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A polarizable quantum mechanics (QM)/ molecular mechanics

(MM) approach recently developed for Hartree–Fock (HF) and

Kohn–Sham (KS) methods has been extended to energies and

analytical gradients for MP2, double hybrid functionals, and

TD-DFT models, thus allowing the computation of equilibrium

structures for excited electronic states together with more

accurate results for ground electronic states. After a detailed

presentation of the theoretical background and of some

implementation details, a number of test cases are analyzed to

show that the polarizable embedding model based on fluctu-

ating charges (FQ) is remarkably more accurate than the corre-

sponding electronic embedding based on a fixed charge (FX)

description. In particular, a set of electronegativities and hard-

nesses has been optimized for interactions between QM and

FQ regions together with new repulsion–dispersion parame-

ters. After validation of both the numerical implementation

and of the new parameters, absorption electronic spectra have

been computed for representative model systems including

vibronic effects. The results show remarkable agreement with

full QM computations and significant improvement with

respect to the corresponding FX results. The last part of the

article provides some hints about computation of solvatochro-

mic effects on absorption spectra in aqueous solution as a

function of the number of FQ water molecules and on the use

of FX external shells to improve the convergence of the

results. VC 2015 The Authors. Journal of Computational Chemis-

try Published by Wiley Periodicals, Inc.
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Introduction

Hybrid quantum mechanics (QM) molecular mechanics (MM)

approaches (QM/MM) have become key ingredients of the so-

called multiscale computational strategies.[1–7] The idea behind

those approaches is to treat accurately, by QM methods, a small

but critical part of the overall system under investigation, while

resorting to less accurate, but much cheaper MM methods for

the remaining part. These approaches are, of course, far more

efficient than the corresponding full QM model, thus allowing

the study of phenomena localized on some dozens of atoms,

but tuned by the effect of thousands of more distant atoms.

QM/MM models have provided interesting results for a variety of

chemical systems and/or physical chemical properties in the

fields of catalysis,[8,9] spectroscopy,[10–13] reaction mechanisms,[14]

and drug discovery.[15,16] In addition to those fields, QM/MM

approaches are particularly suited to deal with solvation phe-

nomena provided that boundary conditions are taken into the

proper account.[11,17–20] As a matter of fact, full QM approaches

become in this case not only unfeasible unless resorting to over-

simplified (e.g., semiempirical) methods, but also quite illogical,

whenever the interest is not to reach a detailed description of

the whole solvent, but, rather, of the tuning of solute structure

and/or properties by the solvent. For this reason, focused mod-

els, that is, strategies paying privileged attention to the solute,

seem the methods of choice and several reports suggest that,

among different alternatives, QM/MM models are especially

effective.[11,21,22] Solvent effects on the solute structure and/or

properties are tuned by a subtle interplay of short- and long-

range contributions. The latter effects are described with suffi-

cient accuracy by mean-field approaches, like the polarizable

continuum model[23] (PCM), whose latest implementations cou-

ple reliability and negligible computational cost in very robust

algorithms also for analytical derivatives with respect to geomet-

rical parameters and electromagnetic field.[24–26] However, when

short-range interactions play a leading role (e.g., for polar moi-

eties in hydrogen bonding solvents) a continuum description of

the solvent is no more fully adequate and explicit strategies are

required to ensure an accurate description of the so-called cybo-

tactic region (roughly corresponding to the first solvation
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shell).[27] In most applications of QM/MM methodologies to sol-

vation phenomena, the combination of a QM description of the

solute with a fixed charge (FX) description of solvent molecules

(together with repulsion–dispersion contributions from

a purposely tailored force field[28,29]) is sufficient to yield accurate

results. However, in some cases the QM region needs to be

enlarged with a few solvent molecules,[30] thus introducing some

ambiguity in the selection of those molecules, together with

technical difficulties for a fully dynamical treatment due to possi-

ble exchanges between QM and MM solvent molecules.[31,32] It

is, therefore, interesting to develop improved classical descrip-

tions including (at least) polarization effects to completely avoid

the use of QM solvent molecules. Such an approach is also more

consistent with the use of boundary conditions based on the

PCM, which includes by construction polarization. Several meth-

ods have been proposed to include polarization into QM/MM

models, a concept pioneered in the seminal paper by Warshel

and Levitt.[1] Among the different possibilities we have selected

the so-called fluctuating charge (FQ) approach,[33,34] which

avoids computation of electric fields and is more consistent with

both density functional theory (DFT) and PCM descriptions. From

the one side, fluctuating charges are obtained by the so-called

electronegativity equalization principle,[35,36] which can be

regarded as a simplified second-order approximation to DFT.

From the other side, endowing each atom with an effective

charge depending on its environment is strongly reminiscent of

the effective charges generated on the finite elements describing

the surface of the cavity embedding the solute in the PCM. The

recent extension of the QM/FQ model to analytical first and sec-

ond derivatives for Hartree–Fock (HF) and Kohn–Sham (KS) meth-

ods[37] and to the corresponding response equations for various

internal and external perturbations[38,39] makes this model partic-

ularly suitable for the evaluation of molecular properties and

spectroscopic parameters. Use of polarizable QM/MM models

(hereafter referred to as polarizable embedding [PE]) becomes

even more significant for excited electronic states and has been

considered by several groups[39–43] since the pioneering work by

Luzhkow and Warshel exploiting the Langevin dipole solvent

model.[44] However, to the best of our knowledge, those studies

have been limited to excitation energies or excitation energy

transfers, whereas excited state structures have never been

addressed so far, not to speak about vibronic contributions.[45,46]

In this work, we present, for the first time, the theory and imple-

mentation of a PE based on FQ’s to excited state structures and

properties, through the definition of effective algorithms to com-

pute TD-DFT analytical gradients. The machinery developed for

this purpose is closely related to that needed for other nonvaria-

tional methods and, in particular, for second order many body

perturbation theory (e.g., MP2). Apart from its intrinsic interest,

MP2 enters as a contribution in the so-called double hybrid (DH)

functionals, which are able to deliver very accurate results for

structures, thermodynamic, and spectroscopic properties.[47–54]

We have, therefore, implemented energies and analytical gra-

dients also for MP2/FQ and DH/FQ models.

The article is organized as follows. In the next section, the

theoretical background is presented together with some

details about our implementation in the Gaussian package.[55]

After a brief description of the computational segments of this

work, the implementation is validated by comparison with finite

difference results. Next, electronegativities, hardnesses, and

dispersion-repulsion parameters have been optimized for the

interaction of water molecules with a number of basic chromo-

phores (acetone, formamide, pyridine, pyrimidine) in their ground

electronic states. Without introducing any further parameter,

absorption spectra have been computed including vibronic effects

for adducts of the same chromophores with one or two water

molecules. Finally, the solvatochromic shift of the n! p� transi-

tion of pyridine in aqueous solution has been investigated using

increasing numbers of FQ water molecules together with different

nonperiodic boundary conditions. As a last remark, we point out

that in this work, the discussion will be restricted to noncovalent

interactions between QM and MM regions: extension to covalent

bond breaking is straightforward in the framework of the ONIOM

approach,[56] but requires a detailed tuning of computational

parameters, which will be dealt with in a forthcoming study.

Theory

In this section, we extend the QM/FQ approach to the evaluation

of time dependent DFT (TD-DFT) excited state gradients and

ground state gradients for MP2 and DFT DH functionals. The dis-

cussion starts with a brief summary of the QM/FQ approach and

of the related quantities/equations, together with a brief presenta-

tion of analytical geometrical derivatives and response equations.

Then, TD-DFT excited state gradients are treated, as well as the

extension to the Z-vector formalism. All the implementations have

been done on a development version of the Gaussian code.[55]

The QM/FQ model

Given a large molecular system, one common approach is to treat

the most important region at an high level of theory, usually

based on QM methods, and the remaining part at a lower level of

theory, usually based on MM methods. In the standard QM/MM

formalism,[34,39,57–59] the total energy of the system reads

Etot5EQM1EMM1Eint; (1)

where the functional form of EQM depends on the specific

choice of the QM method used for the treatment of the high-

level region, while EMM contains all the intra- and intermolecu-

lar terms of the MM force field of the low-level region. When

the QM and MM subsystems are not covalently bonded and

charge transfer effects are neglected, the interaction energy

term Eint can be partitioned into electrostatic, polarization,

repulsion, and dispersion contributions

Eint5Eel1Epol1Erep1Edisp: (2)

In this work, repulsion and dispersion contributions will be

approximated by simple Lennard–Jones (LJ) functions

Erep1Edisp ’ ELJ5
X

l2MMk2QM

sLJ
kl 4�kl

rkl

Rkl

� �12

2
rkl

Rkl

� �6
" #

; (3)

where �kl and rkl are two empirical parameters, Rkl5j~Rk2~Rlj;
~Rk and ~Rl are the atomic coordinates, and sLJ

kl is a scaling factor
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(or, in principle, even a continuous function), which takes into

account the fact that in the most popular force fields 1–2, 1–3,

and, even, 1–4 interactions are either screened or completely

removed. The electrostatic term of eq. (2), Eel, is the interaction

energy between the QM (nð~rÞ) and the MM (qð~rÞ) charge

densities

Eel5

ð
d~rd~r 0

nð~rÞqð~r 0Þ
j~r2~r 0j ; (4)

where qð~rÞ is considered as a distribution of N point-like

charges qk ðk51; 2:::;NÞ located at ~Rk

qð~rÞ5
X

k2MM

qkdð~r2~RkÞ: (5)

Equation (4) can be evaluated using different approaches of

various sophistication and physical meaning (see Refs. 57–59

and references therein). The simplest one is to resort to the

so-called mechanical embedding (ME) scheme, where the elec-

trostatic interaction energy is treated by assigning a set of

point charges to the QM atoms, which interact with the MM

charges via a Coulomb kernel

EME5
X

l2MMk2QM

sel
kl

qk ql

Rkl
: (6)

In this formula, sel
kl is a scaling factor, analogous to sLJ

kl of eq.

