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Summary

Interleukin (IL)-12 family cytokines play critical roles in autoimmune

diseases. Our previous study has shown that IL-23p19 and Epstein–Barr

virus-induced 3 (Ebi3) form a new IL-12 family heterodimer, IL-23p19/Ebi3,

termed IL-39, and knock-down of p19 or Ebi3 reduced diseases by

transferred GL71 B cells in lupus-prone mice. In the present study, we

explore further the possible effect of IL-39 on murine lupus. We found that

IL-39 in vitro and in vivo induces differentiation and/or expansion of

neutrophils. GL71 B cells up-regulated neutrophils by secreting IL-39,

whereas IL-39-deficient GL71 B cells lost the capacity to up-regulate

neutrophils in lupus-prone mice and homozygous CD19cre (CD19-deficient)

mice. Finally, we found that IL-39-induced neutrophils had a positive

feedback on IL-39 expression in activated B cells by secreting B cell

activation factor (BAFF). Taken together, our results suggest that IL-39

induces differentiation and/or expansion of neutrophils in lupus-prone

mice.
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Introduction

Systemic lupus erythematosus (SLE) has been considered

widely as a prototype of systemic autoimmune disease with

a wide spectrum of clinical manifestations [1]. There are

numerous murine models, including Murphy Roths large

lymphoproliferation (MRL/lpr) mice, that have long been

employed in an effort to understand the cellular and

genetic requirements for SLE induction [2,3]. Various

mechanisms have been suggested as drivers of SLE. These

include dysregulation of the innate immune system, over-

production of inflammatory cytokines, including a critical

B cell activation factor (BAFF), and autoantibody [4]. It

has been proposed that these mechanisms may be linked,

although this needs further detailed investigation.

The interleukin (IL)-12 family is currently comprised of

five members [5,6] that regulate both pro- and anti-

inflammatory responses, in part, by influencing the

developmental fates of naive T and B cell lymphocytes

[6,7]. IL-12 and IL-23 play crucial roles in the pathogenesis

of autoimmune diseases by inducing the differentiation of

T helper type 1 (Th1) and Th17 lymphocytes, while IL-27

and IL-35 suppress inflammatory responses and limit tissue

injury by promoting the expansion of regulatory B and T

cell subsets [8,9]. An increased level of IL-12, IL-23, IL-27

and IL-35 has been reported in the plasma of SLE patients

compared with healthy controls [10–14]. Currently, the

role of IL-12 family members in pathogenesis of SLE is

not well understood. As such, understanding the
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immunobiology of IL-12 family cytokines would undoubt-

edly provide valuable knowledge that can be exploited

therapeutically.

IL-12, IL-23, IL-27 and IL-35 are comprised of hetero-

dimers p35/p40, p19/p40, p28/Epstein–Barr virus-induced

3 (Ebi3) and p35/Ebi3, respectively. As such, the IL-12 fam-

ily cytokine consists of one a subunit (p19, p28, p35) and

one b chain (p40, Ebi3) [15,16]. Based on the pairing rules

in this family, we and other researchers have proposed that

p19/Ebi3 pairing may be possible [5,15–19]. We termed IL-

23p19/Ebi3 heterodimer as IL-39 and found that knock-

down of p19 or Ebi3 reduced diseases by transferred GL71

B cells in lupus-prone mice [6].

In the present study, we explore further the possible

effect of IL-39 on murine lupus. We found that IL-39,

secreted by activated B cells, induces differentiation and/or

expansion of neutrophils in lupus-prone mice. In addition,

IL-39-induced neutrophils had a positive feedback on IL-

39 expression in activated B cells by secreting BAFF. Taken

together, our results suggest that IL-39 induces differentia-

tion and/or expansion of neutrophils in lupus-prone mice.

Materials and methods

Mice

Seven-to-nine-week-old C57BL/6, Balb/c (Huafukang

Corp., Beijing, China), 8-week-old or 6-month-old female

lupus-prone MRL/MpJ/lpr/lpr (MRL/lpr) mice, age-

matched MRL/MpJ/1/1 (MRL/1) and homozygous

CD19cre (Nanjing Biomedical Research Institute of Nanjing

University, Nanjing, China) were bred in our animal facili-

ties under specific pathogen-free conditions. Care, use and

treatment of mice in this study were in strict agreement

with international guidelines for the care and use of labora-

tory animals. This study was approved by the Animal

Ethics Committee of the Beijing Institute of Basic Medical

Sciences.

