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Via Gradenigo 6/b 35131, Padova,
Italy. e-mail: guimaraes@dei.unipd.it

Received: 13 January 2016
Accepted: 17 July 2016
Published: 30 September 2016

Keywords: corneal nerves; corneal
mosaics; image analysis

Citation: Guimarães P, Wigdahl J,
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Purpose: We describe a novel fully automatic method capable of tracing the subbasal
plexus nerves from human corneal confocal images.

Methods: Following an increasing interest in the automatic analysis of corneal nerves,
a few approaches have been proposed. These, however, cannot cope with large
images, such as mosaics, in due time. The rationale of the proposed method is to
minimize required computing time while still providing accurate results. Our method
consists of two sequential steps – a thresholding step followed by a supervised
classification. For the classification we use a support vector machines (SVM) approach.
Initially, a large set of features is computed, which is later reduced using a backward-
elimination based on segmentation accuracy. To validate the obtained tracings, we
evaluated the tracing accuracy and reliability of extracted clinical parameters (corneal
nerves density and tortuosity).

Results: The proposed algorithm proved capable to correctly trace 0.89 6 0.07 of the
corneal nerves. The obtained performance level was comparable to a second human
grader. Furthermore, the proposed approach compares favorably to other methods.
For both evaluated clinical parameters the proposed approach performed well. An
execution time of 0.61 6 0.07 seconds per image was achieved. The proposed
algorithm was applied successfully to mosaic images, with run times of the order of
tens of seconds.

Conclusions: The achieved quality and processing time of the proposed method
appear adequate for the application of this technique to clinical practice.

Translational Relevance: The automatic tracing of corneal nerves is an important
step for the quantitative analysis of corneal nerves in daily clinical practice. The
proposed fast technique allows features, such as corneal nerve density and tortuosity,
to be computed in a few seconds. The application of nerve tracing to mosaics
covering a large area can be a key component in clinical studies aimed at
investigating neuropathy influence in various ocular or systemic diseases.

Introduction

The cornea is known for being one of the most
sensitive tissues in the body. Indeed, corneal nerve
density is 300 to 400 times higher than in the normal
human skin.1 Confocal microscopy is the method of
choice to visualize corneal nerves in the subbasal
nerve plexus (SNP). The ability to image these
structures in vivo in a fast and noninvasive way has
revolutionized our understanding of corneal innerva-
tion. The increasing interest in the analysis of corneal
nerves can be explained by their correlation to
possible damage from surgical interventions (e.g.,
laser-assisted in situ keratomileusis [LASIK] or

photorefractive keratectomy [PRK]) or from pro-
longed wear of contact lens.2–4 Furthermore, it has
been shown that some nerve properties, such as nerve
density or tortuosity, are linked to systemic diseases,
such as diabetes.3–9

The quantitative analysis of corneal nerves still is
impractical in the daily clinical practice, due to the
difficulty and execution time of manual or semiau-
tomatic processes. A few automatic approaches have
been proposed over the years. Scarpa et al.10 applied
a fuzzy c-mean clustering technique to classify each
pixel as belonging to a nerve or not. More recently, a
new multiscale dual-model method to detect the
corneal nerves was proposed by Dabbah et al.,7

while Poletti and Ruggeri11 proposed a new ap-
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proach based on a sparse tracking scheme. Ziegler et
al.9 used a minimum-error thresholding method in
conjunction with log-Gabor filtering to trace corneal
nerves from mosaic images. Studies already have
shown the application of these fully automatic
approaches.12–14

The main problem of existing corneal segmenta-
tion methods is their execution time (hundreds of
seconds for single images). Recently, there has been a
particular increase of interest in the analysis of
mosaics covering a large area, instead of single
corneal confocal images.8,14,15 Automatic mosaicking
and nerve tracing could be the key to clinical studies
aimed at investigating correlations to serious diseases.
However, these larger images are computationally
challenging and existing methods cannot cope with
them in reasonable time. For instance, Ziegler et al.9

report a running time of almost 27 minutes to process
a mosaic image with an area of 2.23 3 106 lm2. For
these reasons, there is the need for a fast and accurate
fully automatic approach to nerve tracing.

