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Abstract

This paper reviews basic methods and recent applications of length-based fiber bundle analysis of 

cerebral white matter using diffusion magnetic resonance imaging (dMRI). Diffusion weighted 

imaging (DWI) is a dMRI technique that uses the random motion of water to probe tissue 

microstructure in the brain. Diffusion tensor imaging (DTI) is an extension of DWI that measures 

the magnitude and direction of water diffusion in cerebral white matter, using either voxel-based 

scalar metrics or tractography-based analyses. More recently, quantitative tractography based on 

diffusion tensor imaging (qtDTI) technology has been developed to help quantify aggregate 

structural anatomical properties of white matter fiber bundles, including both scalar metrics of 

bundle diffusion and more complex morphometric properties, such as fiber bundle length (FBL). 

Unlike traditional scalar diffusion metrics, FBL reflects the direction and curvature of white matter 

pathways coursing through the brain and is sensitive to changes within the entire tractography 

model. In this paper, we discuss applications of this approach to date that have provided new 

insights into brain organization and function. We also discuss opportunities for improving the 

methodology through more complex anatomical models and potential areas of new application for 

qtDTI.
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INTRODUCTION

Advances in diffusion weighted imaging (DWI) technology have allowed researchers to 

characterize the structural integrity of white matter tissue. Diffusion tensor imaging (DTI) is 
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an extension of DWI utilized to non-invasively examine neuronal tracts to quantitatively 

measure white matter integrity (1,22,34,37,46). Highly advanced DTI methods have been 

developed in recent years and have significantly improved the utility of diffusion tensor 

measurements to detect subtle white matter changes in both healthy and diseased 

populations (13–14,17,39–41). One example includes the integration of quantitative 

tractography based on diffusion tensor imaging (qtDTI) technology that has enhanced our 

ability to examine specific detail about the direction and curvature of white matter pathways 

using in vivo imaging (17). This method is highly sensitive to white matter changes within 

entire tracts and, therefore, may be more advantageous than methods that involve placing 

regions of interest on two-dimensional scalar DTI parameter maps (17). In this review, we 

describe the fundamentals of the diffusion tensor model and qtDTI technology. We then 

review the existing literature on length-based metrics using qtDTI, followed by a discussion 

of the strengths and limitations of qtDTI. Finally, a brief review of future applications is 

provided.

DIFFUSION MR TECHNIQUES

DTI Physical Basis

DTI is a noninvasive magnetic resonance imaging (MRI) technology that measures water 

diffusion at each voxel in the brain. Water molecules diffuse differently along tissues 

depending on tissue microstructure and the presence of anatomical barriers. One simple and 

useful way to characterize diffusion at a location in the brain is along a spectrum between 

isotropic and anisotropic. Diffusion that is highly similar in all directions (i.e., isotropic 

diffusion) is typically observed in grey matter and cerebrospinal fluid. By contrast, 

directionally dependent diffusion (i.e., anisotropic diffusion) is observed in white matter due 

to the linear organization of the fiber tracts. Water within these tracts preferentially diffuses 

in one direction because physical barriers such as axonal walls and myelin restrict water 

movement in other directions (5,24,47,48). Neuropathological mechanisms associated with 

multiple conditions, including subcortical ischemia, neurodegeneration, and traumatic brain 

injury, cause reductions in the linear organization of white matter pathways with 

corresponding reductions in linear anisotropy (5,19,48,52). DTI is sensitive to these changes 

in linear anisotropy even when white matter integrity appears healthy based on structural 

neuroimaging methods (referenced as normal appearing white matter) (4,30), making DTI a 

powerful in vivo imaging method for the examination of the microstructural integrity of 

white matter.

DTI Scalar Metrics

A symmetric 3×3 diffusion tensor characterizes water diffusion in brain tissues. This model 

represents the diffusion pattern with a second-order tensor that can be decomposed into three 

non-negative eigenvalues and three eigenvectors that describe the magnitude and orientation 

of water diffusion in each voxel (Figure 1). Eigenvalues describe the shape and size of the 

tensor, independent of orientation, while eigenvectors describe the orientation of the tensor, 

independent of shape and size. The tensor model parameterizes the diffusion in each voxel 

with an ellipsoid whose diameter in any direction estimates the diffusivity in that direction 

and whose major principle axis is oriented in the direction of maximum diffusivity The 
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major axis of the ellipsoid (v1) points in the direction of the maximum diffusivity (λ1) of a 

voxel. The direction of the maximum diffusion is oriented in the direction of the major fiber 

tract in the voxel. The directions perpendicular to the main fiber orientation along the 

medium (v2) and minor axes (v3) of the diffusion ellipsoid are also computed (λ2, λ3) in the 

tensor analysis. DTI scalar metrics are functions of three diffusion eigenvalues (λ1, λ2, λ3). 