Treatment of C57BL/6 mice with IL-39

Production and characterization of p19/Ebi3 were per-

formed as described previously [6]. The expression con-

structs pEZ-Lv122/mouse p19 and pReceiver-Lv18/mouse

Ebi3 (GeneCopoeia, Rockville, MD, USA) were trans-

duced/co-transduced into Chinese hamster ovary (CHO)

cells and stable transfectants were identified by drug selec-

tion (10 lg/ml puromycin and neomycin; Invitrogen,

Carlsbad, CA, USA). The recombinant protein(s) secreted

by the CHO cells was purified sequentially by the Ni-NTA

purification system (Invitrogen), size-exclusion centricon

filtration and two consecutive cycles of fast protein liquid

chromatography (FPLC) gel filtration chromatography.

Four hundred ng/mouse p19, Ebi3 and IL-39 were injected

intravenously (i.v.) into 8-week-old C57BL/6 mice. On day

7 after injection, splenocytes were analysed by fluorescence

activated cell sorter (FACS).

Cell sorting

B cells from the spleen were sorted using B220 microbeads.

B cells from lupus-prone mice were stimulated for 3 days

with 1 mg/ml lipopolysaccharide (LPS) and was performed

by gating on GL7 and B220 on the surface of activated B

cells and used to sort GL71B2201 cells directly by multi-

colour flow cytometry. In some experiments, neutrophils

from 8-week-old C57BL/6 mice were sorted on the basis of

CD11b and Gr-1 by FACS. All flow cytometry data were

acquired with FACSCanto, FACSCantoI or FACSAria (BD

Biosciences, San Jose, CA, USA). Live lymphocyte-sized

cells for T and B cell analysis on all live cells, including large

granule cells for neutrophil analysis, were gated on the basis

of forward- and side-scatter, and analysed using FlowJo

software (Tree Star, Ashland, OR, USA).

Control, p19-, Ebi3-, p28-, p35- and p40-specific
shRNA-infected GL71B2201 B cells were transferred
into lupus-prone mice

GL71B2201 cells were described as above and infected

with p19, p28, p35, p40, Ebi3 (Santa Cruz Biotech, Santa

Cruz, CA, USA; sc-60028-v, sc-72185-v, sc-39639-v, sc-

39641-v, sc-39411-v, respectively)-specific shRNA; 5 3 106

control, p19, p28, p35, p40, or Ebi3 -specific shRNA-

transfected GL71 B2201 B cells per mouse were injected

i.v. into 8-week-old female lupus-prone MRL/lpr or

CD19cre mice.

In-vitro cell culture

Splenocytes were collected from 8-week-old female C57BL/

6 mice. Red blood cells were lysed by adding 1 3 lysis

buffer (BD# 349202) into splenocytes suspension. Cells

were washed and cultured for 3 days in RPMI-1640

medium containing 10% fetal bovine serum (FBS), 2 mM

glutamine, penicillin (100 IU/ml), streptomycin (100 mg/

ml) and 50 mM 2-mercapthoethanol with 50 ng/ml p19,

Ebi3 and IL-39. Primary B cells from 8-week-old female

C57BL/6 mice were sorted by B220 microbeads and stimu-

lated for 3 days in RPMI-1640 medium containing 10%

FBS, 2mM glutamine, penicillin (100 IU/ml), streptomycin

(100 mg/ml) and 50 mM 2-mercapthoethanol with 50 ng/

ml BAFF (PeproTech, Rocky Hill, NJ, USA). In some

experiments different doses, such as 1, 5 and 10 lg/ml Bcl-

6 inhibitor (79-6, cat no. 197345-50MG; Calbiochem,

EMD Millipore, Billerica, MA, USAUSA), were added into

the culture of BAFF-stimulated B cells.

Cytometric analysis and intracellular cytokine staining

All cell experiments were strictly prepared on ice, unless

stated otherwise in other specific procedures. Cells

(1 3 106 cells/sample) were washed with FACS staining
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buffer [phosphate-buffered saline (PBS), 2% fetal bovine

serum (FBS) or 1% BSA, 0.1% sodium azide]. All samples

were incubated with anti-Fc receptor antibody (clone

2.4G2; BD Biosciences) prior to incubation with other anti-

bodies diluted in FACS buffer supplemented with 2% anti-

Fc receptor antibody. For intracellular cytokine staining, 50

ng/ml phorbol myristate acetate (PMA) and 1 lg/ml iono-

mycin (Sigma-Aldrich, St Louis, MO, USA) were added

and then 10 lg/ml brefeldin A and 2 lM monensin were

added 3 h later. After 3 h, cells were collected and fixed for

50 min with 1 ml fixation buffer (IC fixation and perme-

abilization kit; eBioscience, San Diego, CA, USA). After

washing, the fixed cells were stained. The samples were fil-

tered immediately before analysis or cell sorting to remove

any clumps. The following antibodies were used:

fluorescence-conjugated anti-mouse p19 (eBioscience

Corp., cat. no.50-7023-82), Ebi3 (R&D systems, cat. no.