Materials and Methods

Throughout this section we describe a novel
method for tracing the subbasal plexus nerves from
human corneal confocal images and the data used in
the validation process. Figure 1 shows the global
workflow of the algorithm. Because an automatic
approach to nerve tracing must provide accurate

tracings and useful clinical parameters, the validation
of the proposed algorithm deals with both issues.

Materials

To evaluate the algorithm’s performance, the nerve
tracings obtained by the proposed automatic ap-
proach were compared with reference ground-truths.
Furthermore, we evaluated the clinical descriptors of
nerve tortuosity and density obtained from the
automatic approach against manual measurements.
Two different databases were used; both of them are
described below.

A total of 246 confocal microscopy images of the
subbasal corneal nerve plexus of healthy volunteer
subjects were acquired using the Heidelberg Retina
Tomograph (HRT-II) with the Rostock Cornea
Module (Heidelberg Engineering GmbH, Heidelberg,
Germany) at the Ophthalmology Department in the
Linköping University, Sweden. The imaging instru-
ment was outfitted with an Achroplan 363/0.95 NA
immersion objective lens (Carl Zeiss SMT GmbH,
Oberkochen, Germany) to provide confocal images
covering a field of 400 3 400 lm2 (384 3 384 pixels;
Fig. 2a). To evaluate the algorithm’s performance, the
obtained nerve tracings were compared with reference
ground-truths. All images from this dataset were
segmented manually by two independent clinical
graders (G1 and G2), who traced the centerlines of
all visible nerves during several sessions over a 2-
weeks period. Both graders used the NeuronJ16

Figure 1. Flowchart representing the global workflow of the algorithm.

Figure 2. From left to right: original (Ior), corrected (ITH), and log-Gabor filtered (I) confocal images, respectively. Scale bar: 30 lm.
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tracing plugin for ImageJ (available in the public
domain at http://www.imagescience.org/meijering/
software/neuronj/; version 1.45s, Rasband, W.S.,
ImageJ; National Institutes of Health [NIH], Bethes-
da, MD) over the raw unprocessed images. The
intersection between the tracing of G1 and G2 was
used as the ground-truth tracing. For sake of
convenience this set of images is from now on called
database 1 (DB1). This dataset was split randomly
into two different subsets, the training (N ¼ 50) and
testing (N¼ 196) subsets.

To evaluate corneal nerve tortuosity, a publicly
available database (database 2 [DB2]) was used
(available in the public domain at http://bioimlab.
dei.unipd.it/, Laboratory of Biomedical Imaging,
University of Padova). The database is composed of
a total of 30 confocal images of the subbasal corneal
nerve plexus. Images were acquired from healthy (N¼
6) and pathologic (N ¼ 24) subjects, using the same
protocol as described above. The pathologic group
included subjects diagnosed with diabetes (N ¼ 10),
pseudoexfoliation syndrome (N¼ 8), and keratoconus
(N ¼ 6). A grader evaluated the corneal nerves
tortuosity of each image into three different classes
– High, Mid, and Low tortuosity.

Preprocessing

The cornea is a transparent, spherical structure.
Typically, confocal corneal images present illumina-
tion artefacts of a low-frequency nature. Further-
more, nerves also may appear dimmed due to focus
problems, or even appear and disappear along their
path (in and out of the focus plane). Other objects,
such as bright elongated structures (e.g., cells), also
are normally present and may cause false-positives.
For these reasons, image and nerve enhancement are
essential steps in the process of recovering the corneal
nerve tree. In this work, we resort to top-hat filtering
and a bank of log-Gabor filters to correct for the
aforementioned issues.

The original image (Ior) undergoes first top-hat
filtering. This is a simple and effective morphologic
operation, commonly used to correct for uneven
illumination. It is computed as the difference between
image Ior and the result of its morphologic opening.
The resulting images (ITH) then are filtered with a
bank of 2-D log-Gabor even and odd kernels. Each
value in the final enhanced image (I) is defined as the
difference between the even and odd maximal filter
responses (Ieven and Iodd, respectively).

Log-Gabor filters have been used extensively to
enhance and trace line-like structures, for example,

blood vessels.17 Each of these filters results from the
combination between a radial and an angular
component, which limit the filter’s frequency (scale)
and orientation, respectively. As such, each log-
Gabor filter in the bank has an exclusive orienta-
tion-scale pairing. Both components are first com-
puted and then multiplied in the frequency space to
obtain the frequency domain log-Gabor filter. In the
time domain, we obtained the even and the odd
kernels as the real and imaginary parts of this filter,
respectively.

