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Spatial classification of glaucomatous visual field
loss

David B Henson, Susan E Spenceley, David R Bull

Abstract
Aims-To develop and describe an
objective classification system for the
spatial patterns ofvisual field loss found in
glaucoma.
Methods-The 560 Humphrey visual field
analyser (program 24-2) records were
used to train an artificial neural network
(ANN). The type of network used, a
Kohonen self organising feature map
(SOM), was configured to organise the
visual field defects into 25 classes of
superior visual field loss and 25 classes
of inferior visual field loss. Each group of
25 classes was arranged in a 5 by 5 map.
Results-The SOM successfully classified
the defects on the basis of the patterns of
loss. The maps show a continuum of
change as one moves across them with
early loss at one corner and advanced loss
at the opposite corner.
Conclusions-ANNs can classify visual
field data on the basis of the pattern of
loss. Once trained the ANN can be used to
classify longitudinal visual field data
which may prove valuable in monitoring
visual field loss.
(BrJ Ophthalmol 1996;80:526-531)
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Glaucoma is known to produce characteristic
patterns of visual field loss. Aulhorn and
Harms' classified 954 eyes with circumscribed
defects in the central visual field into eight dif-
ferent groups. The subjective classification
being based upon the location, shape, and
extent of loss. Similar, descriptive classifica-
tions have been given by Aulhorn,' Aulhorn
and Karmeyer,' Drance,4 and, as part of an

investigation into progressive loss, by both
Hart and Becker5 and Jay and Murdoch.6
These subjective classification systems,

which are all based upon kinetic data, have a

number of shortcomings. The individual
classes often lack precise definitions which can
lead to problems of misclassification. The

number of classes are invariably small, which
limits their usefulness in grading the extent of
loss and in monitoring progression. Finally, the
classes are often based upon preconceived
notions concerning the nature ofglaucomatous
loss.

Artificial neural networks (ANNs), which
are capable of learning from examples, possess
a series of attributes that make them particu-
larly useful in the tasks of differentiating and
classifying spatial patterns. They have an ability
to learn similarities among patterns directly
from instances of them, they are capable of
using all the data within very large data sets,

they have no preconceived notions, they have
an ability to generalise when used to process
previously unseen data, and they can be used
to classify the results from static strategies,
such as the 24-2 program of the Humphrey
visual field analyser (HVA).
There are two broad classes of ANNs-

those which use supervised learning and those
which use unsupervised learning. The super-
visedANN learns from a training set of data in
which each item has already been classified. It
then learns to reproduce this classification.
The back propagation network,7 which has
been used by a number of researchers inter-
ested in developing automated systems for the
recognition and classification of visual field
defects,8 "4 is typical of this type of learning.
The unsupervisedANN does not require the

training data to be classified. The classification
is performed by the network. The Kohonen
self organising feature map (SOM)" is typical
of an unsupervised method of learning. One of
the major advantages of the SOM is that it
overcomes the criticism that ANNs simply
learn to duplicate the preconceived judgments
of the data classifier(s).
Because ANNs learn from their training set

examples the composition of this set becomes
an important variable in the final outcome.'2 In
the case of the SOM the percentage of output
nodes allocated to a particular group of defects
will be roughly in proportion to the number of
cases within the training set. If, for example,
the training set had a large number of eyes with
early visual field loss and very few with
advanced loss then the resulting network
would allocate a large number of the output
nodes to the early loss examples and few to the
advanced ones. A balance of defects within the
training set is inportant if it is to represent
accurately all the types of loss found within the
population.
The spatial patterns of loss within the supe-

rior and inferior hemifields show a degree of
independence due to the anatomical arrange-
ment of visual fibres at the optic nerve head.
When spatially classifying the whole visual field
this arrangement can result in a certain
number of redundant classes in which different
combinations of the same the superior and
inferior hemifield patterns occur. This problem
can be overcome by classifying independently
the superior and inferior hemifields.

