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Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease caused by loss of upper and 

lower motor neurons. The majority of ALS cases are classified as sporadic (80-90%), with the 

remaining considered familial based on patient history. The last decade has seen a surge in the 

identification of ALS-causing genes – including TARDBP (TDP-43), FUS, MATR3 (Matrin-3), 

C9ORF72 and several others – providing important insights into the molecular pathways involved 

in pathogenesis. Most of the protein products of ALS-linked genes fall into two functional 

categories: RNA-binding/homeostasis and protein-quality control (i.e. autophagy and proteasome). 

The RNA-binding proteins tend to be aggregation-prone with low-complexity domains similar to 

the prion-forming domains of yeast. Many also incorporate into stress granules (SGs), which are 

cytoplasmic ribonucleoprotein complexes that form in response to cellular stress. Mutant forms of 

TDP-43 and FUS perturb SG dynamics, lengthening their cytoplasmic persistence. Recent 

evidence suggests that SGs are regulated by the autophagy pathway, suggesting a unifying 

connection between many of the ALS-linked genes. Persistent SGs may give rise to intractable 

aggregates that disrupt neuronal homeostasis, thus failure to clear SGs by autophagic processes 

may promote ALS pathogenesis.
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1. Introduction

ALS is the most common adult-onset motor neuron disorder, typically striking in the fifth to 

seventh decades of life, though juvenile disease also exists. It is characterized by rapid 

degeneration of motor neurons, and subsequent atrophy of innervated muscle groups. Death 

is generally secondary to failure of respiratory muscles (Ravits and La Spada, 2009; Turner 

et al., 2013). ALS occurs globally in all races, ethnic and socioeconomic groups. There are 

no pharmacological interventions for the underlying molecular pathogenesis (Miller et al., 

2012).

Neurodegenerative diseases often share two clinicopathological properties. First, by 

definition, they affect highly translationally-active neurons preferentially to other cell types; 

second, they are often associated with mutations in components of protein-quality control 

(PQC) (Hetz et al., 2009; Kabashi and Durham, 2006). It is perhaps not surprising that 

perturbations to PQC pathways would have significant impact on cells that are both 

especially translationally active and long-lived. In the case of ALS, a number of different 

proteins and metabolic pathways have been linked to pathogenesis, but issues of proteostasis 

(e.g. protein folding, aggregation and quality-control) appear to be the most common 

pathogenic theme (Andersen and Al-Chalabi, 2011; Renton et al., 2014). Many ALS-

associated proteins have intriguing properties with regard to self-association, aggregation-

propensity, and interaction with cytoplasmic stress granules (SGs) (Bosco et al., 2010; 

Colombrita et al., 2009; Daigle et al., 2013; Dewey et al., 2012; Guo et al., 2011; Liu-

Yesucevitz et al., 2010; McDonald et al., 2011; Sun et al., 2011; Vance et al., 2013). Other 

ALS-associated proteins have explicit functions in PQC pathways, including autophagy. 

Below we discuss the intersections between protein aggregation, SGs and autophagy in ALS 

pathogenesis.

2. Stress Granules – Discrete Stress-Induced Cytoplasmic Sites of 

Ribonucleoprotein Accumulation

Ribonucleoprotein (RNP) granules are cellular sites dedicated to RNA processing. Well-

characterized types of RNP granules include transport RNPs, processing bodies (P-bodies) 

and stress granules (SGs); all of which have distinct roles in mRNA regulation (Anderson 

and Kedersha, 2008; Kedersha et al., 2005). Transport RNPs ensure localized neuronal 

translation of RNAs by facilitating their transport along cytoskeletal elements while 

maintaining temporary translational repression (Kiebler and Bassell, 2006). SGs and P-

bodies are phenotypically similar, non-membrane-bound, discrete cytoplasmic structures 

visible by light microscopy (Buchan and Parker, 2009; Guil et al., 2006). They contain many 

of the same proteins, but each has exclusive constituents; P-bodies are enriched for proteins 

involved in RNA degradation, while SGs are preferentially composed of translation 

initiation factors (Reineke and Lloyd, 2013). Thus, P-bodies are classified as foci of RNA 

breakdown and turnover, and SGs are thought to be sites of paused translation initiation and 

global translation repression (Anderson and Kedersha, 2008; Li et al., 2013; Parker and 

Sheth, 2007; Thomas et al., 2011). Both SGs and P-bodies have the ability to exchange 

mRNAs with bulk cytoplasm depending on cellular conditions (Decker and Parker, 2012).
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The formation of SGs is believed to be a conserved, protective response to various cell 

stresses. Some example stresses include: oxidative (Anderson and Kedersha, 2002; 

Anderson and Kedersha, 2008; Bosco et al., 2010; Daigle et al., 2013), mitochondrial 

(Buchan et al., 2011; Chalupnikova et al., 2008; Stoecklin et al., 2004), proteasomal 

(Fournier et al., 2010; Mazroui et al., 2007) and viral (Emara and Brinton, 2007; Raaben et 

al., 2007). Interestingly, many external stimuli/stressors do not induce SG formation in 

mammalian cells, suggesting SGs are a specific response not common to all stress (Kedersha 

et al., 1999). There are several proposed means by which they exert their protection. SGs 

may offer direct protection for certain mRNAs from damaging stressors (Kedersha and 

Anderson, 2002). Alternatively, SGs may sequester unwanted mRNAs, preventing their 

translation, such as viral RNAs during infection (Beckham and Parker, 2008), or less critical 

mRNAs during stress conditions (Li et al., 2013; Unsworth et al., 2010; Wolozin, 2012). 

