

demonstrated a sustained expansion of Tet1 TCM through

28 days (Fig. 5a), resulting in a 600–1000 fold expansion

(Table 1), and a total yield at 21 days of 2–3 3 106 and

approximately 5 3 106 by 28 days. These yields of Tet1
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Fig. 5. 15Ra/15 stimulation endorses the expansion of central memory phenotype antigen-specific T cells. T cell memory phenotype was

evaluated after 7, 14, 21 and 28 days in culture for each culture condition using CCR7 and CD62L as markers of central memory phenotype

(TCM). T cells sensitized for 21–28 days under the different culture conditions were labelled with immunofluorescent antibodies: anti-CD3

phycoerythrin (PE), anti-CD8 peridinin chlorophyll (PerCP), anti-CD62L fluorescein isothiocyanate (FITC) and anti-CCR7 PE-cyanin-7 (Cy7)

and antigen-presenting cell (APC)-labelled A2-NLVPMVATV (NLV) tetrameric complexes for 20 min at 4�C and analysed by fluorescence

activated cell sorter (FACS). CD81 Tet1 T cells were gated to determine the proportion of antigen-specific T cells expressing CD62L and CCR7.

T cells labelled with HLA B 07:02-TPR tetramers and unstained tubes served as controls for CD62L and CCR7. The total yield of CD62L1/

CCR71 Tet1 T cells was calculated based on the proportion of each population within CD31 T cells. (a) CD62L1/CCR71 Tet1 T cells at 7, 14,

21 and 28 days is shown for each donor in each culture condition (error bars 5 standard error of the mean). (b) A representative example

demonstrating the proportion of CD62L1/CD45RA– Tet1 T cells detected at 21 days (left panel) and 28 days (right panel) of culture initiation

for each culture condition is shown.
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TCM were significantly higher than in sIL-15 CTLs, which

generated only 0�5–1 3 106 at 21 days and 1�5 3 106 Tet1

TCM at 28 days (P < 0�01). In a representative example

shown (Fig. 5b), 15Ra/15-stimulated T cells (A2-

AAPC15Ra/15 or A2-AAPC 1 Baf-315Ra/15) maintained a

sizable proportion of Tet1 CD62L1 T cells even at later

time-points between 21 and 28 days after initial stimula-

tion, ranging from 16 to 36%, suggesting a role for 15Ra/

15 complexes in sustaining TCM expansion during continu-

ous antigenic stimulation. Of note, we also observed

expansion of CD62L1 and CCR71 Tet1 TCM cells within

with sIL-7 1 sIL-4 CTLs, which was intermediate between

sIL-15- and 15Ra/15-stimulated T cells (Fig. 5a). The Tet1

T cells expanded in the presence of sIL-71 sIL-4 demon-

strated a higher proportion of CD62L1 at day 21 that was

comparable to 15Ra/15 and much higher than sIL-15 and

sIL-2 stimulated T cells. However, by day 28, the highest

proportion of CD62L1 Tet1 TCM cells were elicited within

15Ra/15 stimulated T cells, as shown in a representative

example (Fig. 5b).

15Ra/15 complexes support the generation of high-
avidity antigen-specific T cells

We next evaluated the effect of 15 Ra/15 complexes on the

functional capacity of CMV-CTLs in comparison to sIL-15.