Axial diffusivity (AD = λ1) is the maximum diffusivity in the voxel and decreases with 

greater axonal injury (15,29). Radial diffusivity

is the average of the diffusivity perpendicular to the major axis and increases with abnormal 

myelination (1). Mean diffusivity

is the average of the diffusivity values of the three axes of the diffusion ellipsoid and is 

sensitive to cellularity, edema, and necrosis (46) (Figure 2). Lastly, fractional anisotropy

parameterizes the degree to which the diffusion ellipsoid deviates from spherical. FA is a 

normalized measure ranging from zero to one that decreases with axonal degeneration, 

abnormal myelination, and fiber orientation dispersion (27, 35–36, 47) (Figure 2). These 

scalar metrics describe microstructural properties of white matter; however, inclusion of the 

full structure of the tensor model assists in determining subtle changes related to tract 

directionality (17,25).

DTI Tractography

DTI tractography is a technique for creating geometric models that reflect the large-scale 

structure of fiber bundles. These models are created based on voxel-wise estimates of local 

fiber orientation using the primary tensor eigenvector, which is indicative of the direction of 

the dominant fiber bundle. The primary advantage of tractography compared with regional 

analysis of scalar metrics is the integration of data across an entire white matter tract (17). 

This process can be repeated to provide both a curve representing the three-dimensional 

(3D) path as well as diffusivity properties sampled along the fiber bundle. The trajectories 

are then graphically depicted using 3D rendering of lines, tubes, or surfaces (31,54). 

Tractography can be performed using both deterministic and probabilistic approaches. In 

deterministic tractography, white matter tracts are reconstructed by selecting a seed region 

and performing streamline integration based on the preferred direction of the diffusion 

ellipsoids until one of several stopping criteria is reached. Stopping criteria include 

decreased anisotropy, sharp curvature, and reaching tissue boundaries (33). However, 

deterministic tractography is limited by the accumulation of errors during tracking and 
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sensitivity to seeding conditions (26). Probabilistic tractography is an alternative approach 

that more completely samples the space of possible tracks and accounts for uncertainty 

during tracking (7). This technique estimates the most likely fiber orientations at each voxel 

along with the probability distribution that a fiber would run along those directions (46). 

These probability distributions are then used to sample from a large population of probable 

paths based on complex diffusion models (7). While probabilistic tracking technology helps 

to overcome complex anatomy and uncertainty, it is limited in the morphometric properties 

that can be measured, such as fiber bundle length (FBL).

Quantitative Tractography Based on Diffusion Tensor Imaging (qtDTI)

qtDTI technology combines scalar metrics with tractography to estimate bundle-specific 

properties that characterize the structural properties of fiber bundles, including both simple 

statistical summaries of bundle properties—for example, average FBL, total length, and 

average scalar metrics (AD, RD, MD, and FA). These simpler metrics can also be combined 

to form more complex composite metrics, such as intracranial volume (ICV)-normalized 

length and anisotropy-weighted FBL (17). Alterations in microstructure result in lowered 

anisotropy or sharp changes in fiber orientation, which lead to fiber termination during 

tractography (36). These outcomes are potentially useful for detecting white matter injuries, 

such as those associated with inflammation in multiple sclerosis, which can cause such 

microstructural changes and associated changes in bundle metrics (42). Compared with 

traditional DTI scalar metrics such as FA, qtDTI technology is effective in detecting tract 

specific alterations that may be distributed anywhere along the tractography model (17). 

This novel approach has high potential to advance our current understanding of white matter 

structure and function in healthy and diseased populations.

WHITE MATTER FIBER LENGTHS DECREASE WITH AGE

Postmortem Evidence of Reduced White Matter Fiber Length

Postmortem studies of human tissue have revealed significantly shorter total neuronal fiber 

lengths among older adults compared with younger adults (32,38,49). Specifically, Marner 

and colleagues (32) quantified total nerve fiber lengths in adults between the ages of 18 to 

93 by using stereologic methods in myelinated nerve fibers. Results revealed a 10% decrease 

in myelinated nerve fibers per decade of life, with a total decrease of 45% from age 20 to 80 

(32). Tang and colleagues (49) also used stereologic methods to examine potential age-

related shortening of white matter fiber lengths and demonstrated that the total length of the 

cerebral fibers was significantly longer in younger individuals (118,000 km) compared with 

older individuals (86,000 km) (49). This loss of total nerve fiber length with age was 

accompanied by a decline in the number of small-diameter myelinated fibers.