(3). An alternative approach is the so-called electronic embed-

ding (EE) scheme, where the electrostatic interaction is

included in the QM Hamiltonian[59] and Eel is evaluated from

the “true” QM electrostatic potential (i.e., without making any

approximation on the QM charge distribution, besides the

ones intrinsic to the current QM method)

EEE5
X

k2MM

ð
d~r

nð~rÞqk

j~r2~Rkj
: (7)

Finally, the polarization energy accounts for the mutual polar-

ization of the QM density and the MM charge distribution, and is

the basis of the so-called PE schemes. Among the several meth-

ods proposed for the inclusion of polarization effects on the total

QM/MM energy,[34,39,60–66] in our approach,[34,39] we will exploit

the fluctuating charges (FQ)[33–39,67] scheme. In such a model, the

polarization effects are treated by endowing each MM atom with

a charge, which depends on the atomic electronegativity and

hardness.[34] The equilibrium between the charge interactions

and the differences in the atomic electronegativities represents

the physical basis of the electronegativity equalization princi-

ple,[33,35,36] which defines, in turn, the FQ model. The QM/FQ

model has recently been extended by some of the present

authors to the evaluation of analytical first and second deriva-

tives,[37] response equations,[39] magnetic perturbations with

gauge independent atomic orbitals (GIAO)[38] and excitation ener-

gies at the equation of motion coupled cluster singles and dou-

bles (EOM-CCSD) level,[43] and has been shown to give

remarkable agreement with experimental findings in various

applications in the field of computational spectroscopy.[11,21,22] In

the polarizable QM/FQ approach, the interaction energy is analo-

gous to eq. (7), with the FQ classical charge distribution (~qð~rÞ)
written in terms of a set of polarizable charges ~q

~qð~rÞ5
X

k2MM

~qkdð~r2~RkÞ; (8)

and the electrostatic interaction with the QM density reads

EPE5
X

k2MM

ð
d~r

nð~rÞ~qk

j~r2~Rkj
: (9)

The QM charge density can be then expanded in the molec-

ular orbital (MO) basis

nð~rÞ5
X

A2QM

ZAdð~r2~RAÞ2
XMO

pqr

Dpqr/prð~rÞ/qrð~rÞ; (10)

where ZA is the atomic number of the A nucleus, D the

ground-state density matrix, p, q indexes run over the set of

MO orbitals (/prð~rÞ), r is the spin label. Then, the electrostatic

potential at point ~Rk associated to such a density (V½D�) is

Vk½D�5
X

A2QM

ZAðAjkÞ2
XMO

pqr

DpqrðpqrjkÞ; (11)

where the integrals are defined as

ðpqrjkÞ5
ð

d~rd~r 0
/prð~rÞ/qrð~rÞdð~r 02~Rk Þ

j~r2~r 0j 5Vpqr;k (12)

ðAjkÞ5
ð

d~rd~r 0
dð~r2~RAÞdð~r 02~Rk Þ

j~r2~r 0j ; (13)

and eq. (9) can then be written in matrix formalism

EPE5V~q: (14)

The vector ~q is obtained by variationally minimizing the

total energy of the FQ subsystem[34,39] (E) with respect to the

charges, in the presence of the QM electrostatic potential

E5
X
ai

qaivai1
1

2

X
ai

X
bj

qaigai;bjqbj1
X

a

ka

X
i

ðqai2QaÞ1V~q;

(15)

where the a and b indices run over the molecules, i and j indi-

cate the atoms of each molecule, Qa is the total charge of the

molecule a, vai is the electronegativity of the atom ai and gai;bj

the charge–charge interaction kernel. The FQ equations can be

solved for the charges by exploiting either matrix inversion or

iterative procedures: in the following, we will refer to matrix

inversion, for which the following relation holds

~q½D�5J21ð2CQ2V½D�Þ; (16)

where J is the matrix including the charge–charge interaction

kernel and charge constraints, while CQ includes the electrone-

gativities and the Qas, as reported in detail in the previous

works.[34,39] Please note that the J matrix of this work
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corresponds to the D matrix of the previous works, and we have

slightly changed the notation here since the D symbol has been

used for the ground-state density matrix. Then, at each SCF step,

V is evaluated from the current QM density and the FQ charges

are computed with eq. (16). The ground-state total energy of the

QM/MM system, Etot, is variationally optimized with respect to

nð~rÞ and ~q. Please refer to the original works[34,39] for a detailed

presentation of the method and implementation.

As mentioned above, the physics behind the electrostatic

embedding with fixed charges and the PE with the FQ model is

different, since different energy contributions are involved in

the two models. As a matter of fact, the EE based on fixed

charges can be used for the treatment of bulk environmental

effects, whereas the PE can be used to treat the QM/MM inter-

face. For this reason, both approaches can be simultaneously

used in the calculations for solvated systems, resulting in the

solvent molecules far from the solute and belonging to the bulk

to act as a polarization effect on the solute, without being

affected by the solute charge density, whereas the solvent mole-

cules near to the solute are polarized by the QM charge density.

The present implementation of the QM/FQ approach permits

the coexistence of fluctuating and fixed charges in the MM sub-

system, and each set of charges is properly treated. When the

QM/FQ scheme is used in conjunction with fixed charges, the

total energy of eq. (1) becomes

Etot5EQM1EMM1EPE1EEE1ELJ; (17)

where EPE and EEE depend on FQ and fixed charges, respectively.

Several implementations of EMM and ELJ together with analytical

first and second derivatives are already available also for FQ force

fields,[34,37] and enter without modifications also the new devel-

opments. For this reason, in the following, we will only focus on

quantities connected to the PE and EE terms in eq. (17).

Some useful FQ quantities

In this section, we recall some quantities related to the QM/FQ

model, entering the expressions of analytic energy derivatives

and linear response properties of eq. (17). For practical pur-

poses, it is useful to introduce a reference effective ground

state Hamiltonian, which includes all terms explicitly depend-

ing on the QM density

E05hWjHeff jWi5EQM1EPE1EEE: (18)

In this article, we will be concerned with HF, KS ,and MP2

models together with their combinations (e.g., hybrid and

double-hybrid functionals). It is, therefore, convenient to

express EQM in a form general enough to include all these

approaches[47–50]

EQM5VNN1h1J1ax EHF
x 1axcEXC1acEPT2

c

EXC5ð12axÞEGGA
x 1ð12acÞEGGA

c

EPT2
c 5

1

4

X
ia;jb

tij
abðiajjjbÞ

tij
ab5

ðiajjjbÞ
ei1ej2ea2eb

:

(19)

In the last equation, EHF
x is the HF exchange energy, J is the clas-

sical Coulomb energy, EXC is the pure DFT exchange-correlation

energy, EPT2
c is the correction for the MP2 correlation treatment,

the i; j; ::: indexes run over the occupied spin-orbitals, a; b; ::: over

the virtual spin-orbitals, and ei is the orbital energy of the ith

spin-orbital and ðiajjjbÞ is the common notation for the Coulomb

and exchange integrals. ax is the mixing parameter introduced by

Becke,[68,69] which allows to continuously pass from a pure func-

tional (ax 5 0) to a full HF theory (ax51; axc5ac50) (hybrid func-

tionals), while ac accounts for a further generalization of the

treatment of the correlation, from a pure local (GGA) form (ac 5 0)

to the pure PT2 form (ac 5 1). Then, the pure GGA is recovered by

choosing ax5ac50, the pure HF by ax51; ac5axc50, and the

MP2 method by ax5ac51; axc50. In the B2PLYP DH func-

tional,[47–50] ax50:53; ac50:27, with X5B88,[70] and C5LYP.[71]

More recent spin-scaled approaches can be also used splitting

the last term of eq. (19) into parallel and opposite spin contribu-

tions with different percentages.[72,73]

The energy in eq. (18) can be rewritten by separating out

the SCF and PT2 contributions

E05ESCF1acEPT2; (20)

where the PE and EE interaction energies have been included

in the SCF term. Consequently, the generic Fock matrix ele-

ment in the MO basis is

Fpqr5hpqr1
X

is

½ðpqrjiisÞ2axdrsðpirjiqrÞ�1vXC
pqr1vPE

pqr1vEE
pqr;

(21)

where r; s are spin indexes with values a, b, and the PE contri-

bution (vPE
pqr) is the derivative of EPE with respect to the generic

Dpqr density matrix element

vPE
pqr5

@EPE

@Dpqr
52

X
k2MM

Vpqr;k ~qk52Vpqr ~q: (22)

By analogy with the previous equation, vEE
pqr can be obtained

in a similar way by using the set of fixed charges q and the

potential as evaluated at the proper coordinates.

