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Summary The most widely used measure of segregation is the so-called dissimilarity
index. It is now well understood that this measure also reflects randomness in the allocation
of individuals to units (i.e. it measures deviations from evenness, not deviations from
randomness). This leads to potentially large values of the segregation index when unit sizes
and/or minority proportions are small, even if there is no underlying systematic segregation.
Our response to this is to produce adjustments to the index, based on an underlying statistical
model. We specify the assignment problem in a very general way, with differences in
conditional assignment probabilities underlying the resulting segregation. From this, we derive
a likelihood ratio test for the presence of any systematic segregation, and bias adjustments
to the dissimilarity index. We further develop the asymptotic distribution theory for testing
hypotheses concerning the magnitude of the segregation index and show that the use of
bootstrap methods can improve the size and power properties of test procedures considerably.
We illustrate these methods by comparing dissimilarity indices across school districts in
England to measure social segregation.
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1. INTRODUCTION

Segregation remains a major topic of research in a number of contexts, such as neighbourhoods,
workplaces and schools. Researchers study segregation by poverty status, by sex and by ethnicity,
among other characteristics. Almost always, these studies are comparative in some way; for
example, arguing that ethnic segregation in neighbourhoods is higher in one city than another,
or that segregation by sex in some occupation has changed over time. There is often also
an implicit or explicit causal model in mind, and the difference in segregation is associated
with some behavioural process. However, the inferential framework for segregation indices is
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underdeveloped, a fact that limits the progress that can be made. In this paper, we propose an
approach to strengthen this framework.

It is central to our approach to think of segregation as the outcome of a process of assignment.
This includes the assignment of people to neighbourhoods, workers to jobs, or pupils to schools.
In general, this allocation is likely to be the result of the interlocking decisions of different agents
rather than of a dictator. This perspective offers a number of advantages. First, it ties the outcome
to a set of processes that can be analysed and estimated. Second, it makes it clear that the observed
outcome is one of a set of possible outcomes, and so naturally leads on to a framework for
statistical inference. Third, the connection with the underlying processes makes explicit that it is
this systematic or behaviour-based segregation that is the object of interest in terms of analysing
the causes of segregation.

There is a large body of literature concerning the measurement of segregation, with a number
of indices in use, all with differing properties. The most widely used measure of segregation
is the dissimilarity index, D, defined below; see Duncan and Duncan (1955). It is now widely
understood that this measure also reflects randomness in the allocation of individuals to units
(i.e. it measures deviations from evenness, not systematic segregation). Furthermore, the impact
of randomness on D depends on the nature of the context (made precise below). This makes
one of the prime tasks in the measurement of segregation difficult, namely making statements
on true differences in segregation between cities, school districts, industries or time periods.
For example, the overall proportion of the minority group influences this because a very small
minority group is more likely to be unevenly distributed across units by chance, compared to a
larger minority group. This problem is particularly acute with small unit sizes. This is easy to
see in the following example. Consider a large population, half male and half female. Suppose
they are assigned to work in two very large firms. A random assignment process would produce
an outcome close to a 50 : 50 male–female split in each firm and an estimated D of about zero.
However, if they were allocated to many firms of size 2, then a random assignment procedure
would lead to many all-female firms, many all-male firms and many mixed firms, and a high
value for D. The high value reflects a strong deviation from evenness despite pure randomness.
Others have noted the problem of small unit size in the measurement of segregation; see, e.g.
Carrington and Troske (1997). They proposed an adjustment to segregation indices that has since
been used by researchers measuring workplace segregation where small units are particularly
likely (e.g. Hellerstein and Neumark, 2008) and measuring school segregation (e.g. Söderström
and Uusitalo, 2010).

In comparing segregation across areas or time, small unit bias should be of concern to
researchers for two reasons. First, the size of the bias will differ across comparison areas,
potentially leading to an incorrect ranking of levels of segregation across areas. Second, the
presence of small unit bias makes a correlation between measured segregation index values and
a potentially causal variable, say X, difficult to interpret. It will impact on the estimated effect of
X on measured segregation, even if the parameters of the problem (unit size, minority fraction
and population) do not vary across areas. In addition, it is likely that the bias as a function of these
parameters will be correlated with X, making the true relationship between X and D difficult to
identify.

The variable X could, for example, be income differentials. If one were to investigate racial
segregation in schools in an area, then one explanation of racial segregation, as indicated by a
high value of D, could be income inequality between the two groups. Income inequality could
be the cause of neighbourhood and hence school segregation. If there is no income inequality
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between the two groups in the area, then this could be indicative of behaviour due to other
preferences.

In this paper, we propose an inferential framework for the canonical segregation measure,
D, based on an underlying statistical model. This set-up is related to, but different from, that
used by Ransom (2000). He derives (asymptotic) inference procedures for D by specifying
the sampling variation of a multinomial distribution. In Section 2, we specify the assignment
problem in a very general way, and set out the difference in assignment probabilities that
underlies the resulting segregation. From this, we derive bias adjustments to D in Section 3, and
a likelihood ratio test for the presence of any systematic segregation in Section 4. One of our bias
adjustments is based on a simple bootstrap bias correction; other adjustments use the asymptotic
normal distribution of the observed frequencies. Following Ransom (2000), in Sections 5 and
6, we further develop the asymptotic distribution theory for testing hypotheses concerning the
magnitude of the segregation index and we show that use of bootstrap methods can improve the
size and power properties of test procedures considerably. As in Ransom (2000), our asymptotic
distribution theory relies on the number of units being fixed, with unit sizes going to infinity. Our
results indicate that our methods work well in settings such as our analysis of social segregation
in English schools, where the average number of units (schools) in the local authorities are about
55, with the average number of pupils per school equal to 38.

Rathelot (2012) recently proposed a Beta-Binomial mixture model to describe segregation
and has shown that it performs well in a setting with many small units (i.e. under asymptotics
where the number of units goes to infinity); see also d’Haultfœuille and Rathelot (2011). In
Section 7, we present a brief discussion of the measure proposed by Rathelot (2012) and also
the one proposed by Carrington and Troske (1997). In Section 8, we illustrate our methods in an
example of social segregation in schools in England. We conclude in Section 9.

2. STATISTICAL FRAMEWORK

Underlying an assignment of individuals to units is an allocation process. This might be purely
random, or it may be influenced by the actions of agents, including those whose allocation we
are studying, as well as others. This systematic allocation process will, in general, reflect the
preferences and constraints of both the individual (such as preferences for racial composition
of neighbourhood or ability to pay for houses in a particular neighbourhood) and of the unit to
match with particular individuals (such as a firm’s desire for highly educated workers or school
admissions procedures that favour children of parents of a particular religious denomination).
Typically, the research question is about characterizing segregation arising from this behaviour.

Our notation is as follows. There are units j = 1, . . . , J , nested within an area. Individuals
i = 1, . . . , n either have or do not have a characteristic measurable on a dichotomous scale,
c = {0, 1}. This could be black ethnicity, female sex or poverty status. The number of individuals
in the area of status c is denoted nc. Individuals are assigned to units and we observe the resulting
allocations, nc

j individuals in unit j having status c. The total number of individuals in unit j is
nj = n1

j + n0
j .

There are many indices used to measure segregation; see Duncan and Duncan (1955), Massey
and Denton (1988), and White (1986) for an overview. The formula for each provides an
implicit definition of segregation. Massey and Denton (1988) characterize segregation along five
dimensions: evenness (dissimilarity), exposure (isolation), concentration (the amount of physical
space occupied by the minority group), clustering (the extent to which minority neighbourhoods
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abut one another) and centralization (proximity to the centre of the city). Throughout this paper,
we use the index of dissimilarity (denoted D), the most popular unevenness index in the literature.
However, our analysis can be extended to other unevenness segregation indices.

The formula for the index of dissimilarity D in the area, which is bounded by 0 (no
segregation) and 1, is given by Duncan and Duncan (1955) as1

D = 1

2

J∑
j=1

∣∣∣n1
j

n1
− n0

j

n0

∣∣∣. (2.1)

The basis for an allocation procedure is a set of probabilities pc
j , which specify the probability

that an individual is assigned to unit j , j = 1, . . . , J , conditional on the individual being of
status c. We define systematic segregation as being present when there exists j such that p1

j �=
p0

j . We can see the relationship between D and the probabilities of the underlying allocation
process by noting that the fractions nc

j /nc, c = 0, 1, are estimates of these probabilities. With

p̂c
j = nc

j /nc, the index of dissimilarity (2.1) is just one half of
∑J

j=1 |p̂1
j − p̂0

j |.
Formally, the allocation process is as follows. An area population of n individuals,

with a given proportion p = n1/n with status c = 1, is allocated to J units, according to
the probabilities pc

j . Each individual is allocated independently of the others. All implicit
dependences of group formations are captured by the allocation probabilities pc

j . The outcomes
of this process are the allocations n1

j and n0
j . Clearly, unit sizes are not fixed in this set-up as

they are equal to nj = n1
j + n0

j and are therefore determined by the stochastic allocation. The
expected unit sizes are given by E[nj ] = n1p1

j + n0p0
j .

