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ABSTRACT
Detailed anatomical understanding of the human brain is

essential for unraveling its functional architecture, yet cur-

rent reference atlases have major limitations such as lack

of whole-brain coverage, relatively low image resolution,

and sparse structural annotation. We present the first digital

human brain atlas to incorporate neuroimaging, high-

resolution histology, and chemoarchitecture across a com-

plete adult female brain, consisting of magnetic resonance

imaging (MRI), diffusion-weighted imaging (DWI), and 1,356

large-format cellular resolution (1mm/pixel) Nissl and

immunohistochemistry anatomical plates. The atlas is com-

prehensively annotated for 862 structures, including 117

white matter tracts and several novel cyto- and

chemoarchitecturally defined structures, and these annota-

tions were transferred onto the matching MRI dataset.

Neocortical delineations were done for sulci, gyri, and modi-

fied Brodmann areas to link macroscopic anatomical and

microscopic cytoarchitectural parcellations. Correlated neu-

roimaging and histological structural delineation allowed

fine feature identification in MRI data and subsequent struc-

tural identification in MRI data from other brains. This inter-

active online digital atlas is integrated with existing Allen

Institute for Brain Science gene expression atlases and is

publicly accessible as a resource for the neuroscience com-

munity. J. Comp. Neurol. 524:3127–3481, 2016.
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The advent and improvement of noninvasive techni-

ques such as magnetic resonance imaging (MRI), func-

tional (f)MRI, and diffusion-weighted imaging (DWI) have

vastly enriched our understanding of the structure, con-

nectivity, and localized function of the human brain in

health and disease (Glover and Bowtell, 2009; Evans

et al., 2012; Amunts et al., 2014). Interpretation of these

data relies heavily on anatomical reference atlases for

localization of underlying anatomical partitions, which

also provides a common framework for communicating

within and across allied disciplines (Mazziotta et al.,

2001; Toga et al., 2006; Bonnici et al., 2012; Evans

et al., 2012; Caspers et al., 2013a; Annese et al., 2014).

While neuroimaging data are typically registered to prob-

abilistic reference frameworks (Das et al., 2016) to deal

with interindividual variation, they lack the cytoarchitec-

tural resolution of single-brain histological reference

atlases (Evans et al., 2012; Caspers et al., 2013a), which

is essential for more detailed studies of structural and

cellular organization of the brain. There is therefore a

strong need to bridge these levels of resolution to under-

stand structure–function relationships in the human

brain (Caspers et al., 2013a; Pascual et al., 2015).

A tremendous amount of effort has been dedicated to

histology-based parcellation of discrete regions of the

human brain, including the frontal, parietal, temporal,

occipital, cingulate, and perirhinal cortices (Hof et al.,

1995a; Van Essen et al., 2001; Vogt et al., 2001; €Ong€ur

et al., 2003; Scheperjans et al., 2008; Zilles and Amunts,

2009; Ding et al., 2009; Ding and Van Hoesen, 2010;

Goebel et al., 2012; Petrides and Pandya, 2012; Caspers

et al., 2013b), and other regions such as the thalamus,

amygdala, hippocampus, and brainstem (e.g., De Olmos,

2004; Garc�ıa-Cabezas et al., 2007; Jones, 2007; Morel,

2007; Mai et al., 2008; Ding et al., 2010; Paxinos et al.,

2012; Ding and Van Hoesen, 2015). Currently available

large-scale histological reference atlases of the human

brain vary substantially in their degree of brain coverage,

information content, and structural annotation (Table 1),

and much of the more recent work is absent in these

atlases. The most commonly used cytoarchitecture-

based human brain atlas is Brodmann’s cortical map

(Brodmann, 1909; Talairach and Tournoux, 1988; Simić

and Hof, 2015), particularly for its use in annotating

fMRI data, although von Economo’s (von Economo and

Koskinas, 1925) and Sarkisov’s (Sarkisov et al., 1955)

cortical maps are also still referenced. More recently

developed large-scale atlases possess greater anatomical

coverage and multimodal information content, but are

generally limited by their degree of structural delineation,

particularly for neocortical areas that are often refer-

enced only by gyral patterning (Duvernoy, 1999; Fischl

et al., 2004; Damasio, 2005; Mai et al., 2008; Naidich

et al., 2008; Destrieux et al., 2010; Nowinski and Chua,

2013). To overcome these limitations, a 3-dimensional

(3D) model of an adult human brain based on whole-

brain serial sectioning, silver staining, and MRI (Amunts

et al., 2013) was recently created, and a probabilistic

cytoarchitectural atlas (JuBrain; see Caspers et al.,

2013a) is also being generated. However, the staining of

these specimens is limited, the imaging of the histology

data currently lacks cellular resolution, and detailed

annotation or parcellation of all brain regions based on

cytoarchitecture remains to be performed. Additional

efforts have used ultra-high-resolution MRI of ex vivo

brains to build intrinsically 3D models of cytoarchitec-

tural boundaries, and quantify the predictive power of

macroscopic features for localizing microscopically

defined boundaries (Augustinack et al., 2005, 2010,

2012, 2013, 2014; Fischl et al., 2008, 2009; Iglesias

et al., 2015). While these latter atlases represent major

advances, currently available resources still lack many

features of modern atlases available in rodents and non-

human primates such as multimodality, dynamic user

interfaces with scalable resolution and topographic inter-

activity, and brain-wide anatomic delineation with

ordered hierarchical structural ontologies.

We aimed to develop an adult human brain atlas with

many of the features of modern digital atlases in model

organisms (Lein et al., 2007; Saleem and Logothetis,

2012; Papp et al., 2014). First, the atlas requires whole-

brain coverage with neuroimaging (MRI, DWI) and histolo-

gy using multiple stains in the same brain, allowing brain

parcellation based on convergent evidence from cyto-

and chemoarchitecture, to reflect functional properties of

corresponding brain regions more accurately (Ding et al.,

2009; Amunts et al., 2010; Caspers et al., 2013a,b; Pasc-

ual et al., 2015). Second, we aimed for true cellular reso-

lution (1mm/pixel) on histological images to link

microscopic features with the macroscopic scales more

common in neuroimaging studies. Most critically, we per-

formed comprehensive structural annotation at a very

detailed level, based on a hierarchical structural ontology

and using multiple forms of neocortical annotations to

link gross anatomical (gyral, sulcal) and histology-based

parcellation schemes modified from Brodmann. Finally,

these data are combined in an interactive, publicly acces-

sible online application with direct linkage to other large-

scale human brain gene expression databases (http://

human.brain-map.org; Hawrylycz et al., 2012).

MATERIALS AND METHODS

Specimen
The brain used for this reference atlas was from a

34-year-old female donor with no history of neurological

Ding et al.
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diseases or remarkable brain abnormality obtained from

the University of Maryland Brain and Tissue Bank, a

brain and tissue repository of the NIH NeuroBioBank.

All work was performed according to guidelines for the

research use of human brain tissue and with approval

by the Human Investigation Committees and Institution-

al Ethics Committees of the University of Maryland, the

institution from which the sample was obtained.