Figure 2 shows the results of the preprocessing
step. As shown, this procedure normalizes the
luminosity and greatly improves the contrast of
corneal nerves against background.

Nerve Recognition

The recognition of the corneal nerves in the
enhanced images is performed in two sequential steps
– image I is first thresholded to obtain candidate
nerve segments, which then are classified using a
supervised classifier. The rationale behind the use of
the two sequential steps is to minimize computing
time while still aiming at high accuracy.

First, we apply a hysteresis threshold – a popular
method for edge detection. The centerline of each
resulting thresholded region is considered as a nerve
segment. In this way, we obtained candidate nerve
segments, which corresponded to linear structures
that could be found in the image, but that may or may
not be nerves. To distinguish between true or false
nerve segments, these were classified using a support
vector machines (SVM) approach.

Support vector machines are a widely used
supervised-learning method, extensively described in
the literature.18,19 In this work, we resorted to a C-
support vector classification with a radial–basis–
function kernel. The best SVM model and parameters
are derived from training. A large set of features is
computed to be used by the classification algorithm.
The final feature set was selected using a backward-
elimination approach, based on the accuracy of the
segmentation. This set is described below. Two
groups of features can be distinguished, morphologic
and intensity-based features.

The SVM classifier was trained using the training
subset from DB1 with the ground-truths as reference.
The obtained SVM model was used for all the tests.

Morphologic Features
Morphologic features are extracted directly from

the binary image, and are related to the shape and size
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of the candidate nerve segment. The final morpho-
logic features included are the cumulative distance
along the segment’s path (Length) and the total
number of pixels (Area).

Intensity-Based Features
Intensity-based features are computed using filters

applied to the confocal images. The features are
computed as the average (AVG) and standard
deviation (SD) intensity values along each candidate
nerve segment’s path. The final intensity-based
feature set comprises:

� Average (AVG) and standard deviation (SD) of Ior,
ITH, I, and Ieven;

� AVG of Iodd;
� AVG and SD of the Laplacian of Gaussian (ILoG)
and of the gradient magnitude (IG).

The Laplacian of Gaussian (LoG) filter is a
commonly used edge detector. It is computed as the
Laplacian of a low-pass filtered image (Gaussian). In
this work a multiscale approach was used by
convoluting image ITH with several Gaussian filters
with different standard deviations. Similarly, the
gradient magnitude also was computed at multiple
scales as the norm of the gradient of a Gaussian low-
pass filtered image ITH. For each of these features, the
maximum value across scales weighted by the
respective standard deviation of the used Gaussian
filters then is selected to obtain ILoG and IG,
respectively.

Postprocessing

After nerve recognition by classification, some
nerve segments appeared disconnected from the main
nerve tree. As a postprocessing step, these segments
were connected over small gaps. This step is especially
important if one aims to compute clinical parameters,
such as tortuosity. For the connection, only the
distance, angle, and intensity along the path between
the two candidates for connection are considered.
Although this is a very simple approach, our tests
revealed that the gain obtained by more complex
methodologies does not compensate for the addition-
al computational time required.

Results

As aforementioned, an automatic approach to
nerve tracing must provide an accurate and robust
nerve segmentation, but also reliable and useful

clinical parameters. The validation of the proposed
approach considers both these issues.

Nerve Tracing

To evaluate the system performance, the obtained
nerve tracings were compared to the reference
ground-truths for the testing subset of DB1. Nerve
tracings are compared pixel by pixel to the respective
reference ground-truth. However, the graders were
asked to trace the centerlines of the nerves. As such, it
is unlikely that different specialists chose exactly the
same path to trace a given nerve. For this reason, a
tolerance must be set. A true positive is considered as
such only if it is within three pixels from the reference
ground-truth. Sensitivity (Sen) and false discovery
rate (FDR) then were computed. Sensitivity gives the
proportion of correctly identified nerves (the higher
the better), while FDR gives the proportion of nerves
wrongly identified as such (the lower the better). As in
a typical image, the vast majority of pixels do not
belong to corneal nerves, specificity does not provide
useful information.