The Fock operator derivative with respect to the Drss matrix

element (the so-called coupling matrix)[74–76] is required to

define TD-DFT and coupled perturbed hartree fock (CPHF)

procedures

Kpqr;rss5
@Fpqr

@Drss
5ðpqrjrssÞ2axdrsðprrjsqrÞ1f XC

pqr;rss1f PE
pqr;rss:

(23)

A major difference between PE and EE approaches is that

the FQ charges ~q depend on the QM density, and therefore,

an explicit FQ term appears in eq. (23), which is instead not

present in the EE scheme. The kernel of the FQ interaction

(f PE
pqr;rss), then reads

f PE
pqr;rss5

@vPE
pqr

@Drss
52

X
kl2MM

ð
d~rd~r 0

/prð~rÞ/qrð~rÞ
j~r2~Rkj

J21
kl

/rsð~r 0Þ/ssð~r 0Þ
j~r 02~Rlj

;

(24)
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and analogously to the f XC
pqr;rss term, for real orbitals is sym-

metric under the r ! s exchange. The previous equation can

be rewritten in a more compact matrix form

f PE
pqr;rss52

X
kl2MM

Vpqr;k J21
kl Vrss;l52VpqrJ21Vrss; (25)

in analogy with the expression obtained by some of us by

means of time dependent perturbation theory.[39]

Although TD-DFT is always formulated in the MO formalism,

in practical implementations, it is generally recast into the

atomic orbital (AO) basis. By expanding the density in the AO

basis, the PE energy, Fock and coupling matrix elements read

EPE5
X

A2QM;k2MM

ZAðAjkÞ~qk2
X

lmr;k2MM

DlmrðlmjkÞ~qk; (26)

vPE
lmr52

X
k2MM

ðlmjkÞ~qk (27)

and

f PE
lmr;jks52

X
kl2MM

ðlmjkÞJ21
kl ðljjkÞ; (28)

where the Greek indices have been used for the AO basis

functions, Dlmr is the generic AO density matrix element, and

the ðlmjkÞ integrals are the analogous of the ones defined in

eq. (12) in the MO basis.

Analytical derivatives

The derivation of the ground-state energy gradient within the

EE-QM/MM framework, including also issues related to the link

atom approach, has been presented in several papers,[57–59,77]

and in a recent work, the extension to the FQ model has also

been reported.[37] In case of nuclear coordinate perturbations,

the analytical gradient of the QM/MM energy in eq. (17)

involves different contributions on the basis of which atom

the perturbation is referred to. As mentioned in The QM/FQ

Model section, the gradients of EMM and ELJ are already avail-

able and have not been modified in this work. Regarding the

other contributions, following previous works on this

topic,[37,77] the gradient of the energy in eq. (20) with respect

to a QM atomic coordinates reads

Ex
05ESCF;x1acEPT2;x ; (29)

where the SCF term reads[77]

ESCF;x5hhx Di1 1

2
hGðxÞðDÞDi1~qVðxÞðDÞ2hWSx

ooi; (30)

where h i denotes the usual trace operation. In the previous

equation, h and G are the one- and two-electron Fock matri-

ces, S is the AO overlap and W the SCF energy-weighted den-

sity matrix. If the derivative refers to a fixed-charge atom,

~qVðxÞ is replaced by qVðxÞ. The evaluation of the PT2 part in

eq. (29) is more complex, because it is a nonvariational contri-

bution and involves the derivatives of the spin-orbitals rotation

coefficients, which require the solution of a set of ð3NÞn CPHF

equations. In the Z-vector approach,[78] such a set is reduced

to one single set of equations independent of the perturba-

tion, so that once the Lagrangian (L) and the response opera-

tor (R½PD�) are built, orbital rotations are obtained as the

occupied-virtual (ov) blocks of the PD matrix[49]

ðear2eirÞPD
air1Rair½PD�5Lair: (31)

The response operator associated to the Fock operator in

eq. (21) is

Rpqr½PD�5
X

rss

PD
rss

�
2ðpqrjrssÞ12f XC

pqr;rss

12f PE
pqr;rss2cxdrs½ðpsrjrqrÞ1ðprrjsqrÞ�

�
;

(32)

and can be also expressed in terms of the coupling matrix K as

Rpqr½PD�5
X

rss

PD
rss Kpqr;rss1Kpqr;srs
� �

: (33)

As previously discussed in Some Useful FQ Quantities sec-

tion, being the PE scheme quadratically dependent on the QM

density matrix, one contribution related to eq. (22) is explicitly

included in eq. (31).

The solution of eq. (31) allows to build the one particle

relaxed difference density matrix (1PDM) PD (ov blocks), the

energy weighted difference density matrix (WPT2), and the two

particle density matrix (CPT2), and the final form of the gradi-

ent can then be assembled from such quantities[49,79]

Ex
05hhx Di1hWPT2Sxi1

X
lmjk

CPT2
lmjkðlmjjkÞx1EXC;xðPD;DÞ1hvPE;x PDi:

(34)

The PE term can be computed from the derivative of the

AO Fock matrix operator

vPE;x
lmr 52

X
k2MM

ðlmjkÞx ~qk½D�2
X

k2MM

ðlmjkÞ~qx
k½D� (35)

and contraction with the 1PDM

hvPE;x PDi5 2
X

lmr;k2MM

PD
lmrðlmjkÞx ~qk½D�2

X
kl2MM

~qk½PD�Jx
kl

~ql½D�

1
X

lmr;k2MM

DlmrðlmjkÞx ~qk½PD�2
X

A;k2MM

ZAðAjkÞx ~qk½PD�:

(36)

In the last equation, the set of charges ~q½PD� has been

obtained in analogy with eq. (16)

~q½PD�52J21V½PD�; (37)

where the electrostatic potential generated by the PD charge

distribution is defined as

Vk½PD�52
X
lmr

PD
lmrðlmjkÞ: (38)

It is worth noting that in case also a set of fixed charges is

included in the calculation, another gradient contribution is
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present, accounting for the FQ-fixed charge interaction. Such a

term has a shape similar to the last term of the previous equa-

tion, where the nuclear charges ZA are substituted with the set

of fixed charges qi.

Linear response theory

When the linear response approach[74–76,80,81] is applied to the

QM/FQ model, in principle both the QM and the FQ charge distri-

butions should respond to the perturbation. However, in case,

the interest is focused to the chromophore, which is assumed to

be fully included in the model system, linear response theory is

applied only to the QM Hamiltonian of the model system. Here,

we briefly recall the main aspects of the TD-DFT equations

applied to the SCF energy of eq. (20), and we will formulate the

method in terms of a variational functional, which is convenient

when analytic derivatives are to be computed.[80–84]

By following Furche et al.,[80,81] the vertical excitation ener-

gies X are the stationary points of the functional

G½X; Y;X�5hX; YjKjX; Yi2XðhX; YjDjX; Yi21Þ; (39)

where

jX; Yi5
X

Y

 !
(40)

and

K5
A B

B A

 !
; D5

1 0

0 21

 !
: (41)

X and Y are the amplitudes for the single particle excitation

and de-excitation, respectively, and the response matrices A

and B are defined in terms of derivatives of the ov blocks of

the Fock matrix in the MO basis

Aair;bjs5drsdabdijðear2eirÞ1Kair;bjs

Bair;bjs5Kair;jbs:
(42)

The functional in eq. (39) is variational in sense that by

imposing the derivative of G with respect to hX; Yj to be zero,

the Casida equations follow,[74,75] while the zeroth derivative

with respect to X includes orthonormality conditions on the

amplitudes hX; Yj. This is equivalent to minimize the energy

X5hX; YjKjX; Yi (43)

under the constraint

hX; YjDjX; Yi51: (44)

In the following, the linear combinations of A and B matri-

ces rather than the single matrices will be required[81]

ðA1BÞiar;jbs5drsdabdijðear2eirÞ12ðiarjjbsÞ

12f XC
iar;jbs2ax ½ðjarjibrÞ1ðabrjijrÞ�12f PE

iar;jbs

ðA2BÞiar;jbs5drsdabdijðear2eirÞ

1ax ½ðjarjibrÞ2ðabrjijrÞ�:

(45)

The FQ interaction kernel is symmetric under the spin

exchange, so that it only appears in the ðA1BÞ combination,

whereas it cancels out in the ðA2BÞ combination.[85] In practi-

cal implementations, TD-DFT equations are solved in AO basis

with standard techniques as[76,85–88]

ðA2BÞ1=2ðA1BÞjX1Yi5x2ðA2BÞ21=2jX1Yi: (46)

TD-DFT excited state gradient

In a time-dependent framework, the energy of the nth excited

state is expressed as the sum of the ground-state energy and the

vertical transition energy, so that the generalized excited state

gradient is given by the sum of two separate contributions

Ex
n5ESCF;x

0 1xx
0!n: (47)

The evaluation of the ground state contribution, ESCF;x
0 , has

already been discussed in Analytical Derivatives section, while

xx
0!n is the derivative of the excitation energy calculated by

applying the linear response theory to eq. (18) (see Linear

Response Theory section), and by neglecting the PT2 contribu-

tion. Then, xx
0!n can in principle be calculated as the deriva-

tive of the G functional

Xx5hX; YjKx jX; Yi; (48)

where the derivatives of the transition amplitudes jX; Yi are

not required in virtue of the variational character of G,

whereas the derivatives of the molecular orbital coefficients

are involved for the evaluation of Kx. This leads to a high-

computational cost and complex expressions for excited state

gradients.[81] In the practice, it is more convenient to recast

the derivatives in a Lagrangian formulation,[81] by making use

of the Z-vector method[78]

Xx5GðxÞ½X; Y;X�1
X

iar

ZiarF
ðxÞ
iar1

X
pqr;p�q

WpqrSðxÞpqr: (49)

In eq. (49), the contribution arising from the MO relaxation

is dropped out from Gx (which becomes GðxÞ, using a well-

known formalism[77]), and is included in the Lagrange multi-

pliers Ziar and Wpqr, contracted with the derivatives of the

Fock and overlap matrices, respectively.