General tissue processing
A general workflow for generating this atlas is shown

in Figure 1. After the brain was removed from the skull,

4% periodate-lysine-paraformaldehyde (PLP) was

injected into the internal carotid and vertebral arteries

following a phosphate-buffered saline (PBS) flush. The

brain was then suspended and immersed in 4% PLP at

48C. This preparation appeared to result in a slight

elongation of the brain. Following complete fixation (48

hours), the brain was subjected to MRI and DWI (see

details below) and stored in PLP at 48C until further

processing. The fixed brain was bisected through the

midline. Following agarose embedding, each hemi-

sphere was cut with a flexi-slicer in the anterior to pos-

terior direction, resulting in eight 2-cm-thick slabs. The

slabs were cryoprotected in PBS containing 10%, 20%,

and 30% sucrose, respectively and then frozen in a dry

ice/isopentane bath (between 2508C and 2608C).

Finally, the frozen slabs were placed in plastic bags

that were vacuumed sealed, labeled, and stored at

2808C until histological sectioning.

Sectioning was performed by Neuroscience Associ-

ates (Knoxville, TN). The slabs were individually thawed

rapidly in PBS, treated overnight with 20% glycerol and

2% dimethylsulfoxide to prevent freezing artifacts, and

embedded in a gelatin matrix using MultiBrain
VR

Technol-

ogy (NeuroScience Associates) to avoid loss of uncon-

nected tissue. After curing in a 2% formaldehyde

solution, the blocks were rapidly frozen by immersion in

isopentane (chilled by crushed dry ice) and mounted on

the frozen stage of a hydraulically driven sliding micro-

tome (Lipshaw model 90A, Pittsburgh, PA). Each block

was sectioned coronally in 50-lm-thick sections. All

sections were collected sequentially (none were dis-

carded) into a 4 3 6 array of containers filled with an

antigen preserving solution (50% PBS, pH 7.0, 50% eth-

ylene glycol, 1% polyvinyl pyrrolidone). During section-

ing, block-face images were taken at intervals of 10–12

sections. Due to the challenges of sectioning and

mounting thin sections from complete hemispheres,

certain artifacts in the tissue sections are present.

These artifacts include large cracks through most of

the section in some cases as well as smaller tears in

white and gray matter structures. In general these

artifacts are easily identifiable but should not be con-

fused with structural features of the underlying tissues.

Histology and immunohistochemistry
Out of 2,716 total sections, 679 (200-mm sampling

interval) were mounted on gelatin-coated 3- 3 5-inch

glass slides, air-dried, and stained for Nissl substance

using 0.05% thionine in acetate buffer (pH 4.5). For

immunohistochemistry, 339 sections (400-mm sampling

interval) were immunostained free-floating for the

calcium-binding protein parvalbumin (PV) and 338 sec-

tions (400-mm sampling interval) for nonphosphorylated

neurofilament proteins (NFPs). All incubation solutions,

from blocking serum onward, used Tris-buffered saline

(TBS) with Triton X-100 as the vehicle; all washes were

done in TBS after antibody and avidin–biotin–horserad-

ish peroxidase (HRP) incubation. Following treatment

with hydrogen peroxide and a blocking serum, tissue

sections were immunostained with antibody SMI-32

(1:3,000, BioLegend, San Diego, CA) and a monoclonal

anti-PV antibody (1:10,000, Swant, Marly, Switzerland)

overnight (�16 hours) at room temperature, with vehi-

cle solutions containing Triton X-100 for permeabiliza-

tion. A biotinylated secondary antibody (1:150, Vecta

Elite horse anti-mouse, preabsorbed against rat IgG,

Vector Burlingame, CA) and ABC solution (1:200, Vec-

tastain Elite ABC kit, Vector) were then applied for 90

and 45 minutes, respectively. To complete this process,

sections were treated with nickel-diaminobenzidine tet-

rahydrochloride (DAB) and hydrogen peroxide.

Antibody characterization
The antibody against NFP (BioLegend, Cat.# SMI-32,

RRID: AB_2314904) is a mouse monoclonal IgG1 recog-

nizing a double band at MW 200,000 and 180,000,

which merge into a single neurofilament H line on 2D

blots (Sternberger and Sternberger, 1983) (Table 2).

The immunostaining of sections through human tempo-

ral cortex produced a pattern of NFP labeling that was

identical to previous descriptions (Ding et al., 2009). In

human and monkey cerebral cortex, the antibody stains

a subpopulation of large pyramidal neurons with the

labeling largely restricted to dendritic processes and

soma (Campbell and Morrison, 1989; Hof et al.,

1995a,b; Nimchinsky et al., 1997; Ding et al., 2003,

2009).

The anti-PV antibody is a mouse monoclonal IgG1

(Swant, Cat.# 235, RRID: AB_10000343). This antibody

was produced by immunizing mice with PV from carp

muscle and hybridizing mouse spleen cells with myelo-

ma cell lines. This antibody specifically stained the

1999Ca-binding “spot” of PV (MW 12,000) from rat cer-

ebellum on 2D immunoblot assays (Celio et al., 1988)

3130 The Journal of Comparative Neurology |Research in Systems Neuroscience
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(Table 2). No staining was observed when the antibody

was used to stain cortical tissues from PV knockout

mice. This antibody labels subsets of nonpyramidal neu-

rons in cerebral cortex of many species including

human (Hof et al., 1999; Nimchinsky et al., 1997; Ding

and Van Hoesen, 2010, 2015).

Digitization of all stained sections
A custom-designed large-format microscopy system

was created to allow digital imaging and processing of

all histologically stained sections (Nikon, Melville, NY).

The system operates by collecting hundreds of images

in lengthwise strips, which are montaged to create a

Figure 1. General workflow of atlas generation.
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single hemispheric image at 1 lm/pixel resolution. A

total of 1,356 sections on 3- 3 5-inch slides were digi-

tized for this resource, of which a single section (repre-

sentative dimension: �3.2 3 4.3 m) typically took 6–

8 hours to complete. Exposure time, white balance, and

flat-field correction were set independently for each

slide. The Nikon NIS-Elements Advanced Research (AR)

microscope imaging software suite (RRID: SCR_014329)

was used for acquisition of ND2 format image files that

were subsequently converted to TIFF format.

Digital atlas design and annotation
For detailed anatomical delineation, 106 Nissl-stained

sections were selected out of 679. Sampling intervals

varied from 0.4 to 3.4 mm across the full anterior–pos-

terior (A-P) extent of the entire left hemisphere. Sparser

sampling (3.4 mm) was selectively applied to the most

anterior (prefrontal) and posterior (occipital) cortical lev-

els that primarily contain cortex and a few large subcor-

tical structures. Where smaller subcortical structures

are more abundant, a much denser sampling was used

(0.4–1.0-mm interval). In total, 862 brain structures

were digitally annotated on the 106 whole-hemisphere

images using 11,398 polygons.

Anatomical delineations were performed on poster-

sized printouts of Nissl-stained sections and then digi-

tally scanned and registered to the original Nissl

images. Structure outlines were converted to digital pol-

ygons using Adobe (San Jose, CA) Creative Suite 5, and

converted to Scalable Vector Graphics (SVG) format for

web utilization. Polygons were linked to the hierarchical

structural ontology and color-coded according to the

ontology color scheme such that related structures fall

into similar color groups. Furthermore, hues were

assigned according to the relative cellular density of

the structure: the higher the density, the deeper the

shade (i.e., addition of black to hue); the lower the den-

sity, the deeper the tint (i.e., addition of white to hue).