IC18341C), IL-12Rb1 (BD Pharmingen, San Diego, CA,

USA; 551974), IL-12Rb2 (Miltenyi Biotech, San Diego, CA,

USA; 130-105-018), IL-23R (BD Pharmingen; 551974), IL-

27Ra (R&D Systems, Minneapolis, MA, USA; 263503),

gp130 (eBioscience;17-1302), B220 (eBioscience; RA3-

6B2), CD19 (eBioscience; MB19-1), GL7 (eBioscience; GL-

7), CD138 (eBioscience; DL-101), IL-10 (eBioscience;

JES5-16E3), CD3 (eBioscience; 145-2C11), CD4 (eBio-

science; GK1.5), CD11b (eBioscience; M1/70), CD11c

(eBioscience; N418), IL-4 (eBioscience; 11B11), IL-17A

(eBioscience; 17F3), forkhead box protein 3 (FoxP3) (eBio-

science; NRRF-30), interferon (IFN)-g (eBioscience;

XMG1.2), Gr-1 (eBioscience; RB6-8C5), BAFF (Pierce,

MA, USA; 125955), phosphor signal transducer and activa-

tor of transcription-1 (pSTAT-1) (Santa Cruz Biotech;

sc-8394) and pSTAT-3 (Santa Cruz Biotech; sc-8059) anti-

bodies. Data collection and analyses were performed on a

FACSCalibur flow cytometer using CellQuest software.

Differentiation of neutrophils was induced in vitro

ScaI1 bone marrow (BM) cells were selected using ScaI

MultiSort microbeads and midi-magnetic-activated cell

sorting (MACS) separation columns (Miltenyi Biotec,

Auburn, CA, USA). ScaI1 cells were lineage-depleted by

labelling with fluorescein isothiocyanate (FITC)-conju-

gated anti-CD4, anti-CD8, anti-CD11b, anti-Gr-1 and

anti-B220 (BD PharMingen), binding to anti-FITC

microbeads (Miltenyi Biotec) and passing them through

miniMACS separation columns (purity, 95 6 2%

Lin–ScaI1). Lin–ScaI1 cells were grown as suspension cul-

tures for 5 days in Teflon jars (378C, CO2) with Iscove’s

modified Dulbecco’s medium (IMDM) (Life Technologies,

Grand Island, NY, USA), supplemented with 10% FBS

(HyClone Laboratories, Logan, UT, USA), 1 ng/ml granu-

locyte–macrophage colony-stimulating factor (GM-CSF)

(Peprotech) and 50 ng/ml p19, Ebi3 or IL-39.

Statistics

Statistics were analysed using GraphPad Prism version 5.0

(GraphPad Software Inc., San Diego, CA, USA). The data

were shown as mean 6 standard error of the mean

(s.e.m.). Student’s t-test was employed to determine signifi-

cance between two groups (paired or unpaired) and one-

way analysis of variance (ANOVA) analysis was used to deter-

mine significance among several groups. Differences were

considered statistically significant when P < 0�05.

Results

IL-39-expanded CD11b1 cells

Our previous study has shown that knock-down of IL-39

subunit p19 or Ebi3 reduced diseases by transferred GL71

B cells in lupus-prone mice [6]. To explore further the pos-

sible role of IL-39 in lupus-prone mice, we first investigated

whether IL-39 might influence the development and/or

expansion of various lymphoid and haematopoietic cell

types. To study the physiological role of IL-39 on various

haematopoietic and lymphoid cell types, we used the puri-

fied IL-39 to treat mouse splenocytes in vitro and in vivo.

Surprisingly, we found that IL-39 could induce the expan-

sion of CD11b1 cells (Fig. 1a,b) but not B cell subpopula-

tions (GL71 B cells, CD1381 plasma cells and IL-101

regulatory B cells) (Fig. 1c–e) or T lymphocyte subsets

[CD41 and CD81 T cells, Th1, Th2, Th17 or regulatory T

cells (Tregs)] (Fig. 1f–j), whereas IL-39 subunit p19 or Ebi3

alone could not affect CD11b1 cells (Fig. 1a,b). These

results suggest that IL-39 mainly expands CD11b1 cells.