FQ contribution to the Z-vector equations

The procedure for the determination of Z and W has been

reported in the literature[81,85]; here, we will focus on FQ con-

tributions. The unrelaxed difference density matrix T is built

once the eigenvectors X and Y are found from the solution of

the TD-DFT equations[81]

Tabr5
1

2

X
i

ðX1YÞiarðX1YÞibr1ðX2YÞiarðX2YÞibr

� �

Tijr52
1

2

X
a

ðX1YÞiarðX1YÞjar1ðX2YÞiarðX2YÞjar

h i
Tiar5Tair50:

(50)

The T matrix includes contributions of the SCF spin-orbitals

to the excited state density, without accounting for any
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relaxation. Therefore, the effect of the FQ embedding is

included in T through the X and Y vectors. The relaxation of

the spin-orbitals due to the perturbation is included in the ov

blocks of Z (which has zero oo and vv blocks), which is deter-

mined by solving the Z-vector equations [see eq. (31)], where

the response operator is R½Z� and the Lagrangian on the right-

hand side is now expressed in terms of X and Y. All such mat-

rices are affected by the FQ embedding, as well as Z. Once Z

is computed, 1PDM is assembled as

PD5T1Z; (51)

and corresponds to the effective excited state contribution to

the total generalized density matrix.

It is worth noting that the fixed charges used in the

standard EE scheme do not depend on the QM density

matrix, so that there is not any explicit contribution arising

from the EE in eq. (45). Furthermore, by comparing the last

expression with the analogous one related to the PT2 deriv-

atives, we note that in the latter case, the 1PDM was

obtained only as the ov blocks of Z, whereas in the present

case contributions arising from the oo and vv blocks are

included through the T matrix. After the Z-vector equations

are solved, the energy-weighted difference density matrix W

is assembled.

TD-DFT gradients working equations

Once eq. (31) is solved and all the quantities introduced in FQ

Contribution to the Z-Vector Equations section have been

assembled, eq. (49) can be written as

xx5 hhx PDi2hSx WDi1hvXC;ðxÞPDi1hhðlmjjkÞxCii

1hhðX1YÞf XC;ðxÞðX1YÞii1xPE;x
(52)

where h i denotes the trace operation on lm indexes, hh ii
denotes the double trace operation on the lm and jk indexes,

and C is the two-particle difference density matrix (2PDM).

xPE;x is the explicit FQ contribution

xPE;x5hvPE;x PDi1hðX1YÞf PE;xðX1YÞi: (53)

The first term of eq. (53) is analogous to the PT2 one,

already treated in Analytical Derivatives section. The derivatives

of the FQ kernel can be evaluated from eq. (28)

f PE;x
lmr;jks52

X
kl2MM

ðlmjkÞx J21
kl ðljjkÞ2

X
kl2MM

ðlmjkÞðJ21
kl Þ

xðljjkÞ

2
X

kl2MM

ðlmjkÞJ21
kl ðljjkÞx ;

(54)

and the contraction with ðX1YÞ gives

hðX1YÞf PE;xðX1YÞi522
X

lmr;k2MM

ðX1YÞlmrðlmjkÞx ~qk½X1Y�

2
X

kl2MM

~qk½X1Y�Jx
kl ~ql½X1Y�;

(55)

where the set of charges ~q½X1Y� are evaluated from the ðX1

YÞ matrix in analogy with eqs. (37) and (38).

In summary, the evaluation of TD-DFT gradients within the

QM/FQ approach requires to:

1. Given any AO density matrix (say x5D;PD; ðX1YÞ), calcu-

late the electrostatic potential V½x�;
2. Assemble the FQ interaction kernel J;

3. Calculate the FQ charges ~q½x� by inverting the J matrix

and applying either eq. (16) or (37);

4. Contract the charges with the different quantities involv-

ing the derivatives.

Computational Details

In the following, the results obtained with QM/MM methods

using EE and PE schemes will be compared with full DFT cal-

culations. The B3LYP[68] functional has been used for most of

the full DFT calculations and the QM part of the QM/MM

schemes. The full DFT calculations will be referred to as B3LYP

in the following, while the polarizable and nonpolarizable QM/

MM methods will be referred to as B3LYP/FQ and B3LYP/FX,

respectively. The B2PLYP[47–50] DH functional and the MP2

method[89] have also been used: the related schemes will be

referred to as B2PLYP, B2PLYP/FQ, B2PLYP/FX and MP2, MP2/

FQ, MP2/FX, with an analogous notation as that exploited for

B3LYP-based approaches. All the calculations have been per-

formed using the 6-311G* basis set except for some specific

tests (see Vertical Excitation Energies section).

In the fixed charge B3LYP/FX method, the flexible TIP3P

model,[90] as implemented in the Gaussian code,[55] is used

to describe water. A 1/R-Coulomb interaction kernel with

the exclusion of 1–2 and 1–3 interactions is exploited while

the dispersion–repulsion terms are based on LJ potentials,

using the arithmetic averages of the r and � atomic param-

eters, excluding 1–2 and 1–3 interactions and scaling by 0.5,

the 1–4 interactions. For QM atoms, the parameters pro-

posed by Freindorf et al.[28] have been used. The stretching

and bending parameters of water have been reoptimized to

reproduce the B3LYP/6-311G* harmonic frequencies and

geometries.

Moving to the polarizable B3LYP/FQ scheme, the electro-

statics is treated with the 1/R Coulomb kernel for all interac-

tions except intramolecular FQ–FQ ones, which are described

by the Ohno interaction kernel[67] without any exclusion (or

scaling) for 1–2, 1–3, and 1–4 interactions. The dispersion–

repulsion interactions are used with the same form as for the

B3LYP/FX method. All the details of the parametrization proce-

dure used for the FQ electrostatics and the LJ interactions are

given in The QM/FQ Model section.

The complete force field used for the B3LYP/FQ and B3LYP/

FX models is reported in Table 1, together with atomic

charges, geometries, and frequencies obtained for a single iso-

lated water molecule. Notice that the discrepancy between

the QM and the FQ or FX frequencies is due to the use of a

simple diagonal force field lacking stretching–stretching and

stretching–bending off–diagonal terms.
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Results and Discussion

The four molecular complexes shown in Figure 1—formamide–

water (Fm–W), pyridine–water (Py–W), pyrimidine–water (Pm–

W2), and acetone–water (Ac–W2)—were chosen as test cases

to study the reliability of the QM/MM schemes when com-

pared with full QM calculations. Such complexes are represen-

tative of four common configurations of hydrogen-bonded

complexes, that is, one water molecule bonded to one

acceptor bond (Py–W and Pm–W2), two water molecules

bonded to one acceptor bond (Ac–W2) and a bridge configu-

ration, where the water molecule is bonded to both a donor

and an acceptor site (Fm–W). The B3LYP/FX and B3LYP/FQ

models in which the organic molecules are treated at the

B3LYP level, whereas the water molecules are treated at the

MM level will be compared to full B3LYP results.

Parametrization and model systems

The electrostatics of the FQ model was first adjusted by fitting

the FQ parameters of water (gOW, gHW, vOW, and vHW) so to

reproduce a target set of charges, representative of the charge

distribution of one gas (i) and bulk (ii) phase water molecule,

as well as of one water molecule interacting with a QM den-

sity (iii).

The reference charges for the isolated water molecule (i)

were obtained using the CM5[92] population analysis, at the

B3LYP/6-311G* level. Such a choice is supported by the fact

that the value of the dipole moment provided by the CM5

charges at such level of theory for the gas-phase water is very

close to the corresponding experimental value.

For the water molecules in bulk solution (ii), a training set of

seven configurations was extracted from a molecular dynamics

(MD) simulation with NPT conditions, using the TIP3P-FB[91]

model at fixed geometry for the water molecules. Each configu-

ration was composed by a central water molecule (the target

molecule for parameterization purposes), and a first and second

shell of surrounding molecules. The water molecules comprised

in the first shell had at least one oxygen–hydrogen pair with the

central water being at distance shorter than 2.5 Å; the second

shell is a 10-Å-wide sphere centered on the central water. On

average, the total number of water molecules considered in each

snapshot was between 110 and 120, depending on the specific

configuration. In such configurations, the central water molecule

and the molecules of the first solvation shell were endowed with

FQ charges, whereas the fixed TIP3P-FB charges were assigned

to the outer molecules. Finally, one additional configuration was

added to the reference set, corresponding to one water mole-

cule surrounded by four hydrogen bonded water molecules at

the B3LYP/6-311G* geometry (Fig. 2).

This procedure yielded nine configurations, corresponding

to a gas-phase water molecule, seven snapshots, and one sol-

vation pentamer. Then, a merit function was defined as the

absolute error between the FQ charges of the central water

molecule in all such configurations and the CM5 (for the gas-

phase water) and TIP3P-FB charges (for the bulk models),

respectively. Such a merit function was then minimized by

means of a nonlinear optimization algorithm, implemented on

purpose. A weight of 8.0 was given to the gas-phase configu-

ration in the merit function, to balance the eight configura-

tions which were included for the bulk water.

The parameters obtained through such a fitting procedure

are reported in Table 1, and provide FQ charges of 20.659 for

the OW atom in gas-phase water at the B3LYP geometry, and

values of about 20.8 for the bulk models. In particular, by

averaging out the values of the atomic charge on OW over

the eight bulk configurations used by the fitting procedure, a

value of 20.848 is obtained (Table 1).

Finally, the interaction with a QM charge distribution (iii)

was tuned. Since the QM atomic charges are strongly depend-

ent on the specific method used for the population analysis,

on the specific combination of functional/basis set, and,

especially when considering interacting fragments, on the

Table 1. Parameters employed for the water force field with the B3LYP/

FQ and B3LYP/FX models used in this work.