Magnetic resonance and diffusion-weighted
imaging

High-resolution structural imaging was performed

using special coils designed to optimize signal-to-noise

and contrast-to-noise ratios (SNR and CNR, respective-

ly) in fixed specimens by reducing large spacing

between the coil elements and the sample. DWI was

performed using standard Siemens head coils. Sample

packing was performed by vacuum-sealing the brain

specimen in a polyethylene storage bag surrounded by

PLP to avoid any artifacts caused by the interface

between air and tissue. Diffusion-weighted images were

collected on a 3 T TIM Trio whole-body scanner (Sie-

mens Medical Solutions, Erlanger, Germany) with a Sie-

mens 32 channel head coil. High-resolution structural

images were acquired using a 7 T scanner (Siemens

Medical Solutions) with a custom 30-channel receive-

array coil designed to image the entire adult brain, uti-

lizing a 36-cm head gradient coil.

For the 7 T scans, custom pulse sequence software

was used to measure k-space in “chunks” small enough

to be held in the scanner hard disk buffer, and a sys-

tem was developed to stream each “chunk” of data

from the buffer to a multiterabyte RAID array in parallel

with it being measured by the scanner. Systems inte-

gration and custom software were developed for fast,

reliable network and RAID connections and data stream

management. Images from each coil channel were

reconstructed and combined into a single image using

a noise-weighted combination to optimize SNR.

The noise covariance matrix for a coil array is esti-

mated from a noise-only measurement collected in the

absence of any RF excitation. This acquisition lasts

about 20 seconds and provides enough thermal noise

samples to accurately estimate the noise covariance

matrix for the 30-channel coil and describes the ther-

mal noise coupling between the individual coil channel

images for unaccelerated acquisitions. The final com-

bined image is then computed as a noise-weighted sum

of the complex-valued individual coil channel images

and is given by

I5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sHW21s

p

where I represents the combined image intensity at a

given pixel, W represents the N 3 N noise covariance

matrix, and s represents the N 3 1 vector of complex-

valued image intensities at a given pixel across the N

TABLE 2.

Primary Antibodies Used in This Study

Antibody Immunogen Source, cat. #, and RRID Host species and type Concentration

Anti-NFP Nonphosphorylated epitopes
on the medium and heavy

subunits of the neurofilament
triplet proteins

BioLegend, Cat.# SMI-32,
RRID: AB_2314904

Mouse monoclonal IgG1 1:5,000

Anti-parvalbumin Parvalbumin purified from
carp muscles

Swant, Cat.# 235, RRID:
AB_10000343

Mouse monoclonal IgG1 1:10,000
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coils of the array (Roemer et al., 1990; Wright and

Wald, 1997).

For 7 T images, gray and white matter CNR was

optimized, to best distinguish these tissue classes

as well as discern laminar intracortical architecture.

Structural data were acquired using a multiecho

flash sequence (TR 5 50 ms, a 5 208, 408, 608, 808,

6 echoes, TE 5 5.49 ms, 12.84 ms, 20.19 ms, 27.60

Figure 2. Whole-brain reference atlas components. A,B: DWI tractography and structural MRI. C: Midline-sagittal photograph of left hemi-

sphere. D: Block-face image of a coronal slab. E: Digital images of adjacent sections stained for PV, NFP, and Nissl. F: Cellular-resolution

detail in cerebellar (Nissl and NFP) and cingulate cortex (PV). G: Brain ontology with color codes, acronyms, full names, and hierarchical

parent–daughter relationships. H: Anatomical delineation of a Nissl plate from a combined analysis of all three stains. I: Interactive color-

coded digital atlas with both modified Brodmann (I1) and traditional gyral (I2) cortical maps. Black arrows point to some of the differences

between these maps.
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ms, 35.20 ms, 42.80 ms, at 200-lm isotropic

resolution).

Diffusion-weighted data were acquired over two aver-

ages using a 3D steady-state free precession (SSFP)

sequence (TR 5 29.9 ms, a 5 608, TE 5 24.96 ms, 900-

lm isotropic resolution). Diffusion weighting was applied

along 44 directions distributed over the unit sphere

(effective b-value 5 3,686s/mm2) (Miller et al., 2012)

with eight b 5 0 images. The two acquisitions were core-

gistered using FSL’s FLIRT to correct for B0 drift and

eddy-current distortions (Jenkinson and Smith, 2001)

and then averaged before further processing. DWI analy-

sis was done using Diffusion Toolkit (dtk), and Trackvis

was used for visualization of tracts (http://trackvis.org/)

(Wang et al., 2007). The fiber tracking algorithm is based

on the fiber assignment by continuous tracking (FACT)

algorithm (Mori et al., 1999). Diffusion-weighted images

were rotated to the same orientation as the MRI volume

to allow generation of plane-matched MRI and DWI

images for the atlas, and the corresponding transforma-

tion was applied to the gradient table used to acquire

the images. Tracts were created using a 608 angular

threshold, masked so tracts are only contained within

the approximate brain volume. The primary eigenvectors

of the diffusion tensor were overlaid on the fractional

anisotropy (FA) map in Freeview (part of the FreeSurfer

software package, http://freesurfer.net) to create color

FA images. Tractography images were generated in

TrackVis with a tract threshold of 20 mm and 90% skip

applied, using a Y filter to select all tracts that pass

through each coronal plane.

RESULTS

Whole-brain multimodal data generation
To obtain multimodal datasets from the same speci-

men, ex vivo MRI and DWI scans (at 7 T and 3 T,

respectively) of both hemispheres were collected (Fig.

2A,B) prior to histological processing. For anatomic

atlasing, the left hemisphere including the connected

brainstem and cerebellum (Fig. 2C) was coronally divid-

ed into 2-cm slabs, and each slab was serially sec-

tioned at 50 mm (Fig. 2D). Every fourth section (200-mm

sampling interval) was stained for Nissl substance (Fig.

2E), and every eighth section was immunostained for

NFP (400-mm interval) or PV (400-mm interval) to facili-

tate accurate delineation of the Nissl-stained sections

(Fig. 3A–C). Histological sections were imaged at cellu-

lar resolution allowing neuronal soma, dendrites, and

axons to be clearly identified (Fig. 2F). A subset of

Nissl-stained sections was selected for detailed ana-

tomical delineation with sampling density higher in

regions with greater structural complexity. This strategy

enabled adequate sampling of small but functionally

critical structures such as the suprachiasmatic nucleus

Figure 3. Examples of closely adjacent whole-hemisphere sections for the histological stains used in the atlas. A combined analysis of

Nissl-stained (A), and NFP- (B) and PV- (C) immunostained sections greatly facilitated delineation of both cortical and subcortical regions

of the human brain (see examples in Figs. 5–7). The size of a typical plate at native resolution (1 mm/pixel) is �3.0 m wide and 4.3 m

high. Scale bar 5 3,108mm in A–C.
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Figure 4. Detailed delineation of the human hypothalamus. A high sampling density (about 40 plates total, with 20 shown here) covering the entire

anterior–posterior (A–T) extent of the hypothalamus was employed to ensure sampling and annotation of even the smallest structures such as the

suprachiasmatic nucleus (SCN in A–C). For abbreviations see the hypothalamic part of the ontology in Table 3. Scale bar 5 1,940mm in T (applies

to A–T).
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in the hypothalamus (Fig. 4) and the area postrema in

the medulla.