This paper describes an objective classifica-
tion system for the spatial patterns of visual
field loss found in glaucoma. The classification
is based upon the output of a SOM trained
with data from the 24-2 program of the HVA.
The superior and inferior fields are classified
independently. This paper also highlights how
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the classification system is dependent upon the
inclusion criteria of the training set.

Materials and methods
TRAINING DATA
The training set pool (560 records from 560
patients) was selected from a database of visual
field records collected at Moorfields Eye Hos-
pital and the Department of Ophthalmology,
University of Dalhousie. The data were col-
lected with an HVA either as part of the routine
care of patients in a glaucoma clinic or as part
of a longitudinal project looking into progres-

sive visual field loss.
The test locations used were a subset of

those in the HVA 24-2 program (see Fig 1).
Excluded locations were the two that normally
fall within the blind spot region and the two
that are beyond an eccentricity of 24 degrees in
the temporal field. This subset contained 25
test locations in both the superior and inferior
hemifield. Data from left eyes were flipped
around the vertical midline.
Four training sets were extracted from the

training set pool. The first two training sets
included all 560 visual field records. The first
set included the 25 test locations within the
superior visual field and the second the 25
locations within the inferior visual field. The
third and fourth training sets were composed
of only those 560 field records with two or

more than two missed locations (see below for
definition of a missed location) within the
respective hemifield. The training set for the
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superior hemifield was composed of 340
records while that for the inferior field was

composed of 295 records.

PRE-PROCESSING OF FIELD DATA
The HVA threshold values were transformed
into binary values (normal or defective). This
transformation involved the computation of
defect values (that is, the measured threshold
minus the age matched expected threshold for
a normal patient). The defect values were then
adjusted for any shifts in overall sensitivity. The
adjustment was based upon the difference
between the 85th percentile of ranked defect
values from an individual field and the average

85th percentile from a group of normals (666
visual field records). The adjustment was

limited to 2 dB.
Once the pattern deviation values had been

obtained a cut off criterion of -6 dB was

applied. Test locations with pattern deviation
values of greater than and equal to -6 dB were

classified as normal while those with values
below -6 dB were classified as defective. This
conversion process is similar to that used
within the software package STATPAC which is
designed to analyse visual field data from the
HVA.'6 17 The binary input to the ANN means

that the resultant classifications are based
solely upon the spatial location and extent of
the defects and not upon their depth.

ARTIFICIAL NEURAL NETWORK
The structure of the SOM network (Fig 2) can

be conceived as a layer of input nodes Xi-Xm
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Figure 1 Stimulus locations of the Humphrey 24-2 program along with those selectedfor input into the artificial neural
networks.
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Figure 2 Schematic showing the structure of the Kohonen selforganisingfeature mc
Inputs I1-Im correspond to the test locations, K,-K, are the 25 output classes, while
WI,-Wmp represent the weights applied to each field location at each output class.

(each node corresponding to a test location
within the visual field) fully connected to a two
dimensional output layer (the map) of nodes
KI-Kp. During training the weights associated
with the connections between the input and
output layers Wll-Wmp are modified on the
basis of the information contained within the
visual field data and the training variables.
After training a given visual field pattern will
cause one output node to be more highly acti-
vated than the others. This node represents the
spatial class of the defect. Kohonen networks
were trained with NeuralWorks Professional
I.18 Each network had 25 input nodes (one for
each test location) and a 5 by 5 output layer.
During training the network passed through
the data set 30 times. A square neighbourhood
function was used which began at the maxi-
mum dimension of the net (that is, 5) and
decreased in size to just a single processing ele-
ment while training progressed. This function
determined which output nodes would have
their weights modified during training and
hence how ordered neighbourhoods develop
upon the trained map.