We can now interpret the index of dissimilarity as an estimator for the population quantity:

Dpop = 1

2

J∑
j=1

∣∣p1
j − p0

j

∣∣.
It is clear that Dpop = 0 if and only if p1

j = p0
j for all j = 1, . . . , J .

From the allocation process described above, we can estimate the conditional probabilities
by maximum likelihood. As the allocations are two independent multinomial distributions, the
log-likelihood function, given the observed allocations, is given by

log L = log
( n1!

n1
1! . . . n1

J !

)
+ log

( n0!

n0
1! . . . n0

J !

)
+

J∑
j=1

n1
j log p1

j +
J∑

j=1

n0
j log p0

j . (2.2)

Clearly, the maximum likelihood estimates are given by p̂1
j = n1

j /n1 and p̂0
j = n0

j /n0, j =
1, . . . , J , exactly the same as the estimates that appear in D.

Ransom (2000) proposed the following statistical model for a random sample of size n:

Pr(n0
1, n

0
2, . . . , n

0
J , n1

1, n
1
2, . . . , n

1
J ; πjc) = n!

J∏
j=1

1∏
c=0

(πjc)n
c
j

nc
j !

,

where πjc is the joint probability of observing an individual with status c and in unit j in the
sample. Mora and Ruiz-Castillo (2007), and references therein, consider a similar set-up for an

1 D measures the share of either group that must be removed, without replacement, to achieve zero segregation; see
Cortese et al. (1976), and Massey and Denton (1988). It can be shown to be equal to the maximum distance between
the line of equality and a segregation curve that sorts units by pj , then plots the cumulative share of c = 1 individuals
against the cumulative share of c = 0 individuals; see Duncan and Duncan (1955).
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information index of multigroup segregation. Ransom (2000, p. 458) notes that this model is
not appropriate when the population is observed, because then πjc are known. The parameters
πjc are not those that enter the segregation index Dpop, which are the conditional probabilities
pc

j = Pr(unit = j |c) = πjc/
∑J

s=1 πsc.
Our model is applicable even when we observe the complete, finite population, because

randomness is achieved by the random allocation process to units. Our statistical model is for
a finite population of fixed size n = n0 + n1, with parameters pc

j , j = 1, . . . , J , c = 0, 1, and is
given by

Pr(n0
1, n

0
2, . . . , n

0
J , n1

1, n
1
2, . . . , n

1
J ; n0, n1; pc

j ) =
1∏

c=0

nc!
J∏

j=1

(pc
j )n

c
j

nc
j !

.

The logarithm of this expression is just the log-likelihood (2.2). In the remainder of the paper,
we focus on this particular model.

Our design is particularly well suited for our analysis of social segregation in schools in
England. The provision of education in England is organized at the district, or local authority
(LA), level. Pupils within an LA have to choose a school within that district with certain
limitations due, for example, to catchment area requirements. School (cohort) sizes vary
substantially within an LA and school cohort sizes vary over time owing to changing demand
and size of the cohort population.

A different model would apply if the unit sizes nj are assumed fixed, as well as the population
size n and minority fraction p = n1/n. In this case, the allocation mechanism is determined by
the probability that an individual has status c conditional on being in unit j instead of the other
way round. However, no matter whether unit sizes are random or fixed, D is still an estimator of
Dpop if, instead of the full population, we obtain a random sample drawn from it.

2.1 Bias

As D is an estimator of Dpop, we define the bias of D as E[D] − Dpop, where the expectation
is taken over the independent multinomial distributions with probabilities pc

j , j = 1, . . . , J , c =
0, 1. For given population size n and minority proportion p, we have

E[D] = 1

2

∑
{n0

1,···,n0
J }

∑
{n1

1,···,n1
J }

[( J∑
j=1

∣∣∣n1
j

n1
− n0

j

n0

∣∣∣)
1∏

c=0

nc!
J∏

j=1

(pc
j )n

c
j

nc
j !

]
.

The value of E[D] is a function of the underlying conditional probabilities, summarized by Dpop,
and of unevenness generated by the randomness of the allocation process. As has been well
documented in the literature, see for instance Carrington and Troske (1997), D can be severely
upward biased when unit sizes are small and there is no systematic segregation, that is, p1

j = p0
j

for all j and Dpop = 0. Intuitively, this bias arises because D is the sum of the absolute value
of differences between the minority and majority proportions in a unit. Suppose that in unit j ,
p1

j = p0
j . Sampling variation in the estimated proportions will almost surely lead to non-zero

estimated differences, especially if unit sizes are small. Because the dissimilarity index sums the
absolute values of these differences, this will lead to an upward bias in the index.

For a small number of units J and small unit sizes, we can calculate the expected value of
D analytically. Figure 1 graphs the bias E[D] − Dpop for J = 4, n = {20, 40, 60}, p = 0.1, and

C© 2014 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.



Inference for dissimilarity index 45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.1

0.2

0.3

0.4

0.5

0.6


..................................................... n = 20



............................................................................................................................... n = 40

................................................................................................

............ n = 60

Dpop

Bias

Figure 1. Bias E[D] − Dpop, J = 4, p = 0.1, equal expected unit sizes.

for various values of Dpop. These values of Dpop are obtained by setting pc
j according to a scheme

discussed in Section 3. The expected unit sizes are the same for the four units (i.e. 5 when
n = 20, 10 when n = 40 and 15 when n = 60). The small-unit bias is apparent in the figure.
When expected unit sizes are equal to 5, E[D] is equal to 0.56 when Dpop = 0. The graph also
shows that the bias is a decreasing function of increasing systematic segregation (Dpop) and a
decreasing function of expected unit size.

3. BIAS CORRECTION

The purpose of a bias correction to D is to reduce the upward bias of the estimate of Dpop,
as highlighted in Figure 1. We first consider a bootstrap bias correction, as described by Hall
(1992) and Davison and Hinkley (1997) among many others. Given an observed allocation, a
new sample is generated with the same sample size n and minority proportion p, but using the
observed conditional probabilities p̂1

j = n1
j /n1 and p̂0

j = n0
j /n0 for the allocation process. Note

that none of the bootstrap data-generating processes used in this paper involves resampling. The
value for D in this bootstrap sample is denoted Db. Repeating this B times, we can calculate

D̄b = 1

B

B∑
b=1

Db. (3.1)

The population value of the segregation measure in the bootstrap sample is D itself, and so
a measure of the bias of D is given by D̄b − D. A bootstrap bias-corrected estimate of Dpop is
then obtained as

Dbc = D − (D̄b − D) = 2D − D̄b. (3.2)

This type of bias correction works well if the bias is constant for different values of Dpop. This is
clearly not the case here, because the biases as displayed in Figure 1 are much larger for smaller
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values of D. This bias correction is therefore not expected to work well for small unit sizes
combined with small values of Dpop.