IL-39 in vivo- and in vitro-induced differentiation
and/or expansion of neutrophils

CD11b is expressed on the surface of neutrophils, mono-

cytes, macrophages and a subset of B cells, etc. To deter-

mine further which population of cells is affected by IL-39,

we first used a Gr-1 marker to gate neutrophils (Gr-11

CD11b1) from CD11b1 cells. We found that IL-39 up-

regulated Gr-11CD11b1 neutrophils significantly but not

Gr-1–CD11b1 cells in cultured splenocytes (Figs 2a–c and

Supporting information, Fig. S1) and in C57BL/6 mice

(Fig. 2d,e). These results suggest that IL-39 in vivo and in

vitro induces expansion of neutrophils. To test the effect of

IL-39 on the differentiation of neutrophils, we developed

an in-vitro neutrophil differentiation cultured system and

used it to establish that IL-39 can induce the differentiation

of neutrophils (Fig. 2f,g). Together, these results suggest

that IL-39 in vivo and in vitro induces differentiation and/

or expansion of neutrophils.

X. Wang et al.

146 VC 2016 British Society for Immunology, Clinical and Experimental Immunology, 186: 144–156



IL-39 induced neutrophils

VC 2016 British Society for Immunology, Clinical and Experimental Immunology, 186: 144–156 147



IL-39-induced STAT-3 activation in neutrophils

The IL-12 family of cytokines mediate their biological

activities through activation of homodimeric or heterodi-

meric IL-12 cytokine receptor subunits (IL-12Rb1, IL-

12Rb2, IL-23R, gp130 or IL-27Ra) and Janus kinase (JAK/

STAT) signalling pathways [20]. Our previous study has

shown that IL-39 activates STAT-1 and STAT-3, but not

STAT-4 or STAT-5 in B cells via its receptor IL-23R/gp130

[6]. We first established that neutrophils express all IL-12

cytokine receptor subunits, including IL-39 receptor IL-

23R/gp130 (Fig. 3a,b). Next, we examined whether IL-39

could induce STAT-1 and STAT-3 activation. We found

that IL-39 activates STAT-3 but not STAT-1 in neutrophils

(Fig. 3c,d). These results reveal that IL-39 induces STAT-3

activation in neutrophils.

IL-39 deficiency reduced the capacity of GL71 B cells
in up-regulating neutrophils in lupus-prone mice

The results above suggest that IL-39 may affect differentia-

tion and/or expansion of neutrophils to mediate inflamma-

tion in lupus-prone mice. During the past decade,

compelling evidence has emerged that implicates neutro-

phils in the initiation and perpetuation of SLE and also in

the resultant organ damage observed frequently in patients

with this disease [21,22]. Our data also demonstrated that

neutrophils increased in the spleen of lupus-prone mice

(Fig. 4a,b). SLE and its murine model including MRL/lpr

mice are characterized by B cell over-activation [23–29].

Our previous study has shown that GL71 B cells induces

inflammation by secreting IL-39 in lupus-prone mice [6].

Of note, GL7 serves as a marker for germinal centres B cells

and as an activation marker of LPS-stimulated B cells [30].

We isolated and sorted GL71 B cells from lupus-prone

mice and used shRNA to deplete p19, Ebi3, p19, p28 or

p40 (Supporting information, Fig. S2a) in GL71 B cells, as

described previously [6]. Haematoxylin and eosin (H&E)

staining of kidney sections demonstrated that, compared

with untreated MRL/lpr, GL71 B cells promoted inflamma-

tory cells to infiltrate into the kidney and destroyed the

structure of the glomerular region, whereas IL-39-

deficiency reduced GL7 1 B-induced infiltrating inflam-

matory cells in the kidney of lupus-prone MRL/lpr mice

(Supporting information, Fig. S2b). These results suggest

that IL-39 may play an important role in inflammatory

cell infiltration into the kidney in MRL/lpr mice. Of

importance, we found that adoptive transfer of GL71 B

cells enhanced significantly the numbers of neutrophils

in lupus-prone mice (Fig. 4c,d), whereas IL-39 subunit

p19 or Ebi3 deficiency suppressed the effects mediated

by GL71 B cells (Fig. 4c,d). Moreover, compared with

mice that received GL71 B cells depleted of p28, p35 or

p40, mice that received p19- or Ebi3-deficient GL71 B

cells exhibited a phenotype characterized by a greatly

reduced number of neutrophils (Fig. 4c,d). Together, our

results suggest that IL-39 deficiency reduced the capacity

of GL71 B cells in up-regulating neutrophils in lupus-

prone mice.

IL-39-deficient GL71 B cells did not up-regulate
neutrophils in homozygous CD19cre mice

To eliminate the effect of endogenous IL-39-expressing

GL71 B cells on neutrophils regulated by exogenous IL-39-

deficient GL71 B cells, we used GL71 B cell-reduced mice.