GRAPHICAL REPRESENTATION OF THE OUTPUT
NODES
Each of the 25 output nodes on the map effec-
tively comes to represents a 'class' of visual
field defect. This is graphically represented in
this paper by the strength of the weights
connecting each test location to the individual
node. The strength of the weights is repre-
sented by a grey scale where dark areas
represent strong weights (defect) and light
areas represent weak weights (no defect). The
25 nodes/classes are numbered 0-24 from the
top left to the bottom right; this numbering
does not represent any characteristic of the
data.

Results
The first two networks, those which were
trained on the whole data set, are graphically
presented in Figures 3 and 4. Normal eyes
(those with no defective locations after trans-
formation) are located within class 24 while the
most severe defects are located in class 0.
Superior arcuate defects, which are a charac-
teristic spatial pattern of loss associated with
glaucoma, can be found in classes 15, 16, and
20 in Figure 3 while inferior arcuate defects
can be found in classes 2 and 3 in Figure 4.

In both maps several nodes have a total
absence of any grey scale pattern. The weights
for these nodes are in fact different but appear
the same simply because they do not reach the
cut off value for graphical representation.
Adjusting the cut off levels to overcome this
problem creates the reverse problem at the
other end of the map, several nodes appearing
to represent the same advanced defect pattern.
Networks trained on data in which there are

two or more defective locations are graphically
represented in Figures 5 and 6. The most
advanced defect patterns fall in class 0 while
the most normal patterns fall in class 23 in
Figure 5 and class 18 in Figure 6. The absence
of any visual fields with less than two defect
locations within the training set has resulted in
some major changes to the networks. There are
now no nodes with a complete absence of any
grey scaling and an increase in the number of
nodes representing the more advanced defects.
For example, in Figure 4 nodes 2 and 3 repre-
sent inferior arcuate defects extending from the
blind spot. In Figure 6 nodes 3, 4, 8, and 12
represent the similar patterns of loss.

Discussion
Aulhorn and Harms' subjectively listed eight
classes of glaucomatous loss, five of which fell
within the central region of the visual field.
One of these central classes, enlargement ofthe
blind spot, is not likely to be detected with a
static technique whose spatial resolution is 6
degrees of visual angle. The other four classes
(small scotoma, arcuate scotoma connected to
blind spot, arcuate scotoma not connected to
the blind spot, and ring scotoma) are all repre-
sented in the maps shown in Figures 3-6. In
certain instances several nodes are allocated to
a single Aulhorn and Harms class, the distinc-
tions often being made on the basis of size and
location. For example, Aulhorn and Harms
class of small scotoma encompassed defects
existing almost anywhere within the central
field. In contrast, the ANN subdivides this
class on the basis of defect location-a small
scotoma in the superior nasal field being
placed in a different class from a similar sized
defect in the superior temporal field. TheANN
has been configured to produce 25 classes of
superior visual field loss and 25 classes of infe-
rior visual field loss; this finer grading of spatial
patterns of loss is useful for the monitoring of
progressive defects.

It is possible to train SOMs with almost any
number of output nodes. The choice of 25
nodes for both the superior and inferior field is
based upon a consideration of a number of dif-
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Figure 3 The 5 by 5 output map ofa Kohonen network trained on 560 glaucomatous visualfield defects. Training data
camefrom 25 stimulus locations in the superior hem#Wiel and included datafrom patients with both normal visualfield
and very early defects. Each grey scale represents the weightsfor each node on a scale rangingfrom 0 to 100 spatially
organised to represent the visualfield.

Weight
* 80to 100

60 to 80
40 to 60
20 to 40
0 to 20

Figure 4 The S by S output map ofKohonen network trained on 560 glaucomatous visualfield defects. Training data
camefrom 2S stimulus locations in the inferior hemifield and induded datafrom patients with both normal visualfield and
very early defects. Each grey scale represents the weightsfor each node on a scale rangingfrom 0 to 100 spatially organised
to represent the visualfiekL