Parameter Atomtype(s) B3LYP B3LYP/FX B3LYP/FQ

Electrostatics

v (a.u.) OW 0.189194[a]

v (a.u.) OW(HQM) 0.185500[a]

g (a.u.) OW 0.623700[a]

q (a.u.) OW 20.659[b] 20.834[90] 20.659[c]

v (a.u.) HW 0.012767[a]

v (a.u.) HW(OQM) 0.022500[a]

v (a.u.) HW(NQM) 0.042000[a]

g (a.u.) HW 0.637512[a]

q (a.u.) HW 0.329[b] 0.417[90] 0.329

Lennard–Jones

r=2 (Å) OW 1.7683[90] 1.589[91]

� (kcal/mol) OW 0.1520[90] 0.1559[91]

r=2 (Å) OQM 1.665[28] 2.030[a]

� (kcal/mol) OQM 0.19[28] 0.19[a]

r=2 (Å) NQM 1.93[28] 2.180[a]

� (kcal/mol) NQM 0.13[28] 0.13[a]

Bonded

r0 (Å) OW–HW 0.9689[a] 0.9904[a]

Kr (kcal mol21

Å22)

OW–HW 580.0[a] 580.0[a]

h0 (degree) HW–OW–HW 105.5[a] 102.5[a]

Kh (kcal mol21

degree22)

HW–OW–HW 51.5[a] 57.7[a]

Gas phase water

qgas (a.u.) OW 20.659[b] 20.834[90] 20.659

qbulk (a.u.) OW 20.834[90] 20.848[d]

r (Å) OW–HW 0.9689 0.9689 0.9689

h (degree) HW–OW–HW 105.5 105.5 105.5

mA (cm21) OW–HW 3860 3828 3827

mS (cm21) OW–HW 3736 3770 3771

md (cm21) HW–OW–HW 1663 1661 1663

Dimer (FQ acceptor) Distance (Å) full FQ

q (a.u.) HW(OQM) 1.881 0.384 0.384

q (a.u.) OW 20.692 20.687

q (a.u.) HW 0.308 0.303

Dimer (FQ donor)

q (a.u.) HW 1.889 0.352 0.353

q (a.u.) OW(HQM) 20.689 20.689

q (a.u.) HW 0.337 0.336

The 6-311G* basis set is always used. [a] Adjusted in this work. [b] CM5

population analysis. [c] At B3LYP geometry. [d] Average over eight con-

figurations (see The QM/FQ model section)
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magnitude of the charge transfer effects and BSSE, we used a

simple approach for the tuning of the QM–FQ parameters

independently of the QM methods used. The main difference

between the FQ/FX and QM charge densities is that the for-

mer are described as point charge distributions by means of

Dirac delta functions [see eqs. (5) and (8)], while in the latter,

the charge distribution decays smoothly, due to the tails of

the QM electronic density. Generally speaking, the electrostatic

potential experienced by the FQ atoms closest to the QM

charge density is different from the one experienced by the

other MM atoms. By neglecting second-order effects on the

atomic hardnesses, this can be rationalized in terms of a first-

order effect, thus applying a scaling factor either on the in situ

electronegativiy or on the electrostatic potential related to

such atoms. For practical purposes, in this work, we chose the

first strategy and we, therefore, modified the electronegativity

of the FQ atoms closest to the QM charge distribution. Start-

ing from the geometry of the pentamer (Fig. 2), we extracted

one dimer in which the OW atom of the central molecule acts

as hydrogen bonding donor and one dimer in which one HW

atom of the central molecule acts as hydrogen bonding

acceptor (the two other possible dimers are equivalent for

symmetry reasons). Then, we adjusted the electronegativity of

the OW donor and HW acceptor atoms by imposing that, for

both dimers, the FQ charges are the same when both mole-

cules of the dimer are treated at the full FQ level or when the

central one is treated at the FQ level and the other one at the

Figure 1. a) Formamide–water (Fm–W), b) pyridine–water (Py-W), c) pyrimidine–water (Pm-W2), and d) acetone–water (Ac-W2) complexes with atom label-

ling. The axes in (a) are related to the force components of Table 5.

Figure 2. One water molecule embedded in its first tetrahedral solvation

shell, optimized at the B3LYP/6-311G* level. These clusters were used in

the optimization procedure of the FQ parameters.
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B3LYP level. The modified electronegativities together with the

FQ charges of the dimers are shown in Table 1.

Once the FQ electrostatic interactions were adjusted, the

stretching and bending parameters related to the HW–OW dis-

tance and the HW–OW–HW angle were tuned to reproduce

the gas-phase geometry and the harmonic frequencies at the

B3LYP/6-311G* level. The stretching constant (Kr) and r0 were

adjusted to reproduce the symmetric (mS) and antisymmetric

(mA) stretching frequencies and the OW–HW bond length (r),

and analogously the HW–OW–HW bending constant (Kh) and

h0 were fixed to reproduce the harmonic frequency of the

water bending mode (md) and the correct angle (h). In Table 1,

the bonded parameters optimized for the FQ models are

reported, together with the equilibrium charges and geome-

tries obtained after geometry optimization.

Finally, the intermolecular dispersion–repulsion interactions

based on the LJ potentials of eq. (3) were adjusted. To treat

the dispersion–repulsion term consistently with the electro-

static interactions, a flexible functional form should be devel-

oped to go smoothly from the interaction with the QM charge

distribution to the bulk limit. Such a model is under develop-

ment and will be the topic of a future work. At this stage, we

used a simplified approach based on eq. (3), where the OW

parameters were taken from the TIP3P-FB model[91] and repro-

duce the bulk phase limit, while corrections for the interaction

with the QM part were included in the LJ parameters of the

QM atoms.

In a previous work, Freindorf et al.[28] have faced a similar

problem in finding the optimal set of LJ parameters for repro-

ducing the hydrogen bond distances in QM/MM computations

by employing the fixed charge approach. In their case, an

extended set of organic molecules was chosen, and treated at

the B3LYP/6-311G* level, while the TIP3P[90] model was

exploited for water. Then, the QM/MM hydrogen bonding dis-

tances were fitted to their B3LYP values by adjusting the LJ

parameters of the QM atoms, while the parameters for water

were constrained to the TIP3P values. Here, we started from the

results of such a study, and we used these parameters for the

QM atoms and the TIP3P ones for the water molecules. The LJ

parameters of water in the TIP3P model are defined only for OW,

therefore, the different treatment of the electrostatic terms

between the TIP3P and the FQ model does not affect the results

for water, whereas it affects the QM-FQ interactions. Let us

assume that only the QM atom(s) directly bonded to the water

molecule requires different LJ parameters for FQ and FX models.

Then, we slightly adjusted the r parameters of the LJ potentials

of the N and O atoms of the QM molecules, to reproduce the

hydrogen bonding distance at the B3LYP/6-311G* level.

Ground state SCF geometries

In Table 2, the water atomic charges are reported for the four

complexes under study, together with the main geometrical

parameters, at the B3LYP, B3LYP/FX, and B3LYP/FQ level of

theory (the atom labelling refers to Fig. 1). It can be observed

that in all the molecular systems, the values of the charge on

the hydrogen bond acceptor atom (HW1) predicted by the FQ

model are slightly lower than the TIP3P[90] values. Also the FQ

charge on the OW atom (about 0.7) is lower than the TIP3P

one (0.83), and closer to the CM5 values. This is a conse-

quence of our fitting procedure. In fact, the FQ charges are

close to the CM5 values both in the gas-phase water molecule

(Table 1) and for the molecular complexes. It is worth noting

that while the overall polarization of the water molecules

reproduced by the FQ model is consistent with the B3LYP

results, some discrepancy is found in the value of the charges

of the two hydrogens HW1 and HW2 in the complexes. In fact,

in all the molecular complexes (Table 2), the CM5 charges of

HW1 are slightly lower than HW2, while in the FQ model such

a trend is reversed. This is due to charge transfer effects occur-

ring in the full QM treatment, which cannot be included in the

QM/MM model, where the total charge of the two subsystems

must be retained. Such an effect has been found to be

strongly dependent on the model used for performing the

charge population analysis. In fact, the Mulliken or NBO popu-

lation analyses yield different values of the total charge trans-

fer and of the polarization between the two water hydrogen

atoms. Indeed, this suggests that the charge transfer in such

molecular complexes is a subtle effect, which strongly depend

Table 2. Atomic charges (a.u.), bond distances (Å) and angle (degrees) of the water complexes of Figure 1.