Application of qtDTI in the Context of Age-Related White Matter Atrophy in Healthy Older 
Adults

The postmortem studies described above provide evidence that the total length of white 

matter fibers represents a biomarker of age-related white matter degradation (31,49), yet this 

could not be confirmed in vivo prior to the development of qtDTI. Our group recently 

reported a significant negative relationship between FBL and age, specific to the anterior 
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thalamic radiation (3) and uncinate fasciculus (44). The anterior thalamic radiation is formed 

by fibers interconnecting the anterior and medial thalamic nuclei and the frontal lobe via the 

anterior limb of the internal capsule. The uncinate fasciculus connects the hippocampus and 

amygdala in the temporal lobe with the frontal lobe. Additional publications reported 

significant correlations between shortened FBL in the temporal and frontal lobes and 

increased age (6,9,43). These results suggest that volumetric reductions in white matter 

among older adults are likely due to shortened FBL in major white matter tracts (10).

The Relationship between qtDTI In Vivo and Cognition in Healthy Older Adults

Associations between fiber length and age-related cognitive decline could not be examined 

prior to the development of in vivo qtDTI technology. Our group recently reported that 

performance on tests of executive functioning was associated with shorter FBL in the 

frontal, occipital, and parietal lobes in older adults (6). Additionally, lower performance on 

tests of processing speed was associated with shorter FBL across all four lobes of the brain. 

The findings of shorter mean lobar FBL as a correlate of poorer cognitive performance 

provides a functional outcome related to reduced FBL and cognitive aging. Results suggest a 

possible role for qtDTI in identifying older adults at risk for clinically relevant cognitive 

dysfunction, including prodromal dementia.

Utilizing qtDTI In Vivo to Examine Risk Factors for Reduced White Matter Integrity

Our group has extended this research to determine the capacity of qtDTI to identify risk 

variables for suboptimal brain health in a healthy older adult population (9,43–44). The 

epsilon 4 (e4) isoform of apolipoprotein E (ApoE) and the angiotensin (AGT) M268T 

polymorphism (rs699; historically referred to as M235T) are two genetic risk factors for 

reduced brain health in older adults, with the ApoE e4 (ApoE4) allele also representing a 

known risk factor for developing Alzheimer’s disease (AD) (16,45). Members of our group 

utilized qtDTI to investigate differences in FBL among individuals with an e4 allele 

compared with those with e3 alleles (43) and with the MetMet (MM) genotype of the AGT 

M268T polymorphism compared with the ThrThr (TT) genotype (44). Both studies revealed 

an effect of genotype group on FBL in specific white matter tracts. FBL in the left UF were 

significantly shorter in e4 carriers compared to non-carriers (43). Similarly, healthy older 

adults with the TT genotype exhibited shorter FBL in the left superior longitudinal 

fasciculus and cingulate gyrus segment of the cingulum compared with their MM 

counterparts (44). Our group has also revealed that higher body mass index (BMI) was 

independently and significantly associated with shorter white matter FBL in the temporal 

lobe (9).

While age may represent a salient factor in white matter integrity of a healthy older adult 

population, additional factors such as BMI and genetic polymorphisms can contribute to 

subtle, yet identifiable, alterations to white matter fiber bundles that are detectable with 

qtDTI. Collectively, these three studies lend support to the utility of qtDTI in the assessment 

of cerebral white matter changes associated with common risk factors that often lead to 

suboptimal brain health in older adults.

Baker et al. Page 5

Technol Innov. Author manuscript; available in PMC 2016 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APPLICATION OF qtDTI TECHNOLOGY TO DETERMINE WHITE MATTER 

INTEGRITY IN A CLINICAL POPULATION

qtDTI technology has also been used to examine white matter fiber lengths in individuals 

with subcortical ischemic vascular disease (SIVD) compared with healthy controls to 

determine the sensitivity of qtDTI to detect white matter changes in a clinical population. 

SIVD is a condition that is associated with significant white matter microstructural damage 

in the brain (12,20–21,28). Prior studies have demonstrated the sensitivity of traditional DTI 

indices to the white matter alterations associated with SIVD in specifically defined regions 

of interest, such as the corpus callosum and the corona radiate, in addition to the presence of 

white matter hyperintensities (WMH) that are characteristic of the disease (20–21). 

Members of our group investigated the utility of qtDTI metrics, particularly those associated 

with length (e.g., average fiber length, FA-weighted fiber length, normalized fiber length), to 

examine white matter tract integrity and its relation to cognitive performance in a group of 

individuals with SIVD (17). Average FA was included to investigate the relative 

performance of traditional DTI compared to qtDTI in identifying white matter alterations. 

Both average FA and qtDTI metrics, particularly those associated with fiber length, revealed 

poorer white matter integrity of transcallosal fibers in individuals with SIVD compared with 

healthy controls. Reduced fiber length was additionally associated with worse performance 

on tests of executive functioning and processing speed in the SIVD group. Effect sizes were 

consistently smaller for average FA values compared with qtDTI metrics, suggesting that 

qtDTI may be a more robust indicator of white matter tract damage in SIVD compared with 

traditional DTI scalar metrics.