Our previous study has shown that GL71 B cells are

reduced significantly in homozygous CD19cre mice

[25,29,31]. Thus, we transferred IL-39-deficient GL71 B

cells into CD19cre mice. We found that compared with

mice that received control GL71 B cells, mice that received

p19- or Ebi3-deficient GL71 B cells exhibited a phenotype

characterized by a greatly reduced number of neutrophils

(Fig. 5a,b). Together, our results suggest that IL-39-

deficient GL71 B cells could not up-regulate neutrophils in

GL71 B cell-reduced mice.

Neutrophils promoted IL-39 expression in activated
B cells by secreting BAFF

Previous studies have shown that neutrophils can express

BAFF, which plays a critical pathogenic role in SLE

[32–34]. Our data here demonstrated that the percentages

and absolute numbers of BAFF-expressing neutrophils

Fig. 1. Interleukin (IL)-39 [IL-23p19/Epstein–Barr virus-induced 3 (Ebi3) expanded CD11b1 cells. (a,b) Splenocytes were separated from 8-

week-old C57BL/6 mice and cultured in vitro for 3 days in the presence of 50 ng/ml Ebi3 and IL-39. All live cells, including large granule cells,

were gated on the basis of forward- and side-scatter and analysed by fluorescence activated cell sorter (FACS). The percentages of CD11c1 and

CD11b1 cells (a) and statistical analysis of the percentage (b) are shown; (c–e) 400 ng/mouse p19, Ebi3 and IL-39 were injected intravenously

(i.v.) into 8-week-old C57BL/6 mice (six mice per group). On day 7 after injection, live lymphocyte-sized cells were gated on the basis of

forward- and side-scatter and analysed by FACS. The percentages of CD138, IL-10 or GL7-expressing B2201 B cells (c,e) and statistical analysis

of the percentage (d) are shown; (f–i) 400 ng/mouse p19 and IL-39 were injected i.v. into 8-week-old C57BL/6 mice (six mice per group). On

day 7 after injection, live lymphocyte-sized cells were gated on the basis of forward- and side-scatter and analysed by FACS. The percentages of

CD31 and CD41 T cells (f) and statistical analysis of the percentage (g), IL-10, forkhead box protein 3 (FoxP3), IL-4, interferon (IFN)-g, IL-

17A-expressing CD41 T cells (i) and statistical analysis of the percentage (h) are shown. (j) Splenocytes were separated from 8-week-old C57BL/6

mice and cultured in vitro for 3 days in the presence of 50 ng/ml Ebi3 or IL-39. Live lymphocyte-sized cells were gated on the basis of forward-

and side-scatter and analysed by FACS. The percentages of IL-10, IFN-g, IL-17A-expressing CD4 1 T cells are shown. Results represent at least

three independent experiments. *P< 0�05 (two-tailed Student’s t-test). Error bars, standard error of the mean.

3
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Fig. 2. Interleukin (IL)-39 expanded and/or induced neutrophils. (a–c) Splenocytes were separated from 8-week-old C57BL/6 mice, cultured for

3 days in the presence of medium, 50 ng/ml p19, Epstein–Barr virus-induced 3 (Ebi3) or IL-39 and analysed by fluorescence activated cell sorter

(FACS). The percentages of Gr-11CD11b1 neutrophils (a), statistical analysis of the percentage (b) and cultured cell numbers (c) are shown;

(d,e) 400 ng/mouse IL-39 were injected intravenously (i.v.) into 8-week-old C57BL/6 mice (six mice per group). On day 7 after IL-39 injection,

splenocytes were analysed by FACS. The percentages of Gr-11CD11b1 neutrophils (d) and cultured cell numbers (e) are shown. (f,g) Lin–ScaI1

cells were sorted from 8-week-old C57BL/6 mice by microbeads and stimulated for 5 days with 1 ng/ml granulocyte–macrophage colony-

stimulating factor (GM-CSF) in the presence of 50 ng/ml IL-39. Cells were analysed by FACS and the percentages of Gr-11CD11b1 neutrophils

(f) and cultured cell numbers (g) are shown. Results represent at least three independent experiments. *P< 0�05; **P< 0�01. One-way analysis of

variance (ANOVA) plus Dunnett’s multiple comparison test: compare all columns versus control column. Error bars, standard error of the mean.