What turns out to be a more effective way of reducing the bias is a modified maximum-
likelihood approach. As nc → ∞ with J fixed, p̂c

j → pc
j almost surely, and the limiting

distribution of
√

nc(p̂c
j − pc

j ) is normal with expectation 0 and variance pc
j (1 − pc

j ). It follows
that D is consistent for Dpop, and that it is asymptotically normal with an asymptotic variance
that can be computed using the delta method, as pursued in Section 5. For bias reduction, rather
than working with the full log-likelihood (2.2), we proceed as though p̂c

j , c = 1, 2, j = 1, . . . , J

were actually distributed according to their asymptotic normal distribution.
However, the asymptotic normality of D is not of the usual kind where the limiting

distribution of
√

n(D − Dpop) would be normal with expectation zero. We have seen that
D = ∑J

j=1 |p̂1
j − p̂0

j |/2. The fact that D depends on the absolute values of the differences means
that the expectation of the limiting distribution is not zero whenever the true value of Dpop is
either zero or is such that Dpop = O(n−1/2) as n → ∞. This implies that asymptotic inference of
the usual sort is not valid, because the non-zero expectation acts like a non-centrality parameter.
However, we can still use the asymptotic normal distribution of p̂c

j as an approximation in
computing the asymptotic bias. The finite-sample bias is given by

E[D] − Dpop = 1

2

J∑
j=1

(
E|p̂1

j − p̂0
j | − |p1

j − p0
j |

)
,

where, in each term of the sum, the random variables p̂1
j and p̂0

j are independent.
Let X ∼ N (μ, σ 2). The distribution of Z = |X|/σ is the so-called folded normal distribution;

see Leone et al. (1961). Let θ denote |μ|/σ . Then, the density of Z is given by

f (z) = φ(z − θ ) + φ(z + θ ). (3.3)

Here, φ is the standard normal density. In order to derive the bias of D, we replace Z by θ̂j =
|p̂1

j − p̂0
j |/σ̂j , where p̂1

j − p̂0
j ∼ N (p1

j − p0
j , σ

2
j ) approximately, with

σ 2
j = p1

j (1 − p1
j )/n1 + p0

j (1 − p0
j )/n0 and σ̂ 2

j = p̂1
j (1 − p̂1

j )/n1 + p̂0
j (1 − p̂0

j )/n0.

The asymptotic approximation to the density of θ̂j is then φ(θ̂j − θj ) + φ(θ̂j + θj ), where
θj = |p1

j − p0|/σj , the ‘true’ value of θ . Thus, asymptotically, the data-dependent quantity θ̂j

is sufficient for θj , and so an approximate maximum-likelihood estimate of θj is the value of θj

that maximizes the approximate density.
It can be shown that, for θ̂j ≤ 1, the maximum occurs at θj = 0, and that the maximizing θj

tends to θ̂j as θ̂j → ∞. Let the maximizing θj be denoted by n(θ̂j ). The cut-off imposed by the
function n is at θ̂j = 1. Because |p̂1

j − p̂0
j | = σ̂j θ̂j , we can define another estimator of Dpop,

Ddc = 1

2

J∑
j=1

σ̂j n(θ̂j ), (3.4)

where the notation ‘dc’ stands for density-corrected.
We show in the next sections that the proposed bias-correction procedures reduce enough

of the bias to make reasonable inferences about levels of segregation, provided unit sizes are
not too small. Where unit sizes are very small, we show in Section 4 that the observed level of
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segregation can rarely statistically be distinguished from evenness. Thus, we suggest that in these
cases the data are inappropriate for making inferences about segregation.

In the Appendix, we consider two other plausible methods of bias reduction, but simulations
(not presented here) show that they are less effective than the density-correction method.

3.1. Monte Carlo simulations

In this section, we evaluate the performance of the bias adjustments for estimating levels of
segregation. To do this, we follow the Duncan and Duncan (1955) approach of generating a
level of unevenness between no segregation and complete segregation using a single parameter,
0 ≤ q < 1. This parameter maps to a set of parabolic segregation curves via the formula:2

Pr(unit ≤ j |c = 1) = (1 − q) Pr(unit ≤ j |c = 0)

1 − q · Pr(unit ≤ j |c = 0)
.

This formula, combined with the constraint of equal expected unit sizes, fixes the conditional
allocation probabilities for both groups. An allocation is then generated by assigning n1 and n0

individuals to the J units using these calculated conditional probabilities.
This process is repeated 5,000 times for each n, p and Dpop combinations over the following

parameter space:

1. number of units, J , is fixed at 50;
2. unit sizes nj are equal in expectation, with expected unit size 10, 30 or 50;
3. proportion of c = 1 individuals, p, equal to 0.05, 0.2 or 0.35;
4. systematic segregation generator, q, varies such that the values of Dpop are equal to 0,

0.056, 0.127, 0.225, 0.382 or 0.634.

For the bootstrap bias correction, D̄b is calculated from (3.1) using 250 bootstrap samples.
Tables 1(a)–(c) present the bias and root mean squared error (rmse) of D and Dbc from
(3.2), and Ddc from (3.4). The tables show that, where the minority proportion is very small,
p = 0.05, unit sizes are small (e.g. E[nj ] = 10) and systematic segregation is very low (e.g.
Dpop = 0.056), observed segregation incorrectly suggests that a highly segregating process
underlies the allocation, with D = 0.606. The bias corrections, although reducing the bias,
cannot fully get rid of it, the smallest bias being obtained with the density-corrected estimator,
Ddc = 0.406. At the other extreme, where the minority proportion is large (e.g. p = 0.35), unit
sizes are large (e.g. n = 50) and systematic segregation is high (e.g. Dpop = 0.634), no correction
is needed, because the mean value of observed segregation is only slightly different from Dpop.
However, in much social science data, the phenomenon of interest tends to have moderate (Dpop

around 0.1–0.4) rather than very high levels of segregation. In this range, the bias corrections
tend to work well and are necessary, provided that p and E[nj ] are not both simultaneously very
small. For example, when the minority proportion is 10% and unit sizes are expected to be 30,
if underlying segregation is 0.225, the observed index of segregation would be upward biased by
0.093, whereas the density-corrected estimator would successfully reduce this bias to just 0.005.

The bias-corrected estimator Dbc is dominated in both bias and rmse by the density-corrected
estimator Ddc in almost all experiments, except for the cases of high Dpop values and larger
minority proportions, in which the bias and rmse of both corrected estimates are small.

2 Although this set of segregation curves cannot represent all distributions of segregation, it is a sufficient set to examine
different levels of systematic segregation for the purposes of this paper.
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Table 1(a). Bias and rmse of D and bias-corrected estimators for J = 50, E[nj ] = 10 and combinations
of p and Dpop.

Dpop

0 0.056 0.127 0.225 0.382 0.634

E[nj ] = 10 bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse

p = 0.05

D 0.60 0.61 0.55 0.55 0.48 0.49 0.40 0.40 0.29 0.29 0.15 0.15

Dbc 0.48 0.49 0.43 0.43 0.37 0.37 0.29 0.30 0.20 0.20 0.097 0.11

Ddc 0.40 0.41 0.35 0.35 0.29 0.29 0.21 0.22 0.13 0.14 0.058 0.086

p = 0.10

D 0.41 0.42 0.36 0.36 0.30 0.30 0.23 0.24 0.15 0.16 0.071 0.084

Dbc 0.26 0.27 0.21 0.22 0.15 0.17 0.097 0.12 0.043 0.077 0.009 0.058

Ddc 0.26 0.27 0.21 0.22 0.15 0.16 0.094 0.11 0.040 0.072 0.011 0.056

p = 0.20

D 0.31 0.31 0.26 0.26 0.20 0.21 0.15 0.15 0.089 0.097 0.039 0.053

Dbc 0.19 0.20 0.14 0.15 0.090 0.11 0.046 0.067 0.011 0.051 −0.002 0.044

Ddc 0.17 0.18 0.12 0.13 0.070 0.082 0.024 0.052 −0.009 0.050 −0.015 0.047

p = 0.35

D 0.26 0.26 0.21 0.21 0.16 0.16 0.11 0.11 0.063 0.072 0.026 0.042

Dbc 0.16 0.16 0.11 0.12 0.063 0.074 0.027 0.050 0.004 0.043 −0.002 0.038

Ddc 0.15 0.15 0.095 0.10 0.048 0.060 0.009 0.041 −0.013 0.045 −0.012 0.040

Notes: Bias and rmse reported for 5,000 replications. Number of bootstrap repetitions 250.

4. TESTS OF NO SYSTEMATIC SEGREGATION

To complement the bias-corrected estimators of D, we provide a test for no systematic
segregation. We consider two alternative methods to test whether we can reject the hypothesis that
the level of segregation observed was generated by randomness alone, Dpop = 0. It is common in
the literature to run a randomization procedure to generate the distribution of D under the null of
no systematic segregation – see, e.g., Boisso et al. (1994) – and D is compared to this distribution.
Here, we generate the distribution of D under the null of no systematic segregation by creating
B samples generated using the restricted conditional probabilities p̂0

j = p̂1
j = p̂j = (n0

j + n1
j )/n

and calculating D in each sample, which we denote D∗. The null hypothesis H0 : Dpop = 0 is
then rejected at level α if 1/B

∑B
b=1 I(D∗

b > D) < α, where I(.) is the indicator function.
Alternatively, following the statistical model developed in Section 2, we can employ a

likelihood ratio test for the hypothesis

H0 : p0
j = p1

j = pj ∀j,

with test statistic

LR = 2
J∑

j=1

(
n0

j log p̂0
j + n1

j log p̂1
j − nj log p̂j

)
,
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Table 1(b). Bias and rmse of D and bias-corrected estimators for J = 50, E[nj ] = 30 and combinations
of p and Dpop.