STRENGTHS AND LIMITATIONS OF qtDTI TECHNOLOGY

The first major strength is that qtDTI provides multi-faceted measurements of fiber bundles 

that provide complementary measures, such as FBL, volume, FA, and MD, that can detect 

and gauge the magnitude of various aspects of white matter anatomy. As discussed earlier, 

FBL can provide a valuable signal that goes beyond diffusivity measurements alone. 

Furthermore, composite measures such as anisotropy-weighted FBL are potentially more 

sensitive to pathology than any one alone, as they can reflect both fiber termination and 

overall changes in anisotropy (17). The second major strength is the anatomical specificity 

of qtDTI, which is valuable for localizing pathological effects that would be undetectable 

when simpler whole-brain analysis is performed. Together, these aspects make qtDTI a 

unique and powerful tool for understanding structural aspects of fiber bundles.

Several limitations of qtDTI technology warrant discussion. First, qtDTI is sensitive to 

imaging artifacts such as partial-volume averaging of fiber bundle populations with varying 

degrees of myelination, fiber orientation, and/or axon caliber. Partial-volume confounds can 

be somewhat managed by decreasing the voxel size and increasing the gradient strengths and 

number of directions. However, these adjustments reduce signal-to-noise ratios and increase 

scan time and post-processing complexity. Additional artifacts include subject motion, 

magnetic susceptibility, and echo planar imaging distortion. While these artifacts are often 
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difficult to avoid, they can be readily detected by inspection, and negative effects on bundle 

reconstruction can often be avoided by quality control (51).

FUTURE APPLICATIONS AND NEW INNOVATIONS OF qtDTI TECHNOLOGY

As a novel method, qtDTI remains in the early stages of development, and research is 

needed to examine reproducibility and reliability. Studies including histological techniques 

and known markers of white matter pathology (e.g., WMH) will support the validity of the 

approach. Furthermore, qtDTI technology has the potential to broaden our understanding of 

the associations between white matter integrity and cognitive development in children. It is 

also possible that these metrics (i.e., FBL) can be used to improve sensitivity to injury and 

abnormal development. However, studies in newborns and children are necessary to 

determine the applicability of qtDTI metrics in this population, particularly in relation to 

work on myelin water fraction mapping (18). There is also much knowledge to gain by 

going beyond the relatively simple single tensor model to explore more complex diffusion 

models. Such methods can potentially improve the reconstruction of crossing bundles and 

enable the quantitation of features such as fiber dispersion and free water contamination. 

Current efforts to address these limitations include tractography methods that utilize more 

complex models (11), such as constrained spherical convolution (50), ball-and-sticks 

diffusion model (8), and neurite orientation dispersion and density imaging (53). Finally, 

there is a great deal to learn about the relationship between qtDTI and other imaging 

modalities. In particular, the combination of qtDTI and functional MRI has the potential to 

provide a much more complete model of brain integrity, as it would provide a parallel view 

of both structural and functional brain integrity.

SUMMARY

qtDTI is a relatively novel imaging approach that exhibits high potential to advance our 

current understanding of the organization and function of the human brain. Although 

traditional DTI metrics provide important information about white matter integrity within a 

single voxel, qtDTI technology has facilitated the examination of specific detail about the 

direction and curvature of white matter pathways in vivo. While this method is currently in 

the early stages of technological advancement, research to date has provided novel insights 

into cerebral white matter integrity in adult populations. Overall, qtDTI represents a 

potentially useful tool in future investigations of white matter fiber bundles in healthy and 

clinical populations.
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Figure 1. 
Visual depiction of tensor-based modeling and diffusion tensor images: an illustration of 

tensor-based modeling and diffusion tensor imaging. The top panel shows a single tensor 

model, which can be decomposed into eigenvectors and eigenvalues. The eigenvectors (v1, 

v2, v3) represent the major, medium, and minor principle axes of the ellipsoid, and the 

eigenvalues (λ1, λ2, λ3) represent the diffusivities in these three directions, respectively. 

The eigenvalues can be used to describe the shape with fractional anisotropy (FA) and mean 

diffusivity (MD). The bottom panel shows diffusion tensor images, which are composed of 

glyphs representing the tensor models in each image voxel. The glyphs are ellipsoid shaped 

and can be colored based on fiber orientation, FA, MD, etc
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Figure 2. 
Visual depiction of whole brain and tract-specific fiber bundles in cerebral white matter: an 

illustration of tractography modeling of white matter. The left panel shows whole brain 

tractography models, which consist of a complex pattern of connections. The right panel 

shows specific bundles extracted from whole brain tractography, allowing anatomically 

specific metrics to be computed.
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