To allow the comparison to previous approaches,
the algorithm proposed by Scarpa et al.10 also was
applied to the testing subset and compared to the
reference ground-truths. Furthermore, G1 and G2
tracings also were compared between them to
establish intergrader variability.

Figure 3 shows some examples for visual inspec-
tion. The Table shows the obtained results. Differ-
ences between the different tracing approaches were
investigated using Student’s t-test.

Regarding the sensitivity, when compared to the
intergrader variability, the proposed approach and
the approach by Scarpa et al.10 achieved a signifi-
cantly lower value (P , 0.0001). No significant
differences were found between the two automatic
approaches (P� 0.05). As for the FDR, the proposed
approach is not significantly different from a human
grader (P � 0.05). On the other hand, the approach
by Scarpa et al.10 achieves a FDR significantly higher
(P , 0.0001) when compared to a human grader or
the proposed approach.

The time required to analyze a single image, using
a single core MATLAB (MathWorks, Inc., Natick,
MA) implementation, was 0.61 6 0.07 seconds (AVG
6 SD) on an Intel Core i7-4770 CPU (Intel
Corporation, Santa Clara, CA) at 3.4 GHz. Using
the same computer, the approach by Scarpa et al.10

requires 145.56 6 26.42 seconds.
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Nerve Density

Corneal nerve density (the cumulative length of the
subbasal nerves per unit of area of the cornea) was
computed for the automatic and ground-truth trac-
ings of the testing subset of DB1. This measure is an
important clinical parameter to evaluate the cornea
health status. Figure 4a shows the nerve density
computed from the automatic tracings against the one
computed from the ground-truth (manual) tracings.
The correlation coefficient between the two is 0.93 (P
, 0.0001). Figure 4b shows the Bland-Altman plot of
the same results.

Tortuosity

Corneal nerve tortuosity is an important feature of
corneal nerves. To investigate the clinical usefulness
of the proposed algorithm, it is essential to evaluate
nerve tortuosity as computed from the automatic

Figure 3. From left to right: original corneal confocal images, automatic tracing (in red), and ground-truth reference (in blue),
respectively, for three representative images. Scale bar: 30 lm.

Table. Sen and FDR Results (AVG 6 SD, N¼ 196)

Sen FDR

Proposed 0.89 6 0.07 0.08 6 0.07
Scarpa et al.10 0.89 6 0.06 0.14 6 0.07
Intergrader 0.92 6 0.05 0.08 6 0.05
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segmentation. The tortuosity was evaluated on the
DB2 set of 30 images. First, the corneal nerves were
traced for each image using the proposed algorithm.
Then, corneal nerve tortuosity was computed as
proposed previously.20 Shortly, each nerve segment
(s) is divided into smaller subsegments called turn
curves. A turn curve is a portion of the segment
located between two consecutive twists, that is,
between changes in the curvature sign. As such, each
nerve segment is partitioned into n subsegments si as:
s ¼ s1 � s2 � � � � � sn. The tortuosity index s for the
nerve segment s then is computed as:

sðsÞ ¼ n� 1

n

1

Ls
c

Xn

1

Lsi
c

Lsi
x
� 1

� �
; ð1Þ

where Ls
c and Ls

c are the curve length (cumulative
Euclidean distance over the segment’s path) and

chord length (Euclidean distance between the first
and last point) of segment s, respectively.

Figure 5 shows a sample image for each tortuosity
class. Marked in these images are the automatic
traced corneal nerves. Figure 6 shows the resulting
corneal nerve tortuosity against the grader tortuosity
classes – High, Mid, and Low tortuosity. A Spear-
man’s rank correlation coefficient of 0.95 is achieved
(P , 0.0001). If one sets two thresholds to distinguish
between the three classes (as shown in the Figure), 28
of the 30 images would be correctly classified (93.3%).

Mosaics

The same confocal microscope used before was
used to acquire multiple single images. Raster
scanning is achieved by manual x/y translation to
sweep the visible area of the nerve plexus. Manual
adaptive depth correction then is implemented when

Figure 4. Corneal nerve density (N ¼ 196). (a) Automatic against manual tracings. (b) Bland-Altman plot.