3

Fig. 3. Interleukin (IL)-39 activated signal transducer and activator of transcription-3 (STAT-3) pathways in neutrophils. (a) The expression of

IL-12Rb1, IL-12Rb2, IL-23R, gp130 or IL-27R on the surface of neutrophils from the spleen of 8-week-old C57BL/6 mice was analysed by

fluorescence activated cell sorter (FACS). Isotype antibody was used as the staining control. (b) GMean (mean fluorescence intensity) of IL-

12Rb1, IL-12Rb2, IL-23R, gp130 or IL-27R staining from (a). (c,d) CD11b1Gr-11 neutrophils were sorted from the spleen of 8-week-old female

C57BL/6 mice by FACS. The cells were cultured for 30 min in the presence of 50 ng/ml p19, Epstein–Barr virus-induced 3 (Ebi3) and IL-39 and

analysed by FACS. The percentages (c) and the statistical analysis of the percentages (d) of phospho (p)-STAT-3-expressing neutrophils are

shown. (b,d) Data are shown as mean 6 standard error of the mean (s.e.m.) (n 5 3) from three independent experiments. *P< 0�05;

**P< 0�01; ***P < 0�001. (b) Two tailed Student’s t-test; (d) one-way analysis of variance (ANOVA) plus Dunnett’s multiple comparison test:

compare all columns versus control column. Error bars, s.e.m.

X. Wang et al.

150 VC 2016 British Society for Immunology, Clinical and Experimental Immunology, 186: 144–156



were up-regulated significantly in lupus-prone MRL/lpr

mice (Fig. 6a–c). Further, we found that the percentages of

BAFF1 in CD11b1Gr-1low and CD11b1 Gr-1hi cells are

similar (Supporting information, Fig. S3a). Critically, we

found that during IL-39-induced neutrophils, the BAFF

level in cultured supernatant was up-regulated significantly

(Fig. 6d). The data suggest that IL-39 may result in the

secretion of BAFF by neutrophils. It became clear that

BAFF is a positive regulator of B cell function, with effects

on cell survival, activation and differentiation [24,35]. Our

Fig. 4. Interleukin (IL)-39-deficient GL71

B cells could not induce neutrophils in

lupus-prone mice. (a,b) CD11b1Gr-11

neutrophils from spleen and peripheral

blood mononuclear cells (PBMC) of 8-

month-old female BALB/C, non-lupus-

prone Murphy Roths large (MRL)1 and

lupus-prone MRL/lpr mice (six mice per

group) were analysed by fluorescence

activated cell sorter (FACS). The

percentages of CD11b1Gr-11 neutrophils

in the spleen and PBMC (a) and

statistical analysis of the percentages in

the spleen (b) are shown. (c,d) GL71 B

cells from 8-month-old female lupus-

prone MRL/lpr mice were sorted by FACS

and infected with control shRNA or IL-12

family subunits p28, p35 or p40, p19 or

Epstein–Barr virus-induced 3 (Ebi3)-

specific shRNA. On day 1 after infection,

5 3 106 control, p28, p35, p40, p19 and

Ebi3-specific shRNA-infected GL71B2201

B cells per mouse were injected

intravenously (i.v.) into 8-week-old

female lupus-prone MRL/lpr mice (six

mice per group). Age-matched MRL/1

mice and control shRNA-infected GL71 B

cells transferred group were used as non-

lupus-prone mice and control shRNA,

respectively. On day 14 after cell transfer,

splenocytes are analysed by FACS. The

percentages (c) and the absolute numbers

(d) of CD11b1Gr-11 neutrophils per

spleen are shown. We used two-tailed

Student’s t-test to analyse the difference

between each of p28, p35 or p40, p19 or

Ebi3-specific shRNA-infected GL71 B

cells transfer group and control shRNA-

infected GL71 B cells transfer group.

(b,d) Data are shown as

mean 6 standard error of the mean

(s.e.m.) (n 5 6) from one experiment

representative of two other similar

experiments. **P < 0�01; ***P < 0�001;

****P < 0�0001. One-way analysis of

variance (ANOVA) plus Dunnett’s multiple

comparison test: compare all columns

versus control column. Error bars, s.e.m.
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previous study has shown that B cells were activated to

secrete IL-39 [6]. Thus, we tested the effect of BAFF on IL-

39 expression. As expected, BAFF up-regulated IL-39 (p19/

Ebi3) expression significantly in B cells (Fig. 6e,f). In addi-

tion, the inhibitor of B cell proliferation-inducing Bcl-6

transcription factor [36,37] IL-39 (p191Ebi31) expression

reduced dose-dependently in BAFF-activated B cells (Fig.

6g). Together, our data suggest that IL-39-induced neutro-

phils have a positive feedback on IL-39 expression in B cells

by secreting BAFF, which may mediate a pathogenic role in

lupus-prone mice.