Dpop

0 0.056 0.127 0.225 0.382 0.634

E[nj ] = 30 bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse

p = 0.05

D 0.33 0.34 0.28 0.28 0.22 0.23 0.16 0.17 0.099 0.11 0.044 0.057

Dbc 0.21 0.21 0.16 0.16 0.10 0.11 0.055 0.074 0.015 0.054 −0.003 0.046

Ddc 0.18 0.18 0.13 0.13 0.072 0.084 0.024 0.054 −0.009 0.053 −0.015 0.049

p = 0.10

D 0.24 0.24 0.19 0.19 0.14 0.14 0.093 0.098 0.052 0.061 0.022 0.036

Dbc 0.14 0.15 0.095 0.10 0.051 0.063 0.019 0.043 0.000 0.040 −0.003 0.034

Ddc 0.13 0.14 0.084 0.089 0.038 0.051 0.005 0.038 −0.010 0.041 −0.008 0.035

p = 0.20

D 0.18 0.18 0.13 0.13 0.088 0.090 0.054 0.059 0.029 0.039 0.012 0.026

Dbc 0.11 0.11 0.060 0.065 0.024 0.038 0.005 0.031 −0.001 0.031 −0.001 0.025

Ddc 0.099 0.10 0.051 0.056 0.014 0.030 −0.006 0.031 −0.008 0.032 −0.004 0.026

p = 0.35

D 0.15 0.15 0.10 0.11 0.065 0.068 0.038 0.044 0.020 0.030 0.008 0.021

Dbc 0.090 0.092 0.045 0.050 0.014 0.029 0.002 0.027 −0.001 0.026 −0.000 0.021

Ddc 0.083 0.086 0.038 0.043 0.005 0.024 −0.007 0.027 −0.006 0.027 −0.003 0.021

Notes: Bias and rmse reported for 5,000 replications. Number of bootstrap repetitions 250.

which follows an asymptotic χ2
J−1 distribution. This asymptotic distribution is for large n and

fixed J , and therefore for large unit sizes. For large J and/or small unit sizes, the asymptotic
approximation can be expected to be poor, as we originally found in our simulation results
discussed below. Therefore, we also utilize a bootstrap procedure to improve the size properties
of the test. Let LR∗ be the value of the likelihood ratio test in a sample generated from
p̂0

j = p̂1
j = p̂j = (n0

j + n1
j )/n. Then the null hypothesis of no systematic segregation is rejected

at level α if 1/B
∑B

b=1 I(LR∗
b > LR) < α.

Table 2 presents the test results for J = 50 and E[nj ] = 10 and E[nj ] = 30, for various
values of Dpop and minority proportions p. The number of Monte Carlo replications was 10,000
with 599 bootstrap samples. The size and power properties of the two tests are virtually identical.
They have good size properties for all minority proportions p, with overall LR dominating the
randomization test. The tests fail to reject the null for small values of Dpop combined with small
minority proportions p, exactly the circumstances in which the bias corrections do not remove
much of the bias of D. Clearly, any calculation of D and the bias-corrected estimators should be
accompanied by D∗ and/or bootstrapped LR tests. If these tests fail to reject, no further inference
should be pursued.
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Table 1(c). Bias and rmse of D and bias-corrected estimators for J = 50, E[nj ] = 50 and combinations
of p and Dpop.

Dpop

0 0.056 0.127 0.225 0.382 0.634

E[nj ] = 50 bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse

p = 0.05

D 0.26 0.26 0.21 0.21 0.15 0.16 0.11 0.11 0.060 0.069 0.026 0.040

Dbc 0.15 0.16 0.11 0.11 0.061 0.072 0.024 0.048 0.003 0.042 −0.003 0.035

Ddc 0.15 0.15 0.098 0.10 0.052 0.063 0.016 0.042 −0.003 0.041 −0.005 0.035

p = 0.10

D 0.19 0.19 0.14 0.14 0.093 0.096 0.058 0.063 0.031 0.041 0.013 0.027

Dbc 0.11 0.11 0.064 0.070 0.027 0.040 0.007 0.032 −0.001 0.031 −0.001 0.026

Ddc 0.10 0.11 0.056 0.061 0.017 0.032 −0.003 0.031 −0.007 0.032 −0.004 0.027

p = 0.20

D 0.14 0.14 0.093 0.094 0.057 0.060 0.033 0.038 0.017 0.027 0.008 0.020

Dbc 0.082 0.085 0.039 0.044 0.011 0.026 0.001 0.024 −0.001 0.023 0.000 0.020

Ddc 0.076 0.078 0.032 0.037 0.003 0.023 −0.006 0.025 −0.005 0.024 −0.002 0.020

p = 0.35

D 0.12 0.12 0.072 0.073 0.041 0.044 0.023 0.029 0.012 0.022 0.005 0.016

Dbc 0.069 0.071 0.027 0.032 0.005 0.021 −0.000 0.020 −0.000 0.020 −0.000 0.017

Ddc 0.064 0.066 0.021 0.027 −0.002 0.020 −0.006 0.022 −0.003 0.020 −0.001 0.017

Notes: Bias and rmse reported for 5,000 replications. Number of bootstrap repetitions 250.

5. INFERENCE ON D

Having established that the bias corrections work well for a large part of the parameter space,
we next develop reliable inference procedures such as 95% confidence intervals and Wald test
statistics for equivalence of segregation in different areas. Inference based on a bias-corrected
estimator is, of course, expected to work well only in that part of the parameter space where
the bias corrections work well (i.e. where the tests of no systematic segregation reject the null
strongly, as indicated in Table 2). We start by deriving the asymptotic distribution of D given our
statistical framework, following the procedures as developed in Ransom (2000).

Under the data-generating process as described in Section 2, for 0 < pc
j < 1, with c =

0, 1; j = 1, . . . , J ;
∑

j pc
j = 1, the estimated conditional probabilities p̂c

j , are asymptotically
normally distributed, as

√
nc

⎡
⎢⎢⎢⎣

pc
1 − pc

1
pc

2 − pc
2

...
pc

J − pc
J

⎤
⎥⎥⎥⎦ = N

⎛
⎜⎜⎜⎝0,

⎡
⎢⎢⎢⎣

pc
1(1 − pc

1) −pc
1p

c
2 . . . −pc

1p
c
J

−pc
1p

c
2 pc

2(1 − pc
2) . . . −pc

2p
c
J

...
...

. . .
...

−pc
1p

c
J −pc

2p
c
J . . . pc

J (1 − pc
J )

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ ≡ N (0,�c).
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Table 2. Rejection frequencies of D randomization and likelihood ratio tests, for J = 50, level α = 0.05.

Dpop

p Test 0 0.056 0.127 0.225 0.382 0.634

E[nj ] = 10

0.05 D∗ 0.096 0.104 0.131 0.237 0.619 0.998

LR 0.066 0.074 0.098 0.194 0.594 0.999

0.10 D∗ 0.056 0.069 0.112 0.307 0.878 1.000

LR 0.069 0.083 0.132 0.362 0.919 1.000

0.20 D∗ 0.067 0.086 0.192 0.618 0.999 1.000

LR 0.062 0.080 0.183 0.606 0.998 1.000

0.35 D∗ 0.065 0.090 0.269 0.827 1.000 1.000

LR 0.053 0.077 0.232 0.791 1.000 1.000

E[nj ] = 30

0.05 D∗ 0.060 0.071 0.165 0.534 0.992 1.000

LR 0.051 0.067 0.160 0.546 0.995 1.000

0.10 D∗ 0.056 0.086 0.285 0.882 1.000 1.000

LR 0.054 0.080 0.275 0.877 1.000 1.000

0.20 D∗ 0.057 0.117 0.553 0.997 1.000 1.000

LR 0.050 0.108 0.537 0.997 1.000 1.000

0.35 D∗ 0.055 0.147 0.775 1.000 1.000 1.000

LR 0.050 0.138 0.777 1.000 1.000 1.000

Notes: Rejection frequencies reported for 10,000 replications. Number of bootstrap repetitions 599.