T cell cytokine secretion was examined initially 21 days

after stimulation in response to secondary stimulation with

10 nM NLV-loaded autologous APCs. As shown in one rep-

resentative donor (Fig. 6a), 15Ra/15-stimulated T cells

(A2-AAPC15Ra/15 and Baf-315Ra/15) elicited a markedly

higher proportion of IFN-g1 CD81 T cells (43�4 and

32�4%) compared to sIL-15-stimulated T cells with either

A2-AAPC or A2-AAPC15Ra (19�2 and 22�6%). sIL-2-

supplemented CMV-CTLs elicited lower proportions of

NLV-responsive IFN-g1 CD81 T cells with either A2-

AAPC or A2-AAPC15Ra stimulation (9�7 and 3�7%), which

could be augmented with additional sIL-15, but the yields

were still lower than those achieved within sIL-15 alone

supplemented T cells (15�5 versus 19�2%) (Fig. 6a). Overall,

15Ra/15-stimulated T cells (A2-AAPC15Ra/15 and Baf-

315Ra/15) produced the highest yield of NLV-responsive

IFN-g1 CD81 T cell numbers, generating a median of

1 3 107 and 8�3 3 106 epitope-specific T cells, respectively,

compared to a median of 1–3 3 106 IFN-g1 CD81 T cells

in other conditions (P < 0�001) (Fig. 6b and Table 1). T

cells stimulated with soluble, secreted 15Ra/15 complexes

delivered via a permeable membrane also demonstrated

similarly high proportions of IFN-g1 CD81 T cells in

response to NLV peptide (Fig. 6c) to those observed in T

cells stimulated by direct co-culture with A2-AAPC15Ra/15

and Baf-315Ra/15.

To delineate further the most functionally avid T cells,

we examined T cell cytokine secretion in response to

titrated doses of the NLV peptide (10 nM, 10 pM, 0�1 pM).

In these studies, significant differences in T cell responses

could be discerned only at peptide concentrations of

� 10213 M (0�1 pM) within T cells expanded under differ-

ent cytokine conditions (Fig. 6d). At higher peptide con-

centrations, there were minimal differences in T cell

responses in any of the cytokine conditions. In a represen-

tative example (Fig. 6e), at 10213 M peptide, no responses

were elicited in sIL-2-supplemented T cells, while 15Ra/15-

stimulated T cells (A2-AAPC15Ra/15 or A2-AAPC 1 Baf-

315Ra/15) elicited robust IFN-g 1 CD81 T cell responses. At

10213 M peptide, diminishing responses were elicited in T

cells supplemented with sIL-15 as well as sIL-7 1 sIL-4,

with 10 and 14% IFN-g1 CD81 T cells compared to 23

and 32% enumerated in response to 10212 M peptide in

sIL-15 CTLs (P < 0�05) (Fig. 6d,e).

15Ra/15-stimulated antigen-specific T cells lyse
targets efficiently at lower E : T ratios

We then evaluated the T cell cytotoxic activity of CMV-

CTLs as another differentiating parameter of functional

activity. Lysis of autologous targets loaded with titrated

doses of the NLV peptide and at graded E : T ratios was

examined. At concentrations � 0�1 nM, all IL-15-

supplemented CTLs lysed equally the peptide-loaded auto-

logous targets without exhibiting any explicit cytotoxicity

hierarchy. T cells supplemented with sIL-7 1 sIL-4 also

demonstrated similar cytotoxic activity at graded peptide

concentrations. In comparison, sIL-2-supplemented CTLs

exhibited inferior cytotoxicity at all peptide concentrations

(P < 0�05) (Fig. 7a). Peptide concentrations lower than

0�1 nM did not elicit CTL toxicity in any condition.

We then evaluated the cytotoxic activity of CMV-CTLs

at graded E : T ratios. This permitted the recognition of dif-

ferential cytotoxic activity for 15Ra/15-stimulated CMV-

CTLs compared to other conditions. At E : T ratios lower

than 10 : 1, only 15Ra/15-stimulated CMV-CTLs demon-

strated sufficient cytotoxic activity, which was diminished

markedly at this E : T ratio in all other cytokine conditions

(P < 0�01) (Fig. 7b). A higher proportion of granzyme B-

generating CD81 T cells was also observed within 15Ra/

15-stimulated CMV-CTLs in comparison to sIL-2, sIL-15

or sIL-7 1 sIL-4-supplemented T cells (P < 0�05) (Fig. 7c).

Taken together, this analysis permitted a functional distinc-

tion between CTLs stimulated in different cytokine condi-

tions, and 15Ra/15 stimulation emerged as a means to

generate high-avidity CD81 antigen-specific T cells for

adoptive immunotherapy applications.

Discussion

Adoptive therapy with antigen-specific transplant donor-

derived T cells is now established as a viable and effective

approach for the treatment of life-threatening viral infec-

tions complicating allogeneic haematopoietic cell or organ
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transplants [32–35]. Induction of cancer remission has also

been achieved in a proportion of chemotherapy refractory

patients after infusion of in-vitro expanded autologous

tumour-infiltrating lymphocytes [36] as well as tumour-

antigen-specific T cells [37–39]. However, sustained

responses have been achieved only in patients with detecta-

ble in-vivo expansion of the adoptively transferred T cells

[40]. Since then, studies in animal tumour models have

shown that infusion of highly differentiated tumour-

antigen-specific T cells are less effective in eradicating

tumours compared to naive and early effector T cells [41].