Discussion

Our previous study has shown that knock-down of the IL-

39 subunit p19 or Ebi3 reduced diseases by transfer of

GL71 B cells in lupus-prone mice [6]. In the present study,

we found that IL-39-induced differentiation and/or expan-

sion of neutrophils and IL-39-induced neutrophils to

secrete BAFF in lupus-prone mice.

EBI-3 knock-out mice are resistant to the induction of

immunopathology associated with oxazolone-induced coli-

tis [38], develop deteriorated delayed-type hypersensitivity

responses [39] and have a pathological alteration of

Fig. 5. Interleukin (IL)-39-deficient GL71 B cells could not induce neutrophils in homozygous CD19cre mice. GL71 B cells were sorted from 8-

month-old female lupus-prone Murphy Roths large (MRL)/lpr mice by fluorescence activated cell sorter (FACS) and infected with control

shRNA or IL-39 subunits p19 or Epstein–Barr virus-induced 3 (Ebi3)-specific shRNA. On day 1 after infection, 5 3 106 control, p19 and Ebi3-

specific shRNA-infected GL71B2201 B cells per mouse were injected intravenously (i.v.) into 8-week-old female CD19cre mice (six mice per

group). On day 14 after cell transfer, splenocytes were analysed by FACS. The percentages (a) and absolute numbers (b) of CD11b1Gr-11

neutrophils per spleen are shown. Data are shown as mean 6 standard error of the mean (s.e.m.) (n 5 6) from one experiment representative

of two other similar experiments. *P< 0�05; **P< 0�01. One-way analysis of variance (ANOVA) plus Dunnett’s multiple comparison test: compare

all columns versus control column. Error bars, s.e.m.
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Fig. 6. Coordinate expression of B cell activating factor (BAFF) in neutrophils and interleukin (IL)-39 in B cells. (a–c) BAFF-expressing

CD11b1Gr-11 neutrophils from 8-month-old female non-lupus-prone Murphy Roths large (MRL)1 and lupus-prone MRL/lpr mice (six mice

per group) were analysed by fluorescence activated cell sorter (FACS). The percentages (a), the statistical analysis of the percentages (b) and

absolute numbers (c) of BAFF-expressing CD11b1Gr-11 neutrophils per spleen are shown. (d) The cultured supernatant was collected from an

in-vitro IL-39-induced neutrophil differentiation cultured system (Fig. 2f,g). BAFF level was determined by sandwich enzyme-linked

immunosorbent assay (ELISA) assay. (e,f) B cells from 8-week-old C57BL/6 mice were sorted by B220 microbeads, cultured for 3 days with 50

ng/ml BAFF and analysed by FACS. The percentages of IL-39 [p19 and Epstein–Barr virus-induced 3 (Ebi3)]-expressing B cells (e) and statistical

analysis of the percentage (f) are shown. (g) B cells indicated in (Fig. 6e,f) were cultured for 3 days in the presence of a different concentration

of Bcl6 inhibitor, and analysed by FACS. The percentages of IL-39-expressing B cells are shown. Results represent at least three independent

experiments. *P< 0�05; **P< 0�01. (b,c,f) Two-tailed Student’s t-test; (d) One-way analysis of variance (ANOVA) plus Dunnett’s multiple

comparison test: compare all columns versus control column. Error bars, standard error of the mean.
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autoimmune glomerulonephritis and sialadenitis in MRL/

lpr mice [40]. These studies suggest that Ebi3 has a proin-

flammatory function that may result from the fact that,

except for suppressive IL-27 and IL-35, Ebi3-related IL-39

is a proinflammatory cytokine. p19 knock-out mice were

highly deficient in the production of IFN-g, IL-17A and

tumour necrosis factor (TNF) [41]. Thus, p19 facilitates

the development of T cells towards both Th1 and Th17

pathways, suggesting that except for Th17-favouring IL-23,

p19-related IL-39 may favour the Th1 pathway. These stud-

ies supported our previous and present studies, finding

that IL-39 may be a proinflammatory cytokine in lupus-

prone mice [6].

We also examined the physiological function of IL-39 in

vivo following i.v. injection of IL-39 or adoptive transfer of

GL71 B cells depleted of p19 or Ebi3 into lupus-prone mice.

Adoptive transfer of IL-39-deficient GL71 B cells into lupus-

prone mice induced a dramatic reduction in the numbers of

neutrophils, a pathological feature of the disease in lupus-

prone mice. Conversely, expansion of IL-39-secreting GL71

B cells correlated with the development of neutrophils in

lupus-prone mice, further underscoring the physiological

relevance of IL-39 in the production of neutrophils. In addi-

tion, we found that IL-39 induces differentiation/expansion

of neutrophils by activating STAT-3 in lupus-prone mice.