Creation of a unified structural brain
ontology

An essential component of modern interactive digital

atlases is a unifying hierarchical structural ontology that pro-

vides unique IDs (and colors for representation) for each

structure in a parent–child architecture. We created a

whole-brain ontology spanning all adult structures (Table 3)

and including a developmental axis for transient structures

observed during the specification and cytoarchitectural mat-

uration (Miller et al. 2014). The ontology is fundamentally

divided into the basic subdivisions of forebrain, midbrain,

and hindbrain, further divided into four major branches com-

prising gray matter, white matter, ventricles, and surface

features. For example, daughter structures of “gray matter

of forebrain” (Fig. 2G) include the telencephalon, diencepha-

lon, and transient structures of forebrain (e.g., subplate and

ventricular zone of the neocortex), while “white matter of

forebrain” includes nearly all commissural and long ipsilater-

al fiber tracts. “Ventricles of forebrain” includes the lateral

and third ventricles and related structures, while “surface

structures of forebrain” includes important gross landmark

features such as cortical gyri and sulci.

For cortical structures, we aimed to accommodate

both gyral and sulcal parcellation common to neuroim-

aging studies as well as cytoarchitectural parcellation

based on histology, for which two basic terminologies

based on Brodmann (Brodmann, 1909) and von Econ-

omo (von Economo and Koskinas, 1925; von Economo,

1927) are in usage. We used Brodmann’s nomenclature

as the primary reference because it is more commonly

used, with modifications based on modern literature

(see below) and the combined whole-brain large-scale

cyto- and chemoarchitectural analysis here. Specifically,

the following sources were used to modify the Brod-

mann scheme: for the frontal and cingulate cortex: Hof

et al. (1995a), Vogt et al. (1995), Vogt et al. (2001),
€Ong€ur et al. (2003), Petrides and Pandya (2012), and

Vogt and Palomero-Gallagher (2012); for parietal, tem-

poral, and occipital cortices (mostly changed to Brod-

mann’s terminology where other nomenclature was

used): Caspers et al. (2013b), Ding et al. (2009), Ding

and Van Hoesen (2010), Scheperjans et al. (2008), Van

Essen et al. (2001), Zilles and Amunts (2009), and Goe-

bel et al. (2012). The terminology for the hippocampal

formation is derived from Ding and Van Hoesen (2015)

and Ding (2013, 2015). For a few cortical areas that

Brodmann (1909) did not parcellate in detail (Simić and

Hof, 2015), such as posterior parahippocampal areas

(areas TH, TL, and TF), we adopted a modified

nomenclature from von Ecomono and Koskinas (1925;

see Ding and Van Hoesen, 2010). Another example of

modification of Brodmann’s areas is the orbitofrontal

cortex, where Brodmann’s large area 11 was replaced

with smaller areas 14, 11, and 13 according to a few

modern anatomical studies in human (Hof et al., 1995a;
€Ong€ur et al., 2003) and our own investigation of Nissl

preparations and PV- and NFP-immunostained sections.

In addition, some of Brodmann’s areas were further

subdivided according to recent literature and the analy-

sis here. For instance, Brodmann’s areas 22 and 21

(roughly corresponding to von Economo’s areas TA and

TEd) were subdivided into rostral, intermediate, and

caudal parts based on different staining intensity in PV-

stained sections (Ding et al., 2009). Finally, for the insu-

lar cortex that was not numbered by Brodmann in

human (1909; see Simić and Hof, 2015), three major

subdivisions were delineated and these included agra-

nular, dysgranular, and granular insula (e.g., Bauern-

feind et al., 2013; Morel et al., 2013), with the latter

two further divided into rostral and caudal parts.

Structures from the ontology were delineated as poly-

gons on each Nissl digital image (Fig. 2H), and these

structures include both gyral (Fig. 2I1) and modified

Brodmann areas (Fig. 2I2) of the neocortex. Together,

this comprehensive ontology covers all brain regions and

can be used interactively to browse and search delineat-

ed structure polygons. It also provides enhanced inter-

linking capabilities among a broad range of datasets

including adult (Hawrylycz et al., 2012) and developing

(Miller et al., 2014) human brain transcriptional atlases

included in the Allen Brain Atlas (www.brain-map.org).

Delineation of cortical and subcortical gray
matter

Anatomical delineation for the 106 selected plates (Fig.

2H) was based on a combined analysis of cyto- (Nissl

stain) and chemoarchitecture (NFP and PV immunohisto-

chemistry). For example, the boundaries between areas

29 and the neighboring suprasplenial subiculum (SuS)

and caudal presubiculum (PrSc; also known as the post-

subiculum [PoS]) were confidently identified based on

staining features revealed in Nissl- (Fig. 5A), and adjacent

PV- and NFP- (Fig. 5B and inset) immunostained sections.

Dark NFP and PV immunoreactivity highlights SuS and

PrSc, respectively, and these complementary and corrob-

orating data allowed a consensus digital annotation of

these regions (Fig. 5C). Similarly, in the ventral temporal

neocortex, the border between areas 36 and 20 can be

more accurately defined with PV immunostaining than

Nissl alone, as area 20 (20i) displays significantly stronger

PV immunoreactivity than area 36 (Fig. 5D,E).
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Figure 5. Defining cortical boundaries with a combined analysis of Nissl-, NFP-, and PV-stained sections. A,B, and inset in B: Boundary

determining of the indusium griseum (IG), supracallosal subiculum (SuS), retrosplenial areas 29 (A29) and 30 (A30), and caudal presubicu-

lum (PrSc; or postsubiculum [PoS]). C: Color-coded map of the region shown in A and B. cc, corpus callosum. PV and NFP immunostaining

patterns help delineate neocortical borders and white matter tracts. D,E: Differences in PV immunolabeling intensity helps define the

boundaries between area 36 and area 20 (20i). Scale bar 5 1,106 mm in C (applies to A–C) and E (applies to D,E).
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Figure 6. Defining boundaries of cortical and subcortical structures with NFP- (A–F) and PV- (G) stained sections. A–C: NFP staining pat-

terns in primary motor cortex (M1C), primary somatosensory cortex (S1C), and the rostrodorsal portion of area 40 (A40rd). The locations

of these three cortical areas were marked with *, **, and *** respectively in Figure 8A. Arabic numbers specify cortical layers. D: NFP

staining pattern in the thalamus (Thal) defines Pf, CM, and adjoining structures. CM, centromedian nucleus; MD, mediodorsal nucleus; Pf,

parafascicular nucleus. VPI, ventral posterior inferior nucleus; VPM, ventral posterior medial nucleus; VPMpc, parvocellular part of VPM.