These observations have placed a major emphasis on the

development of methodologies that not only enhance the

yields of antigen-specific T cells for adoptive therapy, but

also the selective expansion of less differentiated long-lived

memory T cells capable of inducing durable responses

[42]. Techniques for augmenting the efficacy of adoptively

transferred T cells are equally desirable to attain higher

rates of remission.

IL-15 has been shown to play a central role in the stimu-

lation and maintenance of antigen-specific CD81 memory

T cells when presented in complex with its high-affinity

receptor IL-15Ra to responding T cells [10,26,43–45], and

therefore represents a potentially valuable immunomodu-

lating agent for augmenting the efficacy of adoptive immu-

notherapy. IL-15 signalling through the PI3K/AKT

pathway has been shown to even revive the exhausted pro-

liferative function of effector memory phenotype T cells

specific for infectious agents or tumours in a T cell receptor

(TCR)-independent manner [46]. In a study evaluating

acute graft rejection in renal transplant recipients, IL-15

was shown to induce proliferation of CD81 memory T cells

that was independent of B7-CD28 co-stimulation [47].

These data suggest that in tumours that express HLA or

tumour antigens poorly, or lack expression of co-

stimulatory molecules, IL-15 would be able to endow the

host T cells or adoptively transferred T cells with the neces-

sary signals to proliferate and lyse tumour cell targets. As

the expression of IL-15Ra is not optimal in vivo, IL-15

monotherapy would not be as effective without IL-15Ra.

The studies herein define the conditions required for the

stable expression and generation of 15Ra/15 in vitro, and

then compare the effects of soluble IL-15 and other

gamma-chain cytokines with 15Ra/15 in their capacity to

stimulate antigen-specific T cell expansion. We describe a

novel cell-based APC system that can present and secrete

stable 15Ra/15 that has been generated using genetically

modified cells either transduced with IL-15Ra alone or

with both IL-15 and IL-15Ra genes (A2-AAPC15Ra/15 and

Baf-315Ra/15). These studies established that both IL-15 and

IL-15Ra genes are required to be expressed in the same cell

to form stable 15Ra/15 complexes, and that the IL-15 gene

was not expressed when transduced without IL-15Ra. Such

an obligate requirement for binding with the alpha chain

receptor for stabilization and effect has not been describedF
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Fig. 7. 15Ra/15-stimulated antigen-specific T cells efficiently lyse targets at lower effector : target (E : T) ratios. T cell cytotoxic capacity was measured in a

standard 51Cr release assay, performed at 21–28 days after culture initiation using peptide-loaded autologous BLCL as targets. BLCL not loaded with peptide

were usedas control. (a) A fixed E : Tratio of 10 T cells to one target cell was used and the cytotoxic activity of T cells sensitized in all culture conditions was

tested against targets loaded with serial dilutions of the NLVPMVATV (NLV) peptide (10 nM, 1 nM, 0�1nM, 10 pM and 0�1pM at 37�C 3 3 h in serum free

medium). (b) The cytotoxic activity of T cells was evaluated at decreasing E : T ratios against targets loaded with a fixed concentration (10 nM) of peptide.

(c) T cells in all culture conditions were evaluated for expression of intracellular granzyme B upon secondary restimulation with NLV peptide-loaded

autologous peripheral blood mononuclear cells (PBMC) 21–28 days after culture initiation. T cells co-incubated with peptide-loaded autologous PBMC

were labelled with fluorescently labelled anti-CD3, anti-CD8 and anti-CD4, followed by incubation with anti-human granzyme B after cell permeabilization

and analysed by fluorescence activated cell sorter (FACS). The proportion of granzyme B-positive T cells CD81 T cells was evaluated. T cells sensitized in the

presence of 15Ra/15 complexes generated significantly higher proportions of granzyme B1 T cells compared to sensitization in the presence of soluble IL-2

(P 5 0�05).
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for other gamma chain cytokines, including IL-7 or IL-2.

We examined the effects of 15Ra/15 complexes generated

by these cells on the in-vitro enrichment, memory pheno-

type and functional capacity of antigen-specific T cells. The

data demonstrate that 15Ra/15 complexes can augment

not only the yields of antigen-specific T cells, but also spe-

cifically enrich TCM phenotype cells that have the potential

to induce durable remissions after adoptive transfer.