As n1 = pn and n0 = (1 − p)n, the limiting distribution of D can then be obtained via the delta
method:

√
n(D − Dpop)

d→ N
(
0, λ
(p−1�1 + (1 − p)−1�0)λ

)
,

where λ is a J -vector with rth element λr = sign(p1
r − p0

r )/2, where p sign(q) = 1 if q > 0 and
sign(q) = −1 if q < 0.3 This follows from

∂Dpop

∂p1
r

= ∂

∂p1
r

1

2

J∑
j=1

|p1
j − p0

j | = sign(p1
r − p0

r )/2, (5.1)

and

∂Dpop

∂p0
r

= ∂

∂p0
r

1

2

J∑
j=1

|p1
j − p0

j | = −sign(p1
r − p0

r )/2. (5.2)

3 Although �c is singular because
∑

j pc
j = 1, exactly the same results are obtained by redefining D as a function of

2(J − 1) probabilities only.

C© 2014 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.



52 R. Allen et al.

Clearly, this derivation is valid only when |p1
r − p0

r | is not in a root-n neighbourhood of zero, as
discussed in Section 3. The asymptotic distribution of D is then approximated by

D
a∼ N

(
Dpop, n

−1λ
(p−1�1 + (1 − p)−1�0)λ
)
,

or, equivalently,

D
a∼ N

(
Dpop, λ


(�1/n1 + �0/n0)λ
)
,

which can form the basis for constructing confidence intervals and Wald test statistics for
hypotheses of the form H0 : Dpop = δ. If we denote by λ̂ and �̂

c
the estimated counterparts

of λ and �c, and substitute the observed fractions p̂c
j for pc

j , the Wald test is then computed as

W = (D − δ)2

λ̂
(�̂
1
/n1 + �̂

0
/n0)λ̂

, (5.3)

and converges in distribution to the χ2
1 distribution under the null.

Clearly, we do not expect this approximation to work well when δ, group sizes and/or
minority proportions are small, if only on account of the upward bias of D as established in the
previous sections. However, the Wald test statistic W is asymptotically pivotal in the sense that
its limiting distribution is not a function of nuisance parameters. We can therefore use bootstrap
P -values, which may result in an improvement in the finite-sample behaviour of the test; see,
e.g., Hall (1992), Davison and Hinkley (1997), Davidson and MacKinnon (2000), and Davidson
(2009). If we denote the Wald statistic in the bth bootstrap sample as Wb, calculated as

Wb = (Db − D)2

λ̂

b (�̂

1
b/n1 + �̂

0
b/n0)λ̂b

, (5.4)

then the bootstrap P -value is given by 1/B
∑B

b=1 I(Wb > W ). This bootstrap procedure is
equivalent to a symmetric two-tailed test for the t-statistic.

Let τ denote the t-statistic that is the signed square root of the Wald statistic (5.3). Let τb

denote the signed square root of (5.4). Then, a test that does not assume symmetry can be based
on the equal-tail bootstrap P -value

2 min
[ 1

B

B∑
b=1

I(τb < τ ),
1

B

B∑
b=1

I(τb > τ )
]
.

Alternatively, we can base the inference directly on any of the bias-corrected estimators of
Dpop. In order to estimate the variance of the bias-corrected estimators, we again perform a
bootstrap procedure. For example, denoting the bootstrap estimate of the variance of Ddc by
V̂arb(Ddc), the Wald test based on Ddc is then calculated as

Wdc = (Ddc − δ)2

V̂arb(Ddc)
,

and this is again compared to the χ2
1 distribution.

Figure 2 shows P -value plots for testing the true hypothesis H0 : Dpop = 0.292, for E[nj ] =
30, J = 50 and p = 0.3. The Wald test that is based on the asymptotic normal distribution
of D and uses χ2

1 critical values is denoted W, whereas the Wald test that uses the bootstrap
critical values is denoted Wpb. The test based on the equal-tail bootstrap P -value for the t-test
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Figure 2. P -value plot, H0 : Dpop = 0.292, E[nj ] = 30, J = 50, p = 0.30.

Table 3. Bias and rmse of D and bias-corrected estimators.

Dpop = 0.292 Dpop = 0.292 Dpop = 0.382

E[nj ] = 30, p = 0.30 E[nj ] = 20, p = 0.10 E[nj ] = 30, p = 0.30

bias rmse bias rmse bias rmse

D 0.031 0.038 0.106 0.111 0.022 0.032

Dbc −0.000 0.027 0.020 0.051 −0.001 0.026

Ddc −0.008 0.029 −0.000 0.046 −0.007 0.028

Notes: J = 50 in all designs. Results from 10,000 Monte Carlo replications.

is denoted Tpb. The Wald statistic that uses the density-corrected estimator and its bootstrap
variance estimate is denoted Wdc. The results shown are for 10,000 Monte Carlo replications.
Note that 599 bootstrap samples per replication are drawn for the calculation of the variances
and the bootstrap distribution of the Wald test.

The first column of numbers in Table 3 presents the bias and rmse for the various estimates.
There is an 11% upward bias in D, but Dbc is unbiased. Ddc has a small downward bias of 2.8%.
As is clear from Figure 2, the asymptotic Wald test based on W using the χ2

1 critical values
does not have good size properties. It rejects the true null too often (e.g. at 5% nominal size, it
rejects the null in 18.6% of the replications). In contrast, using the P -values from the bootstrap
distribution of the Wald statistic improves the size behaviour considerably. At the 5% level, the
rejection frequency is now reduced to 6.9%. Using the equal-tailed bootstrap P -values for the
t-test also improves on the size performance of the asymptotic Wald statistic, but it performs less
well than Wpb. Wdc has the same size properties as Wpb.

Figure 3 shows the P -value plot for a similar design, but now for smaller expected group
sizes E[nj ] = 20 and a smaller minority proportion, p = 0.10. The bias of D in this case is
0.106, or 36%, that of Dbc is around 0.020, or 6.5%, while Ddc is unbiased.
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Figure 3. P -value plot, H0 : Dpop = 0.292, E[nj ] = 20, J = 50, p = 0.10.

The size distortions of the test statistics are now more severe. The asymptotic Wald test is
severely size distorted, with a 68% rejection rate at the 5% level. The Wald and asymmetric t-
tests using the bootstrap P -values behave much better, with Tpb behaving somewhat better. At
the 5% level, the rejection frequencies for these tests are 10% and 9.0%, respectively. Here, Wdc

has the best size performance of all tests; it rejects the true null 7.0% of the time at the 5% level
and is the only test where the size properties remain the same as those seen in Figure 2.

There is a one-to-one correspondence between the P -value plots as depicted in Figures 2
and 3 and the coverage properties of the confidence intervals associated with the particular test
statistics. Using the normal approximation, (1 − α)% confidence intervals associated with the
asymptotic Wald and Wbc tests are constructed as

D − z1−α/2

√
V̂ar(D) < Dpop < D + z1−α/2

√
V̂ar(D)

and

Dbc − z1−α/2

√
V̂arb(Dbc) < Dpop < Dbc + z1−α/2

√
V̂arb(Dbc)

respectively, where z1−α/2 is the (1 − α/2) quantile of the standard normal distribution.
For the bootstrap Wald test, the associated confidence interval is given by

D −
√

w∗
1−αV̂ar(D) < Dpop < D +

√
w∗

1−αV̂ar(D),

where w∗
1−α is the 1 − α quantile of the distribution of the bootstrap repetitions Wb. The equal-

tailed bootstrap t-test has the corresponding confidence interval given by

D − τ ∗
1−α/2

√
V̂ar(D) < Dpop < D − τ ∗

α/2

√
V̂ar(D),
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Table 4. Average lower limit, upper limit and length of 95% confidence intervals.

Test Lower limit Upper limit Length

Wpb 0.228 0.568 0.340

Tpb 0.212 0.378 0.166

Wdc 0.209 0.374 0.167

Notes: Dpop = 0.292, E[nj ] = 20, J = 50, p = 0.10.

where τ ∗
1−α/2 and τ ∗

α/2 are, respectively, the 1 − α/2 and α/2 quantiles of the distribution of the
bootstrap repetitions τb.