E,F: NFP is observed in select white matter tracts in the brainstem including the facial (r7 in E) and trochlear (r4 in F) nerve roots. 6N,

abducens nucleus; r7, facial nerve root; x4, decussation of trochlear nerve roots (r4 in F). G: PV is selectively expressed in the commis-

sure of the inferior colliculus (cmic). Scale bar 5 777 mm in C (applies to A–C), D, and E; 277 mm in F; 88mm in G.



NFP immunoreactivity was in many cases more infor-

mative than Nissl stain for delineation of cortical

regions based on the selective labeling of pyramidal

neuron populations in different layers. For example,

many large pyramidal neurons in layer 5 of the primary

motor cortex (M1C; Fig. 6A) are NFP-immunoreactive,

while only a small number of medium-sized neurons are

observed in that layer of the primary somatosensory

cortex (S1C; Fig. 6B). In contrast, the inferior parietal

area (rostrodorsal area 40 [area 40rd], located posterior

Figure 7. Defining white matter fiber tracts and subcortical structures with combined analysis of NFP and PV stains. A–C: Combined analy-

sis of NFP immunoreactivity (A) and Nissl staining (B) in the medulla leading to anatomical parcellation (C). NFP clearly delineates specific

cranial nuclei (e.g., 10N, 12N) and fiber tracts (e.g., r12). D,E: PV-immunoreactive axons in the external part of sagittal stratum/optic radi-

ation (“or” in D and inset) compared with the internal part of the sagittal stratum (ssti) and tapetum of the corpus callosum (tap) that do

not show PV immunoreactivity. Inset: High-magnification view of PV-immunoreactive axons in the optic radiation (*). 10N, dorsal motor

nucleus of vagus nerve; 12N, hypoglossal nucleus; iLV, inferior horn of the lateral ventricle; IO, inferior olive; r12 and r10, hypoglossal and

vagus nerve roots; Scale bar 5 777 mm in A (applies to A,B); 1,554mm in D.
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to S1C; Fig. 6C), has a narrower band of superficial lay-

er labeling and a stronger bilaminar pattern. The com-

bined analysis of Nissl staining and NFP or PV

immunolabeling was also useful in defining many sub-

cortical regions and subdivisions such as ventroposte-

rior inferior (VPI), parafascicular (Pf), and centromedian

(CM) nuclei in the thalamus (Thal; Fig. 6D) and cranial

motor nuclei of the brainstem (Figs. 6E, 7A–C).

Localization and delineation of white matter
tracts

We also aimed for a comprehensive delineation of

white matter tracts and cranial nerves (117 total), aided

by NFP and PV fiber immunostaining. Motor roots of

the cranial nuclei in the brainstem are clearly delineat-

ed by NFP staining (Figs. 6E, G, 7A). PV immunoreactivi-

ty shows similar discernment of a variety of fiber tracts

and trajectories, such as the commissure of the inferior

colliculus (Fig. 6F) and the optic radiation (Fig. 7D,E). A

representative fully annotated atlas plate is shown in

Figure 8A, with complete cyto- and chemoarchitecture-

based parcellation and colorization superimposed on

the original Nissl image (Fig. 8C). To relate macroscopic

(landmarks) and microscopic (histology) cortical anato-

my, parallel plates were created with parcellation by

gyri and sulci (Fig. 8B) or modified Brodmann areas

(Fig. 8A). The denser sampling of subcortical regions

allowed comprehensive detailed annotation of fine

nuclear architecture for all major regions, as illustrated

for the hypothalamus (Fig. 4) and the amygdala (Fig. 9).

Identification of novel brain subregions
In addition to confirming previously identified struc-

tures, the combination of high image resolution and

dense (200-mm-interval) Nissl sampling made it possible

to reveal or clarify a number of complex or smaller

brain structures, while the linkage to the Allen Human

Brain Atlas (Hawrylycz et al., 2012) allowed corrobora-

tion of these structures with other gene expression

data. One example is in the mediodorsal nucleus (MD)

of the thalamus, where we observed a group of densely

packed larger cells between the paraventricular nucleus

(PaV) and the main portion of the MD, which we named

the anteromedial subdivision of the MD (MDam in Fig.

10A). In situ hybridization data of both acetylcholines-

terase (ACHE) and neurotensin (NTS) supports this par-

tition, as they are selectively enriched in this region

compared with the main part of the MD (Fig. 10B and

inset). Similarly, we identified a novel subdivision of the

basomedial nucleus (BM) of the amygdala. This

Figure 8. Alternate schemes for cortical parcellation. Modified Brodmann’s areas (A) or sulci and gyri (B) were annotated on the same

Nissl-stained plate (C) to show micro- and macrostructural relationships. Examples of how cortical areas were delineated are given in Fig-

ures 5 and 6. The markers (*, **, ***) and (#) in A indicate the locations of pictures in Figure 6A–C and Figure 5D,E, respectively. For

abbreviations see the ontology in Table 3. Inset is a schematic representation of the whole hemisphere based on MRI, with the red vertical

lines in A and B indicating the location of the section plate. Both modified Brodmann’s areas and gyral/sulcal mapping of the cerebral cor-

tex are available online at www.branspan.org. Scale bar 5 3,108mm in A–C.
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Figure 9. Detailed parcellation of the human amygdalar complex. Shown are ten of the 18 annotated plates covering the A-P extent (A–J)

of the amygdala. For abbreviations see the amygdalar portion of the ontology in Table 3 Scale bar 5 3,102 mm in J (applies to A–J).
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Figure 10. Novel subdivisions of the mediodorsal nucleus (MD) of the thalamus and basomedial nucleus (BM) of the amygdala. A: Nissl

staining reveals a group of larger cells (termed MDam, labeled with * in high magnification image and overview atlas plate (inset)) located

between the paraventricular nucleus (PaV) and anterior mediodorsal nucleus MDm) of the thalamus distinct from neighboring regions. B:

Distinct molecular specificity of MDam is demonstrated by ISH for ACHE and NTS (inset in B). C,D: Novel subdivision of amygdalar baso-

medial nucleus differentiated by smaller and relatively lightly Nissl-stained cells (termed BMm, labeled with * in high magnification image

and overview atlas plate (inset) in C) and selective enrichment for the GABA receptor subunit E (GABRE, in D) compared with neighboring

dorsal and ventral regions (BMD and BMV) and posterior cortical nucleus (CoP). Scale bar 5 1,109mm in B (applies to A,B); 1,550 mm in D

(applies to C,D).
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subdivision is located medial to the dorsal and ventral

subdivisions of the BM (BMD and BMV) and was termed

BMm (medial subdivision of BM; Fig. 10C and inset).

The BMm displays enriched cellular expression of the

g-aminobutyric acid (GABA) receptor subunit E (GABRE)

compared with the neighboring BMD and BMV (Fig.

10D). The homologs of MDam and BMm in other spe-

cies have not been reported.

Another new area was identified running along the

side of lateral olfactory stria, situated medially to the

piriform cortex (Pir) and laterally to the substantia inno-

minata (SI). This was termed the lateral olfactory area

(LOA) and was found to have distinct histological fea-

tures from the neighboring Pir and SI (Fig. 11).