Importantly, cells generating 15Ra/15 complexes sup-

ported the steady expansion of antigen-specific CD62L1

Tet1 TCM cells, which was not observed in sIL-15-

supplemented cultures. Furthermore, in cultures where

15Ra/15-expressing cells were separated from T cells by

semipermeable membranes, the secreted and soluble 15Ra/

15, potentially presenting IL-15 in a cis configuration, per-

meated the membrane and stimulated responding CD81 T

cells efficiently without cell-to-cell contact. In fact, 15Ra/

15 complexes can not only signal to responding neighbour-

ing lymphocytes when bound to cell membranes but also,

as soluble complexes, they can become internalized into

responding lymphocytes and lead to sustained stimulation

[24,30,48]. However, in the elegant study by Mortier et al.

[30], cell-to-cell contact was shown to be essential for the

internalization of 15Ra/15 released upon cleavage from the

cell surface to stimulate responding CD8 and NK cells

effectively. This study also demonstrated stable surface

expression of 15Ra/15 using IL-15Ra-expressing cells

loaded with sIL-15, which was not observed in our study

using sIL-15-loaded A2-AAPC15Ra. In our system, we can-

not exclude the possibility that the soluble 15Ra/15 com-

plexes could have bound to AAPCs not expressing either

IL-15Ra or IL-15, or to activated T cells themselves, and

thereby cross-stimulate adjacent T cells through direct cell

contact [45]. In order to develop this agent for clinical use,

these issues are being explored.

Importantly, the data herein illustrate that 15Ra/15 not

only stimulate the expansion of TCM phenotype CTLs, but

the T cells generated exhibit high functional activity, as evi-

denced by high IFN-g and granzyme B secretion, and

response to minute concentrations of NLV [49] (Fig. 5 and

Table 1). Such high-affinity pMHC/TCR interactions can

override the requirement for CD8 engagement for cyto-

toxic activity [50], suggesting that, by promoting the

expansion of high-avidity T cells, 15Ra/15 could be an

invaluable reagent for the expansion of antigen-specific T

cells responding to less immunogenic antigens such as self-

tumour antigens. Indeed, 15Ra/15 complexes expressed on

langerhans cells have been shown to overcome tolerance

and stimulate the expansion of Wilms’ tumour (WT)21-

specific T cells when electroporated with WT-1 mRNA

[51]. Such 15Ra/15 complexes could also be tremendously

valuable for the expansion of T cells responding to subdo-

minant epitopes that presumably have lower TCR avidities.

Furthermore, infusion of these complexes may also

enhance the function of tumour-resident, low-avidity T

cells. In a recent study using the transgenic adenocarci-

noma of the mouse prostate (TRAMP)-C2 murine tumour

model, treatment with agonistic anti-CD40 in combination

with sIL-15 resulted in tumour regressions in 70–100% of

treated animals in comparison to 0–30% treated with anti-

body alone [52]. Here, treatment with anti-CD40 aug-

mented the IL-15 Ra expression on host DC resulting in

the formation of 15Ra/15 complexes upon exposure to

sIL-15, which then supported the expansion and cytotoxic

activity of host tumour-specific CD81 T cells and enhanced

anti-tumour activity. Synergistic anti-tumour activity has

also been demonstrated using a combination of IL-15 and

immune check-point inhibitors [53,54].

In conclusion, 15Ra/15 complexes are required for opti-

mal IL-15 activity. These 15Ra/15 complexes represent a

potent biological reagent for in-vitro expansion of highly

functional long-lived antigen- specific TCM suitable for

adoptive immunotherapy and may also prove useful as

therapeutic agents for augmentation of anti-tumour activ-

ity when used in conjunction with other immunotherapies.
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Additional Supporting information may be found in the

online version of this article at the publisher’s web-site:

Fig. S1. Expression of transduced IL-15Ra and IL-15

genes. A2-artificial antigen-presenting cells (AAPCs)

transduced to express IL-15Ra alone and A2-AAPC or

Baf-3 cells transduced to co-express IL-15Ra and IL-15,

were evaluated for the protein level expression of the

transduced genes by FACS. As shown (L –R) high

expression of the transduced genes was observed in all

cell lines.
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