For the example with E[nj ] = 20 and p = 0.10 as described above, the observed rejection
frequencies of 68%, 9.8%, 9.0% and 7.0% for the W, Wpb, Tpb and Wdc tests, respectively,
translate into coverage probabilities of 32%, 90.2%, 91% and 93% of the associated 95%
confidence intervals. Given the upward bias of D, this leads to an interesting observation
concerning the confidence interval based on the bootstrap Wald test Wpb. As the size and
associated coverage properties of this test are reasonably good, but as the confidence interval
is symmetric around the upward biased D, this suggests that the Wpb-based confidence
interval will be quite large. Table 4 shows the averages of the lower and upper limits and
lengths of the 95% confidence intervals associated with Wpb, Tpb, and Wdc respectively. This
confirms that the Wpb-based confidence interval is, on average, much wider than those based
on Wdc and Tpb. Whereas the lower limit is quite similar to those of the other two confidence
intervals, its upper limit is much higher, as expected owing to the symmetry around the upward
biased D. Clearly, Wpb can therefore have poor power properties when D has substantial
bias.

In principle, a likelihood ratio test of the hypothesis Dpop = δ is possible. In practice,
obtaining the maximized log-likelihood under that constraint is a largely intractable problem,
because the constraint is not differentiable with respect to p0

j and p1
j when they are

equal.
The test results presented here show that inference can be based on the Wpb, Tpb and Wdc

tests when the sample size, the value of Dpop and the minority proportion are such that the bias
corrections work reasonably well, although, as Figures 2 and 3 show, some size distortions occur
also for these tests. We next consider the case where Dpop = 0.127, E[nj ] = 10 and p = 0.10.
From Tables 1(a)– (c), it is clear that the bias-corrected estimators remain biased in this case, with
Ddc having a bias of 0.15. Table 2 also shows that the tests for no systematic segregation only
reject the null around 12% of the time. The rejection frequencies at the 5% level for the W , Wpb,
Tpb and Wdc tests are 100%, 42%, 26% and 80%, respectively, indicating that Wdc in this case
is severely oversized, as expected, whereas Tpb performs best, but is still oversized substantially.
When we increase E[nj ] to 30, the bias of Ddc is reduced to 0.038, and the tests reject the null
of no systematic segregation around 28% of the time. The rejection frequencies at the 5% level
for W , Wpb, Tpb and Wdc are now 99%, 35%, 25% and 16%, respectively, showing a substantial
improvement of the performance of Wdc, whereas the performance of Tpb is similar to before. At
the other end of the scale, when we set Dpop = 0.634, E[nj ] = 30 and p = 0.35, all tests work
well with rejection frequencies at the 5% level of 6.6%, 5.2%, 6.5% and 5.2% for W , Wpb, Tpb

and Wdc, respectively.
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6. TESTS FOR EQUALITY OF SEGREGATION

A researcher may well be interested in determining whether segregation has changed
significantly within an area over time, or whether segregation in one area is significantly different
from that in another similar, or perhaps neighbouring, area. We consider the performances of the
test statistics for comparing the two hypothetical areas for which the results were simulated
above. Area 1 has J = 50, E[nj ] = 30 and p = 0.30, whereas Area 2 has J = 50, E[nj ] = 20
and p = 0.10. To study the size properties of the tests for the null hypothesis

H0 : Dpop,1 = Dpop,2,

we set the two area population segregation measures Dpop,1 = Dpop,2 = 0.292 as before. Given
the area-specific conditional allocation probabilities, the allocations in the areas are determined
independently and therefore the Wald test

W = (D1 − D2)2

V̂ar(D1) + V̂ar(D2)

is asymptotically χ2
1 distributed. The Wald test based on, e.g., the density-corrected estimates is

defined as

Wbc = (Ddc,1 − Ddc,2)2

V̂arb(Ddc,1) + V̂arb(Ddc,2)
,

whereas the bootstrap P -values for the Wpb test are based on the distribution of the bootstrap
repetitions of

Wb =
(
Db,1 − Db,2 − (D1 − D2)

)2
V̂ar(Db,1) + V̂ar(Db,2)

,

where Db,1 and Db,2 are calculated from independent bootstrap repetitions. The bootstrap P -
values for the Tpb test are obtained in an equivalent way.

As an example, the bias of D1 − D2 as an estimate for Dpop,1 − Dpop,2 can be obtained
from the results as presented in Table 3 and is equal to −0.075. As the covariance between
D1 and D2 is equal to zero, the rmse can be calculated as ((rmse(D1))2 + (rmse(D2))2 −
2bias(D1)bias(D2))1/2 = 0.085. The equivalent numbers for Ddc,1 − Ddc,2 are −0.007 and 0.054
for the bias and rmse, respectively. Note that this rmse calculation is not exact, because the Monte
Carlo sample covariance between the two area segregation measures is not exactly equal to zero,
but this difference is negligible.

Figure 4 depicts the P -value plots for the true null of equal population segregation measures
Dpop in the two areas. The asymptotic Wald test again over-rejects substantially, 28.2% at the 5%
level. The Wdc test displays the best size properties in this case, rejecting 8.6% of the time at the
5% level, followed by Tpb and then Wpb. The rejection probabilities for these latter tests at the
5% level are 11.3% and 13.4%, respectively.

We next turn to the power properties of these tests when the two population segregation
measures Dpop,1 and Dpop,2 are not equal. We keep Dpop,2 equal to 0.292, but increase Dpop,1 to
0.382. The estimation results for this design are presented in the third column of Table 3. As
discussed above, because D2 is substantially biased upwards, we expect the Wpb test to have low
power. This is confirmed by the P -value plots in Figure 5. The standard Wald test has power
below nominal size, but the bootstrap-based Wald test Wpb completely fails to reject the null
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Figure 4. P -value plot, H0 : Dpop,1 = Dpop,1, size properties.
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Figure 5. P -value plot, H0 : Dpop,1 = Dpop,1, power properties.

of equal segregation. In contrast, the Wald tests based on the bias-corrected estimator and Tpb

show reasonable power properties, with Tpb having the most power to detect this deviation from
the null, although it has not been size-adjusted. The P -value plots, not shown here, for the true
null that Dpop,1 − Dpop,2 = 0.0897 are very similar to those in Figure 4. Clearly, these results
combined show that for simple hypothesis testing, Wdc and Tpb are the test procedures with
reasonably good size and power properties in the settings we have considered.
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Table 5. Bias and rmse of Dbeta1 and Dct.

Dpop

0 0.056 0.127 0.225 0.382 0.634

bias rmse bias rmse bias rmse bias rmse bias rmse bias rmse

D 0.180 0.180 0.130 0.130 0.088 0.090 0.054 0.059 0.029 0.039 0.012 0.026

Ddc 0.099 0.100 0.051 0.056 0.014 0.030 −0.006 0.031 −0.008 0.032 −0.004 0.026

Dbeta1 −0.012 0.037 −0.020 0.037 −0.033 0.042 −0.054 0.060

Dct −0.032 0.075 −0.067 0.089 −0.085 0.091 −0.100 0.110 −0.099 0.100 −0.064 0.085

Notes: E[nj ] = 30, J = 50, p = 0.20. No results reported for Dbeta1 in first two columns owing to the convergence
problems of the estimator.

7. DISCUSSION

Recently, Rathelot (2012) and d’Haultfœuille and Rathelot (2011) have also considered the
problem of measuring segregation when units are small. In their set-up, the number of individuals
in units is small at around 5 or 10, whereas the number of units is large. Indeed, the methods in
these papers rely on large-number-of-units asymptotics. Both papers show that the parametric
method proposed by Rathelot (2012) performs well in the estimation of the dissimilarity index
and other measures of inequality, such as the Gini and the Theil indices. In this set-up, the number
of individuals in unit j , nj , is drawn from a given, unknown distribution. Then, the number of
individuals in unit j having status c, nc

j , is distributed as Binomial(nj , π
c
j ), and π̂ c

j = nc
j /nj

is an unbiased estimate of πc
j . The parametric method of Rathelot (2012) is then to assume

that πc
j is distributed as a mixture of Beta distributions, leading to the Beta-Binomial model.

In the simulations in Rathelot (2012), it is shown that estimates of the dissimilarity index from
this Beta-Binomial model have better properties in terms of smaller bias than the bootstrap bias
correction in the setting of a large number of small units. We have tried to analyse the behaviour
of this estimator in our set-up, but found in the simulations of our design of Section 3.1 that the
Beta-Binomial estimation procedure often did not converge, making it difficult to compare the
performance of this estimator with the others in our set-up.4 For larger minority fractions and
values of Dpop, convergence of the ML estimator is easier to obtain in our design. Table 5 shows
the estimation results for Dbeta1, which is the Beta-Binomial estimator with a one-component
Beta distribution, for E[nj ] = 30, J = 50, p = 0.20, where we obtained valid Monte Carlo
results for Dpop = 0.127 and larger. The results show that in this design, Dbeta1 behaves similarly
to Ddc for Dpop = 0.127, but has a substantially larger bias and/or rmse for larger values of Dpop.
For this design, increasing the number of mixtures of beta distributions to two does not change
the results, because in almost all cases this model converges to the one-component model. The
Beta-Binomial estimator is not consistent for a fixed number of units and unit sizes going to
infinity. For example, when we increase the expected sample size to E[nj ] = 100, the bias and
rmse of Dbeta1 increases to −0.042 and 0.044, respectively, when Dpop = 0.382. The bias and
rmse of D itself in that case are 0.009 and 0.018, respectively.