Thus, SGs may offer prioritization of specific protein products (Scheu et al., 2006). More 

generally, SGs may decrease protein stress through the global repression of translation by 

binding mRNAs that would otherwise be translated. The apparently causal role of 

phosphorylated eIF2α in facilitating SG formation supports this hypothesis, as eIF2α has an 

established role in translation repression (Kedersha et al., 1999).

SGs contain polyadenylated mRNAs, translation initiation factors, small ribosome subunits 

and several RNA-binding proteins (Anderson and Kedersha, 2008; Daigle et al., 2016). 

Putative SG functions all demand the intimate association of these components within a 

discrete cytosolic space, removed from the majority of cellular machinery. Importantly, 

RNPs containing specific mRNAs are critical for transport and localized translation in 

neuronal dendrites. Different types of RNPs (SG, P-body, transport) share similar 

components (Decker and Parker, 2012), thus neurons may be particularly sensitive to 

disruption of RNP homeostasis.

SGs are assembled and disassembled through the formation and dissolution of a “liquid-

liquid phase-separated state”, in which the components that form SGs “demix” from the bulk 

solution to create a unique micro-environment. This transient phase-separated state 

presumably allows for a rapid, reversible response to stress (Elbaum-Garfinkle et al., 2015; 

Lin et al., 2015; Molliex et al., 2015). Several proteins, as well as mRNA, are implicated in 

driving the physical phase separation (Zhang et al., 2015). The protein TIA1, for example, is 

critical to the early stages of SG assembly. TIA1 has three amino-terminal RNA recognition 

motifs and a carboxy-terminal domain, which has low-complexity composition similar to the 

intrinsically-disordered domains that drive yeast prion proteins to form self-propagating 

amyloid fibrils. In fact, a peculiarity about many of the proteins that are both linked to ALS 

and SG formation is they possess yeast prion-like domains (discussed below). Substitution 

of this domain of TIA1 with the actual prion-forming domain of yeast prion protein Sup35, 

results in a restoration of SG formation, which is lost following native TIA1 prion-like 

domain deletion (Gilks et al., 2004).

The evolutionary conservation of SGs in eukaryotic cells indicates that they serve critical 

cellular functions. However, the promiscuous, en masse sequestration of mRNA transcripts 

in cytosolic granules would clearly have dramatic implications for cell survival. As with any 

metabolic pathway, SG formation must be balanced with mechanisms to ensure disassembly. 
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Intracellular component turnover relies on multiple pathways, including autophagy and 

ubiquitin-mediated proteolysis (Ciechanover, 1994; Cuervo et al., 2005; Glickman and 

Ciechanover, 2002; Levine et al., 2008; Reed, 2003).

3. Autophagy – a Mechanism for Clearing Protein Aggregates

Autophagy is a well-studied system for disposal of a variety of intracellular species. First 

identified in the context of hormone studies in rats, it has since been appreciated as a 

mechanism for nearly all eukaryotic cells to dispose of a wide variety of intracellular 

components deemed unnecessary or maladaptive (Deter et al., 1967; Gomes and Scorrano, 

2013). Autophagy involves an autophagosome, a double-membrane bound structure that 

forms from extant membrane-bound organelles (Chan and Tang, 2013). The autophagosome 

engulfs regions of the cytosol and fuses with the lysosome to become the 

autophagolysosome where its contents are catabolized (Deter et al., 1967; Gomes and 

Scorrano, 2013). This membrane-enclosed mechanism is sometimes more specifically called 

macroautophagy to distinguish it from other types of autophagic processes. Not all 

autophagy processes employ the formation of a new autophagosome. Chaperone-mediated 

autophagy involves the direct targeting of substrates to the lysosome via chaperone 

intermediates and then active translocation of the substrates across the lysosomal membrane. 

Microautophagy involves the direct engulfment of cytoplasmic content by invagination of 

the lysosomal membrane (Mizushima et al., 2008).