Figure 5. From left to right: automatic tracing (in red) of Low, Mid, and High tortuosity images (as classified by the expert grader),
respectively. Scale bar: 30 lm.
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the examiner feels visibility or contrast of the nerves is
reduced. Cornea mosaics were created using the
approach described previously.20 No changes were
made to the tracing algorithm to adapt it for mosaics.
Figure 7 shows some examples of mosaic automatic
nerve tracing. The execution time to trace each mosaic
is in general directly proportional to its area. For
instance, the proposed algorithm took 32.2 seconds
for a mosaic with a total area of 4.93106 lm2 (or 30.6
times the area of a conventional single image).

Discussion

The use of confocal microscopy to image the
human cornea has led to a revolution in the
diagnosis and monitoring of this important struc-
ture. Furthermore, several studies have shown that
the cornea may be regarded as a window to the study
of some systemic diseases, such as diabetic neurop-
athy.3–7

The analysis of the corneal nerves seems to be
pivotal in these studies. However, the availability of
manual or semiautomatic analysis limits the wide-
spread use of this technique. Therefore, a fully
automatic robust algorithm, capable of tracing nerves
from confocal microscopy images of the subbasal
corneal nerve plexus is needed, as it can provide
robust corneal nerve descriptors, such as nerve
density or tortuosity, and consequently the possibility
of an improved diagnosis.

The proposed algorithm proved capable to
correctly trace almost 90% of the corneal nerves.

When compared to the approach by Scarpa et al.,10

the proposed approach achieves better results
(similar Sen, lower FDR). Furthermore, the FDR
level achieved by the proposed approach is compa-
rable to a human grader. However, the proposed
approach still is significantly less sensitive. These
results were achieved with an execution time of only
0.61 6 0.07 seconds per image (compared to the
145.56 6 26.42 seconds per image of the previous
approach). Dabbah et al.7 also proposed an auto-
matic classification system to detect nerve fibers in
corneal confocal microscopy images. In their study,
they reported an average sensitivity of 84.8%.
Although the images were captured with the same
system, the datasets are different, and as such, the
results are not directly comparable. Run time was
not reported. Dehghani et al.,12 using the same
tracing software as Dabbah et al.,7 compared
diabetic neuropathy detection rates between manual,
semiautomated, and automated methods. They
showed that the fully automated approach was
comparable to the manual and semiautomated
ones.12 The average time reported to obtain corneal

Figure 6. Automatic tortuosity against manual grading (N ¼ 30).

Figure 7. From left to right: original corneal mosaic images and
automated nerve tracing (in red). Scale bar: 120 lm.
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nerve fiber length per image was of 13 6 2 seconds.
Ziegler et al.9 reported no validation results for the
automatic nerve tracing.

The achieved quality and processing time of the
proposed approach to trace the corneal nerves
appeared adequate for the possible application of
this technique to clinical practice. The clinical
usefulness of the proposed method also was assessed.
The clinical parameters of nerve density and tortuos-
ity of the corneal nerves were evaluated. For both
parameters the proposed approach performed well.
The nerve density computed from the automatic
tracings was highly correlated with the one computed
from the manual ones. Regarding tortuosity, approx-
imately 93% of the cases were classified correctly,
compared to the manual grading. A high correlation
to the rank also was achieved.

In the future, we believe that corneal mosaics will
become more and more common in clinical settings.
These composed images may greatly enhance the
information on disease progression, as they allowed
us to study complete nerve patterns and take global
metrics. If manual tracing of corneal nerves from an
image with 400 3 400 lm2 (384 3 384 pixels) is
difficult, performing this task in a large mosaic image
is nearly impossible.

The proposed algorithm also was applied success-
fully to mosaic images of the cornea, with run times in
the order of tens of seconds. This means that one can
trace the corneal nerves in a very short time and as
such enable the automatic and objective analysis of
these images. Previous methods, although capable of
tracing corneal nerves, had as a main setback their
execution time. Fully automated corneal nerve tracing
algorithms previously have been applied successfully
to cornea mosaics.8,14 The reported running time was
of tens of minutes.8

These results showed the clinical applicability of
the proposed approach for automated nerve tracing
and clinical parameter estimation. However, further
tests are needed to confirm this on larger datasets.
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