4 We found this both when using the R-program, kindly provided to us by Roland Rathelot, and when using our own
GAUSS code.
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Table 6. Results for designs with unequal expected unit sizes.

n = 1500, p = 0.3 n = 1000, p = 0.1

bias rmse bias rmse

Design 1

D 0.022 0.032 0.083 0.091

Dbc −0.003 0.027 0.018 0.050

Ddc −0.010 0.029 0.009 0.047

Design 2

D 0.027 0.035 0.094 0.100

Dbc −0.002 0.027 0.016 0.049

Ddc −0.009 0.028 0.005 0.045

Rejection frequencies for tests of H0 : Dpop = 0.292

Nominal size 0.10 0.05 0.10 0.05

Design 1

W 0.192 0.116 0.596 0.457

Wpb 0.106 0.056 0.200 0.119

Tpb 0.162 0.100 0.175 0.100

Wdc 0.135 0.078 0.127 0.071

Design 2

W 0.246 0.154 0.726 0.596

Wpb 0.115 0.064 0.167 0.096

Tpb 0.161 0.095 0.167 0.095

Wdc 0.134 0.075 0.134 0.076

Notes: J = 50, Dpop = 0.292; 10,000 Monte Carlo replications, 599 bootstrap repetitions.

Another bias-corrected measure is the one proposed by Carrington and Troske (1997), which
has been widely used in school segregation (Söderström and Uusitalo, 2010) and occupational
segregation (Hellerstein and Neumark, 2008) research. Carrington and Troske (1997) argue
that segregation indices can be modified to take into account the underlying value under no
systematic segregation, when p1

j = p0
j , j = 1, . . . , J . They propose a modified segregation index

that measures the (economic) extent to which a sample deviates from the expected value of
D under no systematic segregation, denoted D∗ = E[D]p1

j =p0
j
, which can be calculated as in

Section 4. They argue that their new index of systematic dissimilarity does not depend on the
margins in the area and is therefore a better means of comparing the extent to which systematic
segregation exists. Their measure, denoted Dct here, is defined as

Dct = D − D∗

1 − D∗ if D ≥ D∗; Dct = D − D∗

D∗ if D < D∗,

and hence Dct ∈ [−1, 1]. Dct can be interpreted as the extent to which the area is more dissimilar
than random allocation would imply, expressed as a fraction of the maximum amount of such
excess dissimilarity that could possibly occur. Dct = 0 implies that the allocation of individuals
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Table 7. Test results for H0 : Dpop,1 = Dpop,2.

Design 1 Design 2

Size W Wpb Tpb Wdc W Wpb Tpb Wdc

0.10 0.293 0.221 0.193 0.139 0.352 0.208 0.186 0.138

0.05 0.184 0.140 0.119 0.079 0.234 0.125 0.118 0.081

Notes: See Table 6.

Table 8. Key parameters of primary schools across English LAs.

Number Number Average %

LA name of pupils of schools cohort size FSM D

North-East Lincolnshire 2005 46 44 21 0.43

North Lincolnshire 2011 57 35 13 0.36

Blackburn 2105 51 41 26 0.34

Oldham 2990 86 35 21 0.47

Camden 1394 41 34 42 0.23

Greenwich 2666 66 40 36 0.29

Hackney 2194 54 41 43 0.22

Hammersmith and Fulham 1177 39 30 45 0.30

Islington 1845 48 38 41 0.26

Kensington and Chelsea 881 27 33 36 0.32

Lambeth 2428 60 40 40 0.24

Lewisham 2833 70 40 29 0.30

Southwark 2929 72 41 36 0.21

Tower Hamlets 2703 68 40 61 0.20

Wandsworth 2124 60 35 27 0.29

Westminster 1336 39 34 39 0.33

in the area is equivalent to no systematic segregation. It is worth noting that Dct is almost identical
to the index proposed by Winship (1977), which was criticized by Falk et al. (1978) and then
partially withdrawn by Winship (1978). The problem with Dct is that it is not entirely clear what
it is intended to achieve. Dct is always lower than Dpop, but tends to Dpop for large unit sizes. In
our simulations, for many values of the parameters, Dct underestimates Dpop by a larger amount
than D itself overestimates Dpop. As an illustration of this, Table 5 presents simulation results for
E[nj ] = 30, J = 50 and p = 0.20. The problem with Dct is that decomposition of a segregation
index into one part produced by systematic segregation and another part produced by randomness
cannot be done additively.

In the previous Monte Carlo designs, all unit sizes were equal in expectation. We next perform
the simulations with designs like those of the first two columns in Table 3, but for unequal
expected unit sizes. In the first design, labelled Design 1 in Table 6, we split the 50 units into half
with a smaller expected group size and half with a larger expected group size. For the example
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Table 9. Bias-corrected dissimilarity indices, confidence intervals and test statistics for North-East and
North Lincolnshire.

North-East Lincolnshire North Lincolnshire

D 0.433 0.364

Dbc 0.420 0.322

Ddc 0.416 0.334

LR-test, bootstrap P -value 0 0

CI-W [0.386–0.481] [0.306–0.421]

CI-Wpb [0.380–0.487] [0.275–0.452]

CI-Tpb [0.371–0.466] [0.265–0.371]

CI-Wdc [0.367–0.465] [0.278–0.390]

H0 : Dpop,NEL = Dpop,NL, P -values

W 0.067

Wpb 0.114

Tpb 0.000

Wdc 0.032

Notes: CI are 95% confidence intervals. Number of bootstrap repetitions 999.

Table 10. Bias-corrected dissimilarity indices, confidence intervals and test statistics for Blackburn and
Oldham.

Blackburn Oldham

D 0.342 0.472

Ddc 0.306 0.446

LR test, bootstrap P -value 0 0

CI-Tpb [0.288–0.362] [0.420–0.485]

CI-Wdc [0.263–0.348] [0.410–0.483]

H0 : Dpop,Blackburn = Dpop,Oldham, P -values

Tpb 0.000

Wdc 0.000

Notes: CI are 95% confidence intervals. Number of bootstrap repetitions 999.

containing 1500 individuals, these sizes are approximately 10 and 50; for the second example of
1000 individuals, these are approximately 7 and 33. In the second design, labelled Design 2 in
the table, all expected unit sizes are different, within the aforementioned ranges in steps of just
under one individual. Tables 6 and 7 present the estimation and testing results. The results are all
very similar to those with equal expected unit sizes, as presented in Sections 5 and 6.

8. SOCIAL SEGREGATION IN SCHOOLS

In this section, we illustrate our inference procedures with an empirical application relating to
social segregation in primary schools in England. The dichotomous measure is an indicator of
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Table 11. Bias-corrected dissimilarity indices and confidence intervals for Inner London.