Method qHW1 qOW qHW2 Bond lengths Water angle

Fm–W OW–H1 C–O C–N N–H1 O–HW1 HW1–OW OW–HW2 HW1–OW–HW2

B3LYP/FX 0.417 20.834 0.417 2.075 1.230 1.351 1.022 1.798 0.988 0.969 103.1

B3LYP/FQ 0.333 20.728 0.394 2.158 1.227 1.353 1.020 1.988 0.976 0.967 104.8

B3LYP 0.303 20.654 0.327 2.040 1.231 1.350 1.021 1.910 0.984 0.968 106.9

Py–W N–C1 C1–C2 N–HW1 HW1–OW OW–HW2 HW1–OW–HW2

B3LYP/FX 0.417 20.834 0.417 1.341 1.397 1.891 0.985 0.967 103.0

B3LYP/FQ 0.292 20.700 0.408 1.341 1.397 1.949 0.976 0.970 104.5

B3LYP 0.285 20.694 0.312 1.341 1.396 1.949 0.983 0.968 105.4

Pm–W2 N–C3 N–C1 C1–C2 N–HW1 HW1–OW OW–HW2 HW1–OW–HW2

B3LYP/FX 0.417 20.834 0.417 1.337 1.342 1.394 1.910 0.983 0.967 103.9

B3LYP/FQ 0.387 20.691 0.304 1.337 1.341 1.394 1.987 0.975 0.969 104.9

B3LYP 0.291 20.686 0.318 1.337 1.342 1.394 1.990 0.980 0.968 106.2

Ac–W C1–O C1–C2 C2–H1 O–HW1 HW1–OW OW–HW2 HW1–OW–HW2

B3LYP/FX 0.417 20.834 0.417 1.232 1.510 1.093 1.750 0.984 0.968 103.6

B3LYP/FQ 0.384 20.701 0.317 1.229 1.512 1.093 1.929 0.975 0.969 104.8

B3LYP 0.290 20.676 0.321 1.231 1.510 1.092 1.928 0.978 0.968 106.4
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on the computational approach used for the calculations. An

accurate analysis of such effects is well beyond the purpose of

this work. Here, we will assume that the charge transfer effects

in the molecular complexes under study are small enough to

be effectively enclosed in the optimized parameters, and that

the electrostatic effects play the major role in the molecular

properties, as will be discussed in the following. Regarding the

ground state geometries, a remarkable aspect is that the

B3LYP/FQ intermolecular bonds in all the proposed systems

are closer to the B3LYP values than the corresponding B3LYP/

FX ones. In particular, the bond lengths related to the O–HW1

(Fm–W), N–HW1 (Py–W), N–HW1 (Pm–W2), and O–HW1 (Ac–

W2) are underestimated by about 0.10, 0.06, 0.08, and 0.18 Å,

respectively, by the B3LYP/FX method, while the errors related

to the B3LYP/FQ approach are one order of magnitude smaller.

Vertical excitation energies

In Table 3, the vertical excitation energies of the n! p� transi-

tion of the four complexes are reported, as computed in the

gas phase (B3LYP level, without any water molecule), with sin-

gle point calculations on the complexes constrained at the

B3LYP geometries, and after optimization at each level of

theory. It is apparent that in all cases, the vertical energy pro-

vided by the B3LYP/FQ method is closer to the corresponding

B3LYP value than the B3LYP/FX one. This can be due to the

improved treatment of the electrostatic interactions, since the

FQ model predicts a polarization of the atomic charges in

close agreement with the B3LYP CM5 charges. When the

geometry relaxation effects are considered, the good agree-

ment between the B3LYP/FQ and B3LYP results is retained. The

geometry optimization leads to an increase of the excitation

energy of about 0.01 eV for the B3LYP/FQ method for the

cases of Py–W, Pm–W, and Fm–W complexes, and of about

0.04 eV, in the case of Ac-W2. In comparison, such an effect is

sensibly larger (0.05–0.1 eV) for the B3LYP/FX method. This is

mainly due to the fact that the B3LYP/FQ geometry is closer

to the B3LYP one, than the B3LYP/FX geometry.

Although a detailed study of the effect of the basis set is

beyond the aim of this work, we performed a comparison of

several basis sets (6-311G*, 6-3111G**, 6-31111G**, cc-

pVTZ, and aug-cc-pVTZ) for the Fm–W complex. In Table 4,

charges and excitation energies are shown for the aforemen-

tioned basis sets, and it can be observed that the charges are

quite stable, the variations being only on the third decimal

digit. Regarding the excitation energies, while obviously the

overall magnitude of the energies depends on the size of the

basis, the difference between the values in the gas phase and

for the water complex are quite similar. As a matter of fact,

the 6-311G* basis set provides results very similar to those

delivered by larger basis sets, suggesting that once the diffuse

functions are added the effects induced on the environment

do not vary so much with the basis size.

TD-DFT analytical gradients for excited states

In Table 5, the comparison between analytical and numeric

derivatives for the Fm–W complex, at the TD-B3LYP/FQ and

B2PLYP/FQ levels is shown, to demonstrate the reliability of

our implementation. Using tight convergence criteria for the

SCF (10211 a.u.), numerical evaluation of integrals over DFT

grids (10212), CPHF (1029), and Davidson diagonalization pro-

cedures[88] for the TD-DFT equations (1029), the maximum dis-

crepancies between analytical and numerical forces are of the

order of 1028 a.u. This value is much lower than the thresh-

olds usually used in the geometry optimization algorithms,

and is only related to numerical fluctuations.

Finally the post-SCF gradients were used to evaluate differ-

ent properties of the complexes shown in Figure 1. The TD-

DFT analytical forces were used for the calculation of UV–Vis

Table 3. Vertical excitation energies (eV) of the first nfip� electronic transition and atomic charges (a.u.) of the complexes shown in Figure 1 at the

B3LYP geometry and after optimization.

(at B3LYP geometry)
Absolute xn!p�

System Method qHW1 qOW qHW2 xn!p� error (after optimization)

Fm B3LYP 5.6388 (0.0009)

Fm–W B3LYP 0.303 20.654 0.327 5.7964 (0.0011) 5.7964 (0.0011)

Fm–W B3LYP/FQ 0.406 20.726 0.320 5.8136 (0.0008) 0.0172 5.8129 (0.0009)

Fm–W B3LYP/FX 0.417 20.834 0.417 5.8089 (0.0009) 0.0125 5.8733 (0.0009)

Py B3LYP 4.8358 (0.0043)

Py–W B3LYP 0.285 20.694 0.312 5.0330 (0.0033) 5.0330 (0.0033)

Py–W B3LYP/FQ 0.356 20.660 0.304 5.0806 (0.0046) 0.0476 5.1378 (0.0047)

Py–W B3LYP/FX 0.417 20.834 0.417 5.1188 (0.0046) 0.0858 5.1552 (0.0046)

Pm B3LYP 4.3090 (0.0053)

Pm–W2 B3LYP 0.291 20.686 0.318 4.5344 (0.0041) 4.5344 (0.0041)

Pm–W2 B3LYP/FQ 0.338 20.656 0.318 4.5305 (0.0056) 0.0040 4.5935 (0.0056)

Pm–W2 B3LYP/FX 0.417 20.834 0.417 4.5947 (0.0056) 0.0602 4.6435 (0.0057)

Ac B3LYP 4.3978 (0.0000)

Ac–W2 B3LYP 0.290 20.676 0.321 4.6477 (0.0000) 4.6477 (0.0000)

Ac–W2 B3LYP/FQ 0.387 20.699 0.312 4.6540 (0.0000) 0.0063 4.6864 (0.0000)

Ac–W2 B3LYP/FX 0.417 20.834 0.417 4.6619 (0.0000) 0.0142 4.7870 (0.0000)

The 6-311G* basis set has been used in all cases. The Mean Absolute Error averaged over the four complexes of B3LYP/FQ (B3LYP/FX) is 0.0188

(0.0432) eV
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spectra including vibronic contributions in the vertical gradient

(VG) approximation (see Ref. 93 and references therein), that

is, by assuming that the vibrational frequencies and normal

modes of the excited state are the same as those of the

ground state and by estimating geometry relaxation in terms

of the excited state gradient at the ground-state equilibrium

geometry. Such computations were performed for the Py–W,

Pm–W2, and Fm–W complexes. Since our aim is to evaluate

the reliability of excited state results delivered by the TD-

B3LYP/FQ and TD-B3LYP/FX methods, we used the B3LYP

ground-state Hessian in all cases, so that the differences

between the spectra are only due to the differences in the

excited-state computations, being the ground-state frequen-

cies the same for all the methods. In Figures 3, 5, 6, the VG

spectra of the three complexes are shown, as computed with

the three methods. Temperature effects on the electronic

spectra have been neglected, so that the 0–0 transition is the

lowest energy one, and its position depends on the value of

the vertical energies computed with the different methods. In

all three cases, the band positions given by the B3LYP/FQ

method are in closer agreement with the B3LYP reference than

the ones predicted with the B3LYP/FX scheme, due to the

higher accuracy of the excitation energies (see Table 3 and the

discussion above). In the case of the Fm–W complex (Fig. 3),

the spectral shape is very complex, being due to many fea-

tures spread over about 10,000 cm21, and the analysis is quite

difficult. From the assignments shown in the Figure, it is possi-

ble to evaluate the agreement among the transitions pre-

dicted with all the three proposed levels of theory, the

different peaks being due to the same transitions in all the

spectral regions. Nevertheless, it is evident that the B3LYP/FQ

spectrum shows an higher accuracy than the B3LYP/FX one in

the region below 45,000 cm21. This could be due to a better

treatment of the modes of water, such as the bending at

1682 cm21, and the ones in the low frequency zone (674 and

439 cm21). In the small inset on the last spectrum, the dis-

placement vectors of the three most significant modes are

visualized, while in Figure 4, the shift vector for the normal

modes of the Fm–W complex is shown. In the cases of the

Py–W and Pm–W2 complexes (Figs. 5 and 6), the spectral

Table 4. Vertical excitation energies (eV) of the first nfip� electronic

transition and atomic charges (a.u.) of the Fm–W complex shown in Fig-

ure 1 at the B3LYP/6-311G* geometry.

xn!p� xn!p� Dxn!p�
qOW (gas phase) (water complex)

cc-pVTZ 20.723 5.5312 5.7816 0.2504

6-311G* 20.726 5.5517 5.8136 0.2619

6-31111G** 20.726 5.4526 5.7163 0.2637

aug-cc-pVTZ 20.730 5.4184 5.6946 0.2762

The effect of the basis set at fixed geometry on the charge and excita-

tion energies is shown

Table 5. Comparison between analytical and numerical forces (a.u.) for the Formamide–Water complex, computed for the B3LYP/6-311G* equilibrium

geometry.