The data are in line with a previous study suggesting that

over-expression of STAT-3 in differentiating myeloid cells

results in neutrophil expansion [42].

Many studies have shown the effect of the IL-12 family

on neutrophils. IL-12 stimulated human neutrophils effec-

tively to secrete IFN-g [43]. IL-23 activated neutrophils to

secrete IL-17A [44]. IL-27 is a negative regulator of human

neutrophil function [45]. Tumour-derived IL-35 promotes

tumour growth by enhancing neutrophils [46]. Of particu-

lar importance, we found that IL-39 induced the differen-

tiation and/or expansion of neutrophils and a significant

number of the neutrophils expressed relatively high levels

of BAFF, suggesting that IL-39 might promote the expan-

sion of BAFF-expressing neutrophils that have been impli-

cated in autoimmune diseases including SLE [21,22,47]. In

fact, BAFF concentration is higher in patients with various

autoimmune conditions compared with normal subjects

[35,48], and BAFF is regarded as a potential therapeutic

target in many autoimmune diseases [24,32–34,49].

Together, our data suggest that IL-39-induced neutrophils

have a positive feedback on IL-39 expression in B cells by

secreting BAFF, which may mediate a pathogenic role in

lupus-prone mice.

In conclusion, IL-39 induces and/or expands neutrophils

in lupus-prone mice. In addition, IL-39-induced neutro-

phils had a positive feedback on IL-39 expression in acti-

vated B cells by secreting BAFF. Thus, IL-39 confers an

important immunopathogenic effect in autoimmune dis-

eases and could be used as a possible target for the treat-

ment of autoimmune diseases such as SLE.
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Supporting information

Additional Supporting information may be found in the

online version of this article at the publisher’s web-site:

Fig. S1. Gating strategy for interleukin (IL)-39 expanded/

induced neutrophils. Splenocytes were separated from 8-

week-old C57BL/6 mice and red blood cells were lysed

using 1 3 lysis buffer. Cells were washed and cultured for

3 days in the presence of medium, 50 ng/ml p19,

Epstein–Barr virus-induced 3 (Ebi3) or IL-39 and ana-

lysed by fluorescence activated cell sorter (FACS). All live

cells (a) or large granule cells (b) were gated and the per-

centages of Gr-11CD11b1 neutrophils are shown. Unless

stated otherwise in other specific procedures, neutrophils

were analysed by gating all live cells (a).

Fig. S2. Interleukin (IL)-39 deficiency reduced GL71 B-

induced inflammatory cells infiltration into the kidney of

lupus-prone Murphy Roths large (MRL)/lpr mice. GL71

B cells from 8-month-old female lupus-prone MRL/lpr

mice were sorted by fluorescence activated cell sorter

(FACS) and infected with control shRNA or IL-12 family

subunits p28, p35 or p40, p19 or Epstein–Barr virus-

induced 3 (Ebi3)-specific shRNA. On day 1 after infec-

tion, (a) p28, p35, p40, p19 and Ebi3 mRNA expression

were analysed by quantitative polymerase chain reaction

(qPCR); (b) 5 3 106 control, p28, p35, p40, p19 and

Ebi3-specific shRNA-infected GL71 B cells per mouse

were injected intravenously (i.v.) into 8-week-old female

lupus-prone MRL/lpr mice (six mice per group). Two

weeks after treatment, kidney sections were stained with

haematoxylin and eosin (H&E). Red arrows show glomer-

uli; blue arrows show infiltrating inflammatory cells. Scale

bars, 50 lM. (a) Data are shown as mean 6 standard

error of the mean (s.e.m.) (n 5 6) and are representative

of three independent experiments. (b) Data represent at

least three independent experiments. *P < 0�05;

**P < 0�01; ***P < 0�001; ****P < 0�0001 (two-tailed

Student’s t-test).

Fig. S3. B cell activating factor (BAFF)-expressing

CD11b1Gr-1high and CD11b1Gr-1low cells are similar.

BAFF-expressing CD11b1Gr-1high and CD11b1Gr-1low

cells from the splenocytes of 8-month-old female non-

lupus-prone Murphy Roths large (MRL)1 and lupus-

prone MRL/lpr mice were analysed by fluorescence acti-

vated cell sorter (FACS). (a) The percentages of BAFF-

expressing CD11b1Gr-1high and CD11b1Gr-1low neutro-

phils are shown. (b) The statistical analysis of the percen-

tages of BAFF-expressing CD11b1Gr-1high and

CD11b1Gr-1low cells from lupus-prone MRL/lpr mice.

Results represent at least three independent experiments;

n.s. 5 no significance (two-tailed Student’s t-test). Error

bars, standard error of the mean.
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