D Ddc LR(P ) CI–Wdc CI–Tpb

Tower Hamlets 0.197 0.162 0 [0.126–0.192] [0.125–0.198]

Southwark 0.206 0.165 0 [0.137–0.201] [0.128–0.202]

Hackney 0.219 0.184 0 [0.154–0.225] [0.142–0.226]

Camden 0.231 0.188 0 [0.153–0.236] [0.140–0.237]

Lambeth 0.240 0.209 0 [0.172–0.241] [0.170–0.248]

Islington 0.257 0.231 0 [0.183–0.258] [0.188–0.273]

Wandsworth 0.290 0.243 0 [0.219–0.292] [0.200–0.286]

Greenwich 0.286 0.251 0 [0.226–0.291] [0.213–0.288]

Hammersmith and Fulham 0.303 0.264 0 [0.226–0.323] [0.208–0.319]

Lewisham 0.304 0.274 0 [0.244–0.312] [0.235–0.312]

Kensington and Chelsea 0.317 0.296 0 [0.231–0.347] [0.230–0.361]

Westminster 0.328 0.302 0 [0.257–0.347] [0.252–0.352]

Notes: CI are 95% confidence intervals. Number of bootstrap repetitions 999.

poverty based on eligibility for free school meals (FSMs). This context is useful as it naturally
produces small unit sizes, and shows a range of minority proportions and overall populations
across different LAs. We use administrative data collected by the Department for Children,
Families and Schools, and made available to researchers as part of the National Pupil Database
on pupils aged 10/11 in English primary schools in 2006. Measurement of school segregation
using this data set has been carried out by many researchers; see Allen and Vignoles (2008),
Burgess et al. (2006), and Gibbons and Telhaj (2006). Using the tools developed above, we can
assess whether the small unit sizes and/or small minority populations lead to incorrect inferences
about differences in segregation across areas. We provide two cases. First, we compare two
similar pairs of LAs, showing that quite small differences in their characteristics imply different
outcomes of inference; these are North-East Lincolnshire and North Lincolnshire, and Blackburn
and Oldham. Second, we compare all the different LAs in inner-city London, and consider
which pairwise comparisons yield significant differences. Table 8 shows the descriptive statistics
and the dissimilarity indices of the LAs. North-East Lincolnshire and North Lincolnshire have
almost the same number of pupils, 2005 and 2011 respectively, but differ in the number of
schools, 46 and 57 respectively, and consequently also average cohort size. They also differ
in the percentages of children eligible for FSMs, 21% and 13% respectively. The dissimilarity
index for North-East Lincolnshire is 0.43, higher than that of North Lincolnshire, which has an
index of 0.36. Blackburn and Oldham differ rather more in size, but have closer average unit
sizes, and slightly higher percentages of children eligible for FSMs.

Are the school allocations in North-East Lincolnshire more segregated than those in North
Lincolnshire? Table 9 shows that the observed D marginally overstates the level of segregation in
each LA, but the bias-corrected estimates of Dpop do not alter the ranking. Table 9 further presents
the various test procedures and confidence intervals as described in the previous section. Here,
we generate 999 bootstrap samples. The LR test for no systematic segregation clearly rejects for
both LAs, with both bootstrap P -values equal to 0. The rejection of the null of equal segregation
in North-East Lincolnshire and North Lincolnshire depends on the test statistics employed. Using
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Table 12. P -values for tests of equivalence of Dpop for Inner London.

Sou Hac Cam Lam Isl Wan Gre Ham Lew Ken Wes

Tower 0.725 0.202 0.176 0.040 0.014 0.003 0.000 0.001 0.000 0.000 0.000

Hamlets 0.899 0.426 0.389 0.081 0.016 0.005 0.001 0.003 0.000 0.000 0.000

Southwark 0.368 0.310 0.094 0.030 0.000 0.000 0.000 0.000 0.000 0.000

0.502 0.454 0.107 0.022 0.007 0.001 0.004 0.000 0.001 0.000

Hackney 0.875 0.466 0.234 0.016 0.000 0.006 0.000 0.002 0.000

0.897 0.388 0.123 0.054 0.019 0.024 0.002 0.005 0.000

Camden 0.631 0.338 0.020 0.016 0.008 0.002 0.004 0.000

0.511 0.195 0.098 0.045 0.044 0.007 0.009 0.001

Lambeth 0.555 0.046 0.034 0.028 0.002 0.014 0.002

0.457 0.250 0.128 0.111 0.020 0.025 0.004

Islington 0.214 0.126 0.098 0.038 0.064 0.008

0.690 0.489 0.351 0.142 0.101 0.033

Wandsworth 0.853 0.587 0.376 0.314 0.124

0.795 0.561 0.300 0.187 0.081

Greenwich 0.655 0.494 0.350 0.150

0.696 0.398 0.239 0.106

Hammersmith 0.911 0.653 0.396

and Fulham 0.776 0.467 0.318

Lewisham 0.663 0.388

0.571 0.382

Kensington 0.779

and Chelsea 0.880

Notes: Top and bottom rows are for Tpb and Wdc, respectively. Number of bootstrap repetitions 999.

the test statistics Wdc and Tpb, we reject the null of equal segregation in the two LAs at the 5%
and 1% levels, respectively.

Table 10 shows test statistics for Blackburn and Oldham. In this example, we can reject, with
a high degree of confidence, the null of equal segregation in these areas. This greater confidence
than in the Lincolnshire example is possible, despite similar segregation levels, because the LAs
are slightly larger and the minority proportions are higher.

For our second illustration, Table 11 compares observed and density-corrected segregation
levels across the 12 LAs in Inner London. The density correction makes little differences to
the ranking of segregation levels, with just Wandsworth and Greenwich switching positions.
Results for the tests of equivalence of Dpop in Table 12 show that the LAs can be approximately
divided into three groups, with possible multiple membership, where the tests do not reject the
null of equal segregation. These groups are: Tower Hamlets, Southwark and Hackney, with the
lowest level of segregation; Hackney, Camden and Lambeth, with medium level of segregation;
Wandsworth, Greenwich, Hammersmith and Fulham, Lewisham, Kensington and Chelsea, and
Westminster with the highest level of segregation. Islington is a medium-segregation LA with
some overlap with the group of highest-segregation LAs.
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9. CONCLUSIONS

To make statements about the true underlying degree of segregation, or to understand the
processes causing segregation, it is desirable to measure the level of systematic segregation.
However, where minority proportions and unit sizes are small, the level of segregation observed
by researchers in their data is known to be significantly greater than systematic segregation.
Furthermore, because the size of the bias of observed segregation over systematic segregation is
known to be a function of minority proportion, unit sizes and systematic segregation, differences
in any of these parameters between areas or over time may lead to incorrect inferences.

In this paper, we have proposed and tested procedures for adjusting the dissimilarity
index of segregation for this bias. Our corrections work well, provided both the minority
proportion and unit size are not very small. Where very small minority proportions and unit
sizes render our corrections useless, we show that levels of segregation are often not statistically
distinguishable from zero. We have developed and tested our statistical framework using the
index of dissimilarity, D, but it can, in principle, be extended to other segregation indices.

From our statistical framework, we have developed tests for a null of no systematic
segregation and a null of equal segregation in two areas, and we have established confidence
intervals for levels of systematic segregation. In tests using unit sizes, minority proportions and
underlying segregation levels similar to those encountered by social scientists, the Wald statistics
using the bootstrap variance estimate for the bias-corrected estimators and the test based on the
equal-tail bootstrap P -value for the t-test (Tpb) are found to perform best. The methods proposed
in this paper provide a framework for more reliable inference as to levels of segregation, which
will aid the further investigation of the causes of segregation.
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APPENDIX

In this Appendix, we consider two methods of bias correction, which, although somewhat effective, turn
out not to be as effective as the density-correction method of Section 3.

The expectation of the folded normal variable Z of which the density is given by (3.3) is easily seen to
be E[Z] = 2φ(θ ) + θ (2�(θ ) − 1) ≡ m(θ ). If we think of Z as an estimator of θ , then the bias is

b(θ ) = m(θ ) − θ = 2(φ(θ ) + θ (�(θ ) − 1)).

The bias function b(θ ) is shown in Figure A1. It decreases monotonically from its value of (2/π )1/2 at
θ = 0, which corresponds to μ = 0, and tends rapidly to 0 for values of θ greater than around 2.5.
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Figure A1. Bias function b(θj ).

Recall that θ̂j = |p̂1
j − p̂0

j |/σ̂j . Using the function b(θ ) to estimate the bias of θ̂j leads to a bias-
corrected estimator of Dpop:

Dbc,1 = D − 1

2

J∑
j=1

σ̂j b(θ̂j ),

As with the bootstrap bias correction, because of the shape of b(θ ), we do not expect this correction to work
well with small unit sizes combined with small values for Dpop.

Another approach pretends that θ̃j really has expectation m(θj ):

E[θ̃j − m(θj )] = 0.

We can treat this relation as an estimating equation for θj , thereby defining a new estimator θ̂ bc
j as

θ̂ bc
j = m−1(θ̃j ).

Because, in practice, we must estimate σj , we end up with the bias-corrected estimator

Dbc,2 = 1

2

J∑
j=1

σ̂jm
−1(max[(2/π )1/2, θ̂j]).

The inverse function m−1 cannot be expressed analytically in closed form, but it is easy to compute.
Its argument must not be smaller than (2/π )1/2, because that is the smallest value of m(θj ). Thus, any θ̂j

smaller than this cut-off leads to a zero contribution to Dbc,2.
It is clear that the new estimator Dbc,2 is still biased, for two reasons. First, m is a non-linear function

and, second, the random quantities σ̂j appear in the denominator of the argument of m−1.
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