Compared with the Pir, the LOA does not have a dark,

densely packed layer 2 on Nissl stain and has much

stronger NFP immunoreactivity. In Nissl-stained materi-

als, the SI contains many cellular patches of differing

sizes, packing densities, and staining intensities, with

cells of contrasting shapes and sizes, compared with

Figure 11. Identification of the lateral olfactory area (LOA) in the adult human brain. A,B: Adjacent sections stained for Nissl (A) and NFP (B)

showing the architectural features of LOA that differ from neighboring substantia nominata (SI) and piriform cortex (Pir). In Nissl-stained sec-

tions, SI contains different types of cell patches (asterisks and arrowhead) while Pir is characterized by a darkly stained and densely packed

layer 2 (A). LOA does not have these characteristic features, but shows cell patches that are different from those in SI (A). In NFP-

immunostained sections, Pir is very light throughout while LOA shows strong labeling in the superficial layer (B). Only the large-celled patch

(arrow) and scattered large cells of SI are strongly stained while other patches are negative (B). ac, anterior commissure; NDBh, horizontal

part of nucleus of diagonal band; VeP, ventral pallidus; lost, lateral olfactory stria. Scale bar 5 430 mm in A (applies to A,B).
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Figure 12. Location and topographic relationship of area prostriata (APro). APro (labeled as Pro) is adjoined by the retrosplenial cortex (areas

29 and 30, not shown), postsubiculum (PoS in A), posterior cingulate cortex (area 23 in B–D) anterodorsally, and dorsal secondary visual cor-

tex (V2d in D-G) posterodorsally. Anteroventrally, APro is adjoined by the ventral secondary visual cortex (V2 in A–D). Posteroventrally and

posteriorly, APro is adjoined by the anteroventral part of the primary visual cortex (V1v in E–H). Scale bar 5 4,420mm in H (applies to A–H).

Ding et al.
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the LOA (Fig. 11A). In sections immunostained for NFP,

only the largest neurons are labeled (Fig. 11B). The SI

does not display laminar organization, while the LOA

has a clear but discontinuous layer 2 and one deep lay-

er. In contrast, the Pir has a dark and continuous layer

2 and a less darkly stained layer 3.

Two other structures described previously only in

non-human primates were identified as well, such as

area prostriata (APro) and the basal interstitial nucleus

of the cerebellum (BIcb). APro is a region located at the

junction of the retrosplenial, post- and parasubiculum,

posterior cingulate, and anterior–dorsal primary visual

cortices. It has been described in detail in macaque

monkey (Morecraft et al., 2000; Ding et al., 2003) and

is important for fast procession of peripheral vision (Yu

et al., 2012). Although its existence in the human brain

was briefly described, its exact location and extent has

not been reported in detail so far. Our mapping indi-

cates that APro is much larger in human (Fig. 12) than

in macaque monkey (Ding et al., 2003). The BIcb in the

human brain is located deep to the medial interpositus

nucleus (InPM; globose nucleus) of the cerebellum and

consists of scattered large NFP-immunoractive neurons

(Fig. 13).

Identifying anatomical landmarks in MRI
data

Transposing the Nissl-based anatomical delineations

into full 3D annotations registered to the accompany-

ing MRI volume is challenging due to the incomplete

and nonuniform sampling of those annotations.

However, individual Nissl plates can be matched to

corresponding planes of the MRI data to allow the

identification of features of specific structures that

can then be mapped onto MRI data from other brains

without accompanying architecture-based delineations.

The utility of this approach can be demonstrated in

the case of the medial geniculate nucleus (MG) and

the dorsal lateral geniculate nucleus (DLG). A compari-

son of the architecture-based atlas (Fig. 14A) and the

corresponding MRI plate (Fig. 14B) from the same

brain shows that the MG has high and the DLG low

signal intensity. Combining these features with basic

spatial topography, the MG and DLG in the MRI scans

from other brains from the Allen Human Brain Atlas

(Hawrylycz et al., 2012) are clearly discerned (Fig.

14C,D). The MG is so similar in signal intensity to the

adjoining white matter (consistently high signal intensi-

ty in T1-weighted images) that it would probably be

misidentified as white matter if the extracted feature

(i.e., high signal intensity) was not used. With the

topography of the histology-based parcellation as a

guide, many fine structures can be similarly identified

in MRI data that would otherwise be difficult to identi-

fy and discriminate, thus extending the value of this

single brain atlas to the interpretation of neuroimaging

data (Fig. 15).

Whole-brain histology-based atlas with
corresponding MRI and DWI

The complete set of histology-based atlas plates is pre-

sented in Figures 16 and 17. These include a plate loca-

tor (Fig. 16) marking the A-P sampling locations of all 106

annotated atlas plates and selected corresponding Nissl-

Figure 13. A novel subregion of the deep nuclei of the cerebel-

lum. This has been named the basal interstitial nucleus of cere-

bellum (BIcb) and is embedded deep in the white matter medial

to the dentate nucleus (DT) and lateral and inferior to the globose

nucleus (i.e., the medial interpositus nucleus [InPM in A]). In Nissl

stain, the cells in the BIcb are large and darkly stained (B). In

NFP stain, these large cells are positively stained (C,D; C is the

higher power view of the “*” region in D). Scale bar 5 1,554 mm

in D (applies to B,D).
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stained and adjacent NFP and PV immunohistological

plates (Fig. 17). To translate the atlas structural delinea-

tions onto the MRI dataset, a set of 76 coronal MRI slices

at 2-mm intervals (Fig. 18) from the same hemisphere

was selected and annotated (Fig. 19, left column).

Macroscopic landmarks such as cortical sulci and gyri

were used as guides to match histological and MRI planes

of section, and local topography was used (e.g. see Figs.

14, 15) to label identifiable structures including all neo-

cortical areas and major subcortical regions.

Some well-known white matter tracts such as the optic

radiation (“or” in Fig. 19, levels 42–69) and auditory radia-

tion (“ar”) are clearly visible in the 7 T MRI images and

can be clearly followed for a long distance due to their

darker appearance than the surrounding white matter.

Interestingly, a corresponding part of the somatosensory

radiation (named here the “sr”) is also clearly visible (Fig.

19, levels 38–46). The “sr” is normally treated as part of

the superior radiation in the literature and mainly origi-

nates from the ventroposterior lateral nucleus of the

Figure 14. Identification of fine anatomical features in same-brain MRI and transfer to other brain MRI data. A: Reference atlas plate

showing subdivisions of the medial geniculate nucleus (MG), dorsal lateral geniculate nucleus (DLG), and adjoining regions. B: Identification

of the MG and DLG on the ex vivo MRI scan from the same brain by comparison with the corresponding reference plate based on subtle

differences between MRI signal intensity of the MG and DLG and neighboring white and gray matter. The majority of the image contrast

comes from T2* weighting and the contrast has been inverted. C,D: Identification of the MG and DLG on the MRI scans (T1 images) from

other brains in the Allen Human Brain Atlas without histological stains using the extracted features of MG (bright) and DLG (dark) signal

intensity at the same sectioning plane as the atlas. Hip, hippocampus; IP, interpeduncular nucleus; MD, mediodorsal thalamic nucleus;

PAG, periaqueductal gray; Pul, pulvinar; SN, substantia nigra. Scale bar 5 5,160mm in D (applies to B–D).
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thalamus and targets the primary somatosensory cortex.