Analytic Numeric

Atoms x-comp y-comp z-comp x-comp y-comp z-comp

TD-B3LYP/FQ

C 20.064662163 0.146337317 20.030789285 20.064662114 0.146337323 20.030789281

H 0.009247938 20.010031637 0.002242626 0.009247943 20.010031635 0.002242618

O 0.098527562 20.105630706 0.023396645 0.098527555 20.105630734 0.023396652

N 20.043791024 20.026063875 0.004134635 20.043791029 20.026063889 0.004134623

H 0.004953252 20.003285285 0.000762794 0.004953251 20.003285259 0.000762799

H 20.002206063 0.005865218 20.001177980 20.002206067 0.005865207 20.001177972

OW 20.000788163 20.002201577 0.000391206 20.000788188 20.002201594 0.000391190

HW 20.000717674 20.005376463 0.001127487 20.000717635 20.005376466 0.001127493

HW 20.000563665 0.000387007 20.000088130 20.000563666 0.000386963 20.000088149

B2PLYP/FQ

C 20.002959734 0.005558747 20.001173929 20.002959733 0.005558749 20.001173932

H 20.000488653 20.001723402 0.000317073 20.000488656 20.001723403 0.000317071

O 0.003410427 20.003708308 0.000846802 0.003410429 20.003708311 0.000846796

N 20.001151459 20.000232885 20.000029289 20.001151455 20.000232881 20.000029294

H 0.000830283 20.000692713 0.000164568 0.000830282 20.000692715 0.000164569

H 0.000391927 0.000701231 20.000075504 0.000391922 0.000701234 20.000075499

OW 0.000027634 0.000111627 20.000047147 0.000027636 0.000111624 20.000047142

HW 20.000061537 20.000009129 20.000004089 20.000061538 20.000009135 20.000004088

HW 0.000001110 20.000005167 0.000001514 0.000001109 20.000005171 0.000001512

MP2/FQ

C 20.007895800 0.011603102 20.002499396 20.007895815 0.011603106 20.002499397

H 20.000202653 20.001386633 0.000255970 20.000202661 20.001386627 0.000255971

O 0.009168345 20.009790195 0.002200098 0.009168350 20.009790187 0.002200099

N 20.001093861 20.000183241 20.000036583 20.001093861 20.000183227 20.000036588

H 0.000101851 0.000418741 20.000075773 0.000101857 0.000418734 20.000075787

H 20.000038435 20.000840722 0.000223471 20.000038435 20.000840720 0.000223468

OW 0.000042998 0.000147207 20.000054897 0.000042987 0.000147233 20.000054886

HW 20.000068893 0.000035101 20.000013776 20.000068873 0.000035107 20.000013783

HW 20.000013553 20.000003361 0.000000887 20.000013555 20.000003350 0.000000898

The basis set is 6-311G* in every case, the x-, y- and z-components are projected on the axes shown in Figure 1a
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Figure 3. VG spectra of the Fm–W complex (FWHM 5 200 cm21). Ground state Hessians at the B3LYP level, excited state gradients at the B3LYP/FX (a),

B3LYP/FQ (b), and B3LYP (c) levels; The 6-311G* basis set has been used in every case. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 4. Shift vector (a.u.) for the Fm–W complex. Red, blue, and green bars refer to B3LYP/FX, B3LYP/FQ, and B3LYP computations, respectively; with 6-

311G* basis set in every case. Mode 2: water ip torsion, 439 cm21. Mode 4: water oop torsion, 774 cm21. Mode 10: water bending, 1682 cm21. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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lineshape at the B3LYP/FQ level closely resembles the one at

the B3LYP level. In particular, it is worth noting that the

shoulder at about 35,000 cm21, which appears in the B3LYP

spectrum of Figure 6, is visible in the B3LYP/FQ spectrum,

while it does not appear in the B3LYP/FX one.

TD-DFT, MP2 and B2PLYP analytical gradients for geometry

optimizations

The Ac–W2 complex is quite challenging from a computational

point of view, due to the presence of the two methyl groups

and to a large flexibility of the water molecules. Furthermore,

the low energy electronic transitions can break the symmetry

reflection plane defined by the O, C1, and C2 atoms in the

ground state (Fig. 1d), showing a typical umbrella configura-

tion (Fig. 7) in the excited state. Thus, such a complex is a

nontrivial test case for validating our QM/MM models for

excited-state computations.

In Table 6, the excited-state geometries obtained with the

TD-B3LYP/FQ and TD-B3LYP/FX models are compared with the

full TD-B3LYP ones. In the ground state, the O–HW1 and O–

HW3 bonds are equivalent, and their bond length is 1.928 Å at

the B3LYP level. In the excited state, the two water molecules

are not equivalent, due to the geometry rearrangement. The

O–HW1 and O–HW3 bonds are stretched by about 0.04 and

0.08 Å, at the B3LYP level, and this shift is correctly reproduced

at the B3LYP/FQ and B3LYP/FX levels. Furthermore, in all the

three models, the distortion of the excited state from planarity

is consistently predicted. In fact, the dihedral angle u (C2–O–

C1–C3) is 1808 in the ground state, while it is lower in the first

excited state where the C2 and C3 atoms are closer to each

other. Such a shift is of about 358 at the B3LYP level, and it is

correctly reproduced by both the B3LYP/FQ and B3LYP/FX

methods.

Also geometry optimizations of the Ac–W2 ground state at

the MP2 and B2PLYP levels have been performed, and the

results are shown in the same table. Although both the QM/

MM force fields have been optimized for B3LYP calculations, a

remarkable agreement is found for the geometric parameters

with respect to full B2PLYP and MP2 calculations. Generally

speaking, the accuracy of the ground-state geometries is anal-

ogous to the corresponding results discussed for the B3LYP

Figure 5. VG spectra of the Py–W complex (FWHM 5 200 cm21). Ground state Hessians at the B3LYP level, excited state gradients at the B3LYP/FX (a),

B3LYP/FQ (b), and B3LYP (c) levels; The 6-311G* basis set has been used in every case. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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methods in the previous section. This is encouraging us

toward the development of QM/MM methods for accurate fre-

quency computations of large systems using the B2PLYP

functional.

Multilayered solvation schemes

We discuss here how multiscale QM/MM schemes can be used

for the calculation of excited-state properties of large systems.

In our previous works,[21,22,34,37,39] the QM/FQ approach was

presented as a part of a more extended embedding approach,

which includes also an outer PCM layer, while in this work, we

have introduced also the fixed charges (FX). In this last para-

graph, we will discuss the effects of the nature of the different

layers (QM, FQ, FX) on the QM wavefunction and on the MM

charge distribution using the pyridine molecule in water as

test case.

The structure of pyridine surrounded by explicit water mol-

ecules was obtained from a MD simulation. Pyridine was

modeled by means of a flexible force field, whose intramolec-

ular part was tailored on DFT-level vibrational data by the

Joyce[29,94] program. Intermolecular interactions were mod-

eled using LJ potentials, with parameters taken from opti-

mized potentials for liquid simulations (OPLS)[95] and charges

obtained from a CM5 analysis performed on the DFT/PCM

electronic structure of pyridine in water solution. The charge

Figure 6. VG spectra of the Pm–W2 complex (FWHM 5 200 cm21). Ground state Hessians at the B3LYP level, excited state gradients at the B3LYP/FX (a),

B3LYP/FQ (b), and B3LYP (c) levels; The 6-311G* basis set has been used in every case. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 7. First excited state geometry of the acetone–water complex (Ac-

W2). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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on the Nitrogen atom (20.42 e) was placed on a virtual site

lying at 0.35 Å from the nucleus. The simulation was per-

formed in the NPT ensemble (300 K, 1 atm) with the GRO-

MACS4.6[96] package, using a box of 3197 equilibrated TIP3P-

FB[91] water molecules and exploiting periodic boundary con-

ditions. A random snapshot was extracted for the analysis,

and several spheres of explicit solvent molecules were cut at

increasing radii, R0, and center on the nitrogen atom (Fig. 8).

The largest sphere has a radius R0522:0 Å including 1396

water molecules and will be referred to as System 8 (Fig. 8h).

Then, smaller models were cut, using values of R0 of 19.0,

16.0, 12.5, and 8.5 Å (Systems 7–4 in Fig. 8). Finally, the

smallest models were obtained by selecting the 8 and 2

water molecules closest to the nitrogen (Systems 2 and 3,

respectively). System 1 only consists of the isolated Pyridine

in the MD geometry. Systems 1–8 can, therefore, be viewed

as a hierarchical set of models, which can be used to test

the convergence of the electrostatic properties in multilay-

ered calculations, by applying the QM, FQ, and FX schemes

in different combinations. In particular, two aspects will be

studied: the physical reliability of the FQ charge distribution

of the MM layer, and of the vertical electronic excitation

energies in the QM part.