ferent factors. One ofthese is the likely number nodes (nodes whose weights are very similar to
of classes that enxst within the data. Training an their neighbours but which are never actually
SOM with more nodes than there are classes of activated) or in nodes which are specific to
data can result either in a number ofredundant individual examples within the data. At the
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Figure 5 The 5 by 5 output map ofKohonen network trained on 340 glaucomatous visualfield defects. Training data
came from 25 stimulus locations in the superior hemifield. Training set inclusion criteria included missing two or more than
two stimulus locations in the superior visualfield. Each grey scale represents the weights for each node on a scale ranging
from 0 to 100 spatially organised to represent the visualfield.
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Figure 6 The S by 5 output map ofKohonen network trained on 295 glaucomatous visualfield defects. Training data
camefrom 25 stimulus locations in the inferior hemifield. Training set inclusion criteria included missing two or more than
two stimulus locations in the inferior visualfield. Each grey scale represents the weights for each node on a scale ranging
from 0 to 100 spatially organised to represent the visualfield.

other end of the scale, where the number of
nodes are less than the number of classes, the
network is forced to generalise, putting to-
gether similar classes and thereby limiting the

discriminatory ability of the network. A second
factor that needs to be taken into account
when deciding upon the number of nodes
within the network is the number of inputs. If
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there are only a few input nodes then the maxi-
mum number of potential (binary) patterns is
also small. A third factor is the size of the
training set. If the training set is small and the
output map large then there is the danger that
certain nodes will have very few examples and
that these nodes will again represent specific
examples rather than classes.

It is also possible to alter the form of the out-
put map from the square shape used in this
study to one which is either rectangular or lin-
ear.When deciding upon the appropriate form
consideration needs to be given to the way in
which defects progress and to the network's
characteristic of trying to organise the outputs
to form a continuum from one extreme to the
other. The square form used in this research
offers more options for smooth progression
than would a rectangular or linear output map.
The map structure, which places early loss in

one corner and advanced loss in the opposite
corner, was derived by the network. At the
onset of training there are random weights
between each input and output node. As train-
ing progresses the extreme classes (early loss
and advanced loss) gradually move towards
extreme edges or corners of the map. The cor-

ners to which they move are influenced by the
initial random settings of the weights, hence,
re-training can produce maps which appear
either rotated or flipped about an axis.
Maps trained with examples in which there

are two or more than two defect locations do
not have a node where the weights are all at or

close to zero (no grey scale representation).
When such maps are presented with data from
a normal patient (no missed locations) they
will generalise and place them in the 'most
normal' class (class 23 in Fig 5 or class 18 in
Fig 6). Hence, the maps produced in Figures 5
and 6 can be used to classify all visual fields
and do not require a minimum of two missed
locations.
The classifications of glaucomatous visual

field defects found within this study are similar
to those reported by Henson et al."9 This study
used data obtained from the Henson CFS2000
perimeter using a suprathreshold strategy
rather than the HVA full threshold program.
The similarity of results suggests that the
spatial patterns of loss are independent of the
static strategy used.
The objective classification system devel-

oped by the ANN has several potential uses
within clinical ophthalmology. It can be used to
monitor the progression of visual field loss. In
individual cases where a longitudinal series of
visual field data is available each record can be
classified and the path across the map exam-
ined to see if it moves in the direction of more
advanced loss. Analysing groups of such
patients may reveal characteristic paths which
may in themselves be indicative of different
forms of progression. The objective classifica-
tion system can also be used to ensure that
samples of patients are equivalent with respect
to their spatial loss.

In summary,ANNs can be trained to classify
objectively the spatial patterns of visual field
loss found in glaucoma. These classifications,
which are based solely upon the nature of the
patterns of loss found within the training set,
have several advantages over subjective ones.
The ANNs include a precise definition of the
class boundaries and hence are consistent in
their classifications. They are capable of a finer
classification than has hitherto been available
with subjective techniques, which increases the
potential of these networks to monitor glauco-
matous loss. The ANN's output map shows a
continuum of change when passing from one
output class to its neighbour which enables the
extent of loss to be quantified on the basis of its
location with respect to least and most
defective classes within the map.
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