In this 7 T MRI dataset, like the “or” and “ar,” the “sr” is

observed to stand out from surrounding white matter and

thus deserves an independent term (i.e., somatosensory

radiation) as do optic and auditory radiations.

Finally, color-coded orientation maps and tractography

maps of both hemispheres from the same brain are also

available and are presented in Figure 19 (right column).

By comparison with the accompanying MRI plates, some

white matter fiber tracts can be identified. For example,

at level 40 of Figure 19, the callosal and cingulate bun-

dles, superior longitudinal fasciculus (slf-m, slf-I, and slf-

l), and somatosensory radiation can be easily localized

with the guide of the annotated MRI atlas.

For convenience Figures 16-19 are presented, togeth-

er with Table 3, after the literature list at the end of

the paper.

DISCUSSION

Brain reference atlases are essential resources for

neuroscience research, serving to identify and annotate

the complex anatomical architecture of the brain and

allow communication across laboratories and various

research disciplines attempting to link structure to

function (Fischl et al., 1999; Toga et al., 2006; Amunts

et al., 2007; Evans et al., 2012). Ideally, modern digital

atlases should comprise 3D reference frameworks

with comprehensive anatomical coverage and cellular

resolution cyto- and chemoarchitectural histology-based

structural annotation using hierarchical ontologies, and

correlated histological and neuroimaging data (Toga

et al., 2006; Destrieux et al., 2010; Evans et al., 2012;

Caspers et al., 2013a). All currently available human

brain reference atlases lack some of these features

Figure 15. Structure identification on MRI of other brains. A–D: Identification of structures on T1-weighted MRI scans from case

H0351.2002 of the Allen Human Brain Atlas (http://human.brain-map.org). By virtue of anatomical features extracted from this reference

atlas (see Fig. 14), structures such as Pu, GPe (A), MD, RN, SN, ZI (B), Pul, MG, DLG (C), and “or” (optic radiation, D) are consistently

identified. E,F: Pul, MG, DLG, SN, RN, ZI, and other structures were also confirmed in a T1-weighted MRI dataset from another case

(H0351.2001). For abbreviations see the ontology in Table 3. Scale bar 5 5,160mm in A (applies to A–F).
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(see Table 1), mainly due to the large size and structur-

al complexity of the human brain and the resource-

intensive and technology-limiting nature of the endeavor

(Amunts et al., 2013). We sought to fill this gap by gen-

erating a fully annotated, high-resolution anatomical ref-

erence atlas for a complete adult female human brain

as an open access community resource. The atlas con-

sists of brain-wide neuroimaging (MRI, DWI) and histo-

logical data (Nissl, NFP, PV) based on whole-

hemisphere serial sectioning, staining, and true cellular

resolution imaging. Most importantly, the atlas is com-

prehensively annotated using a unified hierarchical

structural ontology based on combined cyto- and che-

moarchitectural parcellation of 862 gray matter and

white matter structures. A freely accessible online atlas

browser was created to allow easy visualization and

navigation, and the resource is integrated with other

human brain cellular resolution gene expression and

transcriptomic atlases (Hawrylycz et al., 2012; Miller

et al., 2014).

Parcellation of the human neocortex presents a par-

ticular challenge, as several different schemes based

on cortical gyri and sulci or histological delineation are

in common usage (Brodmann, 1909; Talairach and Tour-

noux, 1988; Fischl et al., 2004; Duvernoy, 1999; Dama-

sio, 2005; Mai et al., 2008; Destrieux et al., 2010;

Petrides, 2012), and the relationship between cortical

geometry and architectonic identity is variable across

the cortex (Fischl et al., 2008). To serve both communi-

ties, we chose to perform multiple annotations of the

same dataset. The first is based on macroscopic anno-

tation of gyri and sulci, while the second is based on

microscopic analysis of combined cyto- and chemoarch-

itectural data to create a modified Brodmann parcella-

tion. This unique human dataset of interleaved Nissl

staining, and NFP and PV immunolabeling in a whole

hemisphere, allowed a complete parcellation based on

variations in overall cell density, NFP immunolabeling of

subsets of long-range excitatory projection neurons,

and PV-expressing neurons and neuropil. In many cases

this parcellation agrees with those generated using oth-

er techniques such as receptor autoradiography and

Nissl-based gray-level indices (Zilles and Amunts, 2009;

Amunts et al., 2010; Vogt et al., 2013). For example,

the inferior parietal lobule has been consistently divided

into three basic regions based on cellular and receptor

architecture (Caspers et al., 2013b), and our analysis of

cyto- and chemoarchitecture corroborates this tripartite

delineation (albeit with a different nomenclature). In

many other cases these data allowed a detailed parcel-

lation of regions that had not yet been examined in

detail by others, such as the area prostriata and other

structures described above. In principle, this dataset

could be reannotated by other researchers to provide

alternate interpretations. Finally, this dataset could be

aligned to new functional parcellations based on

neuroimaging data, such as a recent analyses from the

Human Brainnetome Atlas (Fan et al., 2016) and the

Human Connectome Project (www.humanconnectome.

org; Glasser et al., 2016), opening up new possibilities

for linking cytoarchitecture and function at microscopic

and macroscopic scales.

There is a fundamental schism between probabilistic

reference atlases used in neuroimaging (Hammers et al.,

2003; Ahsan et al., 2007; Scheperjans et al., 2008; Shat-

tuck et al., 2008; Diedrichsen et al., 2009; Kuklisova-

Murgasova et al., 2011), based on thousands of individu-

als, and detailed histological reference atlases based on

exhaustive analysis and annotation of single representa-

tive brain specimens (Brodmann, 1909; von Economo

and Koskinas, 1925; Sarkisov et al., 1955). It is not cur-

rently possible to analyze large numbers of whole brains

histologically and thus build a probabilistic histological

atlas, although strong efforts are under way to move in

the direction of generating probabilistic histological refer-

ence atlases using standard histological (JuBrain; Cas-

pers et al., 2013a) as well as novel imaging techniques

(Magnain et al., 2014, 2015; Wang et al., 2014; Zilles

et al., 2016). Furthermore, human brains exhibit a

remarkable amount of interindividual variability, particu-

larly in the gyri and sulci of the cerebral cortex (Maz-

ziotta et al., 2001; Uylings et al., 2005; Toga et al.,

2006; Amunts et al., 2007; Ding and Van Hoesen, 2010;

Zilles and Amunts, 2010, 2013). For instance, one brain

may have area 35 located in the medial bank of a deep

collateral sulcus (CoS), while another may have its area

35 in the lateral bank of a shallow CoS, or even the

crown of the anterior fusiform gyrus (Ding and Van Hoe-

sen, 2010). Thus it is not realistically meaningful to map

histological annotations from a single specimen directly

into a probabilistic reference space, even with advances

in techniques for deformable registration. On the other

hand, the current generation of both MRI and DWI data

in the same specimen as the histological data allows the

direct correlation of cytoarchitectural features with MRI

features or landmarks. As we demonstrate, this dataset

may thus allow feature extraction that can be applied to

other brains to identify fine anatomical structures not

otherwise identifiable, especially when higher resolution

imaging techniques such as 9.4-Tesla MRI, optical

coherence tomography, and polarized light microscopy

become available (Fatterpekar et al., 2002; Magnain

et al., 2015; Zilles et al., 2016).