In Figure 9, the FQ charges on the water oxygen have

been plotted as a function of the distance from the nitrogen

for System 5, with two computational models. When the pyri-

dine is treated at the QM level, and all the water molecules

are treated with the FQ model (the QM/FQ approach), we

observe that the FQ charges have a value of about 20.75 in

the vicinity of the nitrogen, while the average charge

decreases to about 20.6 for the farthest ones. In the FQ

model, the polarization depends not only on the intrinsic

parameters, but also on the electrostatic potential at the posi-

tion of the FQ atoms. Such a potential in turn depends on

how many molecules (i.e., the sources of electrostatic poten-

tial) are located in the nearby of the FQ water molecule, and

how strong such sources are. Therefore, we can reasonably

assume that the polarization of an FQ water molecule

depends on two main factors, namely the charges and the

number of surrounding molecules. Then, the trend of the

polarization in the QM/FQ scheme can be explained by recall-

ing that in the parametrization procedure used for extracting

the FQ parameters, we fitted the FQ charges so to reproduce

the CM5 charges at the B3LYP/6-311G* level for the gas

phase water; such charges are about 20.66 and about 20.84

for the bulk phase (Table 1). In System 5, the inner water

molecules have an higher coordination number than the

outer ones, so that the latter show a lower polarization (i.e.,

the oxygen atoms are less negative) than the former ones

approaching the gas-phase limit. The average values of the

charges as a function of the distance from the QM system

have been interpolated with a line with a slope of about

10.015, which can be considered a rough estimation of the

depolarization rate of the FQ charges as a function of the dis-

tance from the QM atoms. The QM/FQ model appears to

mimic a molecule at the center of a droplet in vacuo, rather

than a molecule in solution, since the outer FQ charges

approach the gas-phase limit rather than the bulk solvent.

Certainly one good question is what we consider to be the

bulk limit of the water charges, and what we expect to be

the trend of the charge distribution at large distances from

the solute. Some helpful hints to answer to this question

could be that the dipole moment of the isolated pyridine at

the B3LYP/6-311G* level at the current geometry (System 1

in Fig. 8a) is 2.31 Debye, while the one of an isolated gas-

phase water molecule at the same level of theory is 2.25

Debye. Furthermore, the CM5 charge on the nitrogen of a

pyridine is 20.388, much lower than the corresponding

charge on the water oxygen, which is 20.659. For compari-

son, the corresponding Mulliken charges are 20.179 and

20.928 for the pyridine nitrogen and water oxygen, respec-

tively. Then, we expect that the electrostatic potential gener-

ated by the pyridine molecule is lower than the potential

generated by the water molecule, due to a lower polarization

Table 6. Atomic charges (a.u.), adiabatic excitation energy (eV), bond distances (Å) and angle (degrees) of the Ac-W2 complex.

Method[a] qHW1 qOW qHW2 C1–O C1–C2 C2–H1 O–HW1 HW1–OW OW–HW2 HW1–OW–HW2

Ground state

B2PLYP/FX 0.417 20.834 0.417 1.236 1.507 1.091 1.749 0.984 0.968 103.6

B2PLYP/FQ 0.387 20.703 0.316 1.234 1.509 1.091 1.929 0.975 0.969 104.8

B2PLYP 0.298 20.686 0.326 1.235 1.508 1.090 1.932 0.977 0.967 106.4

MP2/FX 0.417 20.834 0.417 1.242 1.504 1.092 1.749 0.984 0.968 103.7

MP2/FQ 0.376 20.693 0.317 1.240 1.505 1.092 1.927 0.975 0.969 104.8

MP2 0.305 20.694 0.330 1.241 1.505 1.091 1.951 0.979 0.970 106.2

First excited state

TD-B3LYP/FX 1.331 1.509 1.095 1.799 0.980 0.967 104.0

TD-B3LYP/FQ 1.325 1.512 1.095 2.004 0.973 0.969 104.8

TD-B3LYP 1.327 1.511 1.095 1.972 0.975 0.968 105.7

. . .continue xad Dua O–C1–C2 O–HW3 HW3–OW OW–HW4 HW3–OW–HW4

TD-B3LYP/FX 4.086 236.17 113.8 1.814 0.980 0.968 104.2

TD-B3LYP/FQ 4.049 237.52 113.9 2.068 0.974 0.968 105.0

TD-B3LYP 4.031 234.93 114.3 2.009 0.976 0.968 106.4

The ground state geometry and atom labelling refer to Figure 1 and 7 for the ground and excited states, respectively. The 6-311G* basis set has been

used in all cases. [a] Given u the dihedral angle formed by the C2–O–C1–C3 atoms, which is 1808 in the ground state, Dua is the variation in the

excited state geometry
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of the charge distribution (they have similar dipole moments

but the pyridine is much larger than water). Furthermore, pyr-

idine has a larger steric hindrance than water, so that we can

assume that a water molecule in the bulk phase coordinates

more molecule than a water molecule in the vicinity of the

pyridine molecule. Following these arguments, we expect the

FQ charges of the water molecules in the bulk phase to be

slightly higher than the ones of the water in the nearby of

Pyridine. This trend cannot be reproduced by a simple QM/

FQ model, because the outer water molecules have low coor-

dination numbers due to the unphysical truncation of the

sphere.

To ensure that the charge distribution approaches a reason-

able bulk solvent limit at long distances, an outer layer of

water molecules with fixed charges can be used to embed the

FQ charge distribution. In particular, System 6 (Fig. 8f ) has

been used, treating the water molecules included in the

sphere of radius R0512:5 Å (i.e., System 5) at the FQ level,

Figure 8. Solvation shells of pyridine taken from one snapshot of an MD simulation. In Figures (d)–(h) spheres of different radii R0 centered on the Nitrogen

have been cut from the snapshot. N is the number of water molecules included in the systems. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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while the outer molecules included in the shell between R05

12:5 and 16.0 Å ere endowed with fixed TIP3P-FB[92] charges.

The FQ charge distribution is referred to as the QM/FQ/FX

method in Figure 9, and shows a (slightly) negative slope of

the average charge in different shells. In fact, in this model,

the FQ charges belonging to the outer layer respond to the

electrostatic potential of the FX charges, approaching a value

of 20.85 in the bulk limit. In Fig. 10, the results of QM/FQ and

the QM/FQ/FX approaches are sketched for System 7 (Fig. 8g),

to show that the results are independent on the specific

molecular system used, confirming the same conclusions pre-

sented above for System 5.

Finally, in Figure 11, the solvatochromic shift of the first

(n! p�) vertical excitation energy of the pyridine molecule is

shown, to study the effect of the embedding on a significant

QM property. The solvatochromic shifts for Systems 2–8 of Fig-

ure 8 are reported, as computed using the QM/FQ, QM/FX,

and the QM/FQ/FX models. The QM/FQ and QM/FX shifts have

similar trends, showing a good convergence to the largest sys-

tems. Indeed, both curves have a very fast increase for the

smaller systems (2–4) and then the trend becomes smoother.

In both cases, the solvatochromic shifts of System 6 (R0516:0

Å) are very close to the values of System 8 (R0521:0 Å), so

that they can be considered at convergence. Obviously, due to

larger charges, the QM/FX model converges to values of the

solvatochromic shifts larger than the QM/FQ model, in agree-

ment with the results collected in Table 3 for the small com-

plexes. The QM/FQ/FX model, which was found to provide the

correct FQ charge distribution is also shown for Systems 3–8.

It can be observed that for Systems 3, 5, 6, 7, and 8, the values

predicted by the QM/FQ/FX model are very close to the ones

at the QM/FQ level, suggesting that only the charges of the

water molecules close to the QM region have a significant

effect on the QM properties. For System 4, at R058:5 Å, the

differences between the QM/FQ/FX and QM/FQ models are

slightly larger. This is mainly due to the fact that for such a

system the outer FX layer is spherical, but this is not case for

the inner FQ one (corresponding to System 3), so that the QM

charge density interacts with both FQ and FX charges, leading

to a solvatochromic shift comparable with the QM/FX one.

Conclusions

The polarizable QM/MM scheme based on the FQ model

developed in the past years for the calculation of ground-state

properties and vertical excitation energies has been extended

to the computation of post-SCF gradients. Excited state prop-

erties, as well as geometry optimizations at B2PLYP and MP2

levels are now available in our code, allowing a wide choice of

methods for the study of large systems.

The parameters of the FQ model have been optimized to

tune the QM–FQ interaction and the dispersion–repulsion

parameters have been consequently adjusted to perform

geometry optimization consistently with the FQ electrostatics.

From the comparison between QM/MM approaches based

on fixed and polarizable charges, it is apparent that the FQ

model provides two main advantages with respect to fixed

charge approaches. The first one is that it becomes possible to

find a unique set of parameters which provides charges for

the ground-state QM density, excited-state QM density and

Figure 9. Charges (1/R kernel) on the oxygen atoms of the FQ water mole-

cules surrounding pyridine in System 5 (Figure 8e). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 10. Charges (1/R kernel) on the oxygen atoms of the FQ water mol-

ecules surrounding pyridine in System 7 (Figure 8g). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 11. Solvatochromic shift of the vertical excitation energies (eV) of

pyridine in water for different solvation models. The shell radius on the x-

axis refers to the R0 values of the systems shown in Figure 8. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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interaction with other MM/PCM layers. This allows to perform

calculations using a unique model for different properties. On

the contrary, the fixed charge models require different para-

metrizations for gas phase, solvent, ground-state and excited-

state calculations.

The second advantage is that the FQ model allows to pre-

dict the properties of both the QM and MM subsystems, pro-

viding good charge distributions on the MM atoms, especially

when multilayered models like QM/FQ/PCM and/or QM/FQ/FX

are used. This is a significant improvement of the QM/MM

method especially whenever static calculations are combined

with dynamic approaches, where the time evolution of the

systems is studied with classical MD simulations.

The promising results obtained in this work for both the

QM side (VG spectra of the QM subsystem embedded in the

FQ layer) and the MM side (the FQ charge distributions) are

encouraging and pave the route toward the development of

robust and reliable QM/MM protocols able to accurately model

large molecular systems.
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