In summary, we have created a cellular resolution,

comprehensively annotated atlas for an entire adult

human brain hemisphere (Fig. 17) based on a combined
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analysis of cyto- and chemoarchitectures and modern lit-

erature. This combination of anatomic completeness, mul-

timodal histological cellular-resolution imaging, modified

Brodmann’s areas delineations in neocortex, neuroimag-

ing (Fig. 19), and intuitive digital interactivity provides an

advance over other current large-scale human brain

atlases. This versatile and publicly accessible resource

gives a range of users a means to learn, teach, and inves-

tigate human brain structure and function, including the

diagnosis and treatment of brain disease.
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TABLE 3. Continued

Figure 16. Anteroposterior position of the 106 annotated plates shown in Figure 17. Major macroscopic landmarks (sulci and gyri) on the

medial aspect of the left hemisphere are indicated (flipped to show the plate levels (plates 1–106) in an anterior-to-posterior order).

General locations of slabs 1–8 were also marked at the top. Note that in slabs 4–7, only the alternative plates were indicated, to avoid

busy lines. For abbreviations see Table 3. Scale bar 5 2 cm.

Figure 17. Human brain atlas plates. 106 plates with matching histological sections are displayed in anterior-to-posterior (A-P) order. The

matching histological images include 50 Nissl-stained, and 50 NFP- and 6 PV-immunostained sections. The 106 plate images, correspond-

ing to the A-P positions delineated in Figure 16, combine the cortical annotation of modified Brodmann areas and traditional gyri and sulci.

At each level, a color-coded atlas plate (“a” series; 1a–106a) and a histological image (“b” series; 1b–106b) are presented. The inset dia-

gram at the top right corner of each atlas plate shows the A-P position (red line) of that plate on a schematic representation of the whole

hemisphere based on MRI. The green lettering along the cortical surface indicates cortical sulci (lower case, often with black arrowheads)

and gyri (upper case), which were generally defined by adjacent sulci. Modified Brodmann areas were labeled within the cortical gray mat-

ter with differential color coding. In plates containing cerebellar cortex, alternative plates were annotated for three cerebellar cortical

zones (vermis, paravermis, and lateral hemisphere) and 10 lobules (lobules I–X), respectively. Other subcortical structures were also

labeled with differential color coding. The general locations of most white matter tracts are indicated by a circled “W”. Fiber tracts with

clear boundaries, such as ac, mtt, ot, sste/or, fx, fr, scp, py, and ml, were outlined by black lines without color code (white). The parcella-

tion and subdivisions of different brain regions as well as the parent–daughter relationship and abbreviation of each structure are detailed

in Table 3. Note that two separate versions of this atlas for modified Brodmann areas and traditional gyri and sulci, respectively, are avail-

able in the online version of this atlas (www.brainspan.org or http://brainspan.org/static/atlas). For abbreviations see Table 3. Scale

bar 5 5 mm (at levels 1b–106b).
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Figure 17. Level 1a (01_111)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 1b (NFP (SMI-32))
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Figure 17. Level 2a (01_179)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 2b (Nissl)
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Figure 17. Level 3a (01_247)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 3b (NFP (SMI-32))
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Figure 17. Level 4a (01_307)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 4b (Nissl)
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Figure 17. Level 5a (02_111)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 5b (NFP (SMI-32))
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Figure 17. Level 6a (02_111)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)

3202 The Journal of Comparative Neurology |Research in Systems Neuroscience

Ding et al.

http://atlas.brain-map.org/atlas?atlas=265297126#atlas=265297126&plate=102291521
http://www.brainspan.org/ish/experiment/dual_view?id=100149965&imageId=102291521&imageType=nissl&initImage=nissl&z=1


Figure 17. Level 6b (NFP (SMI-32))
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Figure 17. Level 7a (02_175)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 7b (Nissl)
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Figure 17. Level 8a (02_219)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 8b (NFP (SMI-32))
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Figure 17. Level 9a (02_231)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 9b (NFP (SMI-32))
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Figure 17. Level 10a (02_295)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 10b (Nissl)
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Figure 17. Level 11a (02_335)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 11b (NFP (SMI-32))
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Figure 17. Level 12a (02_359)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 12b (NFP (SMI-32))
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Figure 17. Level 13a (02_407)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 13b (Nissl)
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Figure 17. Level 98a (07_267)
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Figure 17. Level 99a (07_287)
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Figure 17. Level 100a (07_299)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)

3390 The Journal of Comparative Neurology |Research in Systems Neuroscience

Ding et al.

http://atlas.brain-map.org/atlas?atlas=265297126#atlas=265297126&plate=112364163
http://www.brainspan.org/ish/experiment/dual_view?id=100149965&imageId=112364163&imageType=nissl&initImage=nissl&z=1


Figure 17. Level 100b (Nissl)

The Journal of Comparative Neurology | Research in Systems Neuroscience 3391

Adult human brain atlas



Figure 17. Level 101a (07_315)
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Figure 17. Level 102a (08_039)
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Figure 17. Level 103a (08_103)
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Figure 17. Level 104a (08_167)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 105a (08_231)

Link to online high resolution atlas plate

Link to online high resolution atlas plate (Nissl)
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Figure 17. Level 106a (08_291)

Link to online high resolution atlas plate
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Figure 17. Level 106b (Nissl)
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Figure 19. MRI and DWI plates from the same brain. Left column: Seventy-six sequential 7T MRI slices from the same left hemisphere as

the atlas shown in Figure 17 were annotated according to the atlas plates in Figure 17. The interval between each slice is 2 mm. The MRI

images were annotated for easily predicted and/or identified structures through correspondence to the annotated histological atlas.

Several clearly delineated fiber tracts are annotated as well, including the optic radiation (“or” at levels 42–69) and somatosensory radia-

tion (‘sr” at levels 38–46). For abbreviations see Table 3. Right column: Top panel shows colorized fractional anisotropy (FA) maps of the

corresponding plane of section in the DWI dataset, representing the primary eigenvectors of the diffusion tensor data overlaid on the FA

map. Bottom panel shows tractography images created in TrackVis showing all tracts passing through the represented plane of section

(90% of tracts omitted with only tracts longer than 20 mm displayed). Scale bars 5 5 mm.

Figure 18. Gross anatomy of the left hemisphere and anteroposterior position of the 76 annotated MRI images shown in Figure 19. Main

macroscopic landmarks (sulci and gyri) on dorsal (A), lateral (B), and ventral (C) aspects of the left hemisphere are indicated. The A-P

locations (levels 1–76) of the 76 MRI images are marked with black lines 1–76 in B. * and # indicate two corresponding regions. For

abbreviations see Table 3. Scale bar 5 2 cm in A (applies to A–C).
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Figure 18.
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