Autophagy has historically been considered a non-selective process of cellular digestion, in 

contrast to the ubiquitin-proteasome system (Gomes and Scorrano, 2013; Meijer et al., 

2007). In general, less selectivity may be a consequence of the extremely diverse 

homeostatic functions of autophagy (Cuervo et al., 2005). Gross protein turnover via 

autophagic pathways, for instance, is likely a critical means to balance anabolic pathways 

with a free source of available amino acids (Harris et al., 2004; Meijer, 2009). This last point 

is strongly supported by the observation that amino acid deprivation is a very potent inducer 

of autophagocytic pathways in mammalian cells (Ghislat et al., 2015; Mortimore and 

Schworer, 1977). However recent findings suggest a greater degree of specificity and overlap 

with the proteasome system (discussed below).

a. Selective Macroautophagy

Despite the historical perspective of autophagy being a generic pathway, recent work 

suggests importance of a selective function with implications for human disease (De Duve 

and Wattiaux, 1966; Gomes and Scorrano, 2013). Specifically, ubiquitin tagging may have a 

role in targeting selective autophagy (Heo et al., 2015; Kirkin et al., 2009). Moreover, 

selective autophagy is particularly well-suited to clearance of large (> 2 um) protein 

aggregates and RNP granules that need to be disassembled, in part because large protein 

aggregates and persistent RNP granules are known to be resistant to ubiquitin-proteasome 

degradation (Venkatraman et al., 2004).

The general model of selective autophagic engulfment of substrate is shown in Figure 1. 

Initially, the phospholipid-conjugated LC3 protein (Atg8 in yeast) facilitates the formation 

of membranous phagophore structures that recognize the targeted material through various 
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acceptor and receptor proteins. The phagophore envelops the substrate to form an 

autophagosome that fuses with the lysosome, forming the autophagolysosome (Klionsky et 

al., 2014). This structure hosts proteolysis, facilitating amino acid export to the cytosol for 

re-use (Harris et al., 2004; Klionsky et al., 2014; Meijer, 2009).

Many ubiquitinating factors and adapter proteins enable specificity in selective 

macroautophagy. For example, ubiquillin-2 is implicated in facilitating interaction between 

an autophagosome and its target (N'Diaye et al., 2009; Rothenberg et al., 2010). Proteins p62 

and NBR1 function as selective cargo receptors, linking ubiquitin tags with autophagosome 

receptors (Lamark et al., 2009; Pankiv et al., 2007). NBR1 in particular has been shown to 

mediate selective autophagy in plant cells dealing with otherwise intractable protein 

aggregates (Zhou et al., 2013a). Many of these adaptor proteins recognize the phagophore 

through “LC3-interacting region” motifs in their peptide sequence (Birgisdottir et al., 2013). 

Moreover, mutations in several adapters are linked to sub-types of ALS (discussed below).

b. Autophagic Clearance of Protein Aggregates and Stress Granules

Autophagy has been linked to the clearing of the large protein aggregates that feature 

prominently in several neurodegenerative diseases. For example, the protein alpha-synuclein 

forms intracellular fibrils in neurons of patients with Parkinson’s disease (Baba et al., 1998). 

Formation of these fibrous aggregates correlates with a massive increase in the presence of 

autophagosomes in cultured cells (Shintani and Klionsky, 2004; Stefanis et al., 2001). This 

could be a consequence of increased formation or impaired clearance of autophagosomes 

(Shintani and Klionsky, 2004). In a similar fashion, aggregates of mutant huntingtin protein, 

which are linked to Huntington’s disease, are also associated with an abundance of 

autophagosomes (Kegel et al., 2000). In the case of both huntingtin and alpha-synuclein, 

promotion of autophagy via pharmacological stimulation by rapamycin results in an increase 

in autophagic degradation of the two proteins, as well as a corresponding reduction in 

toxicity (Ravikumar et al., 2002; Shintani and Klionsky, 2004; Webb et al., 2003).

Similarly, autophagy is involved in the clearance of RNP granules. Buchan and colleagues 

demonstrated that SG breakdown in particular was dependent on selective autophagy. 

Strikingly, and very similarly to previous experiments with huntingtin and alpha-synuclein, 

rapamycin administration promoted SG clearance, while selective autophagy inhibitors had 

the opposite effect (Buchan et al., 2013). Likewise, when autophagy-initiating proteins (Atg 

proteins) were partially deleted in yeast, cytosolic SG persistence was dramatically 

increased. Beyond the canonical Atg family, an additional protein of interest is valosin-

containing protein (VCP/p97), which appears to specifically target SGs to autophagic 

pathways for degradation (Buchan et al., 2013; Ju et al., 2009). When VCP is silenced with 

siRNA or with specific chemical inhibitors in stressed HeLa cells, SGs accumulate (Buchan 

et al., 2013).

Other mechanisms are linked to SG clearance, such as decapping SG mRNAs, returning 

sequestered mRNAs to active translation, and direct 5’ to 3’ digestion of constituent mRNA 

molecules. Such fates likely involve dynamic handling of mRNAs among P-bodies, SGs, 

and polysomes (Bhattacharyya et al., 2006; Brengues et al., 2005; Buchan et al., 2013; Sheth 

and Parker, 2003). Intriguingly, Buchan and colleagues showed that upon inactivation of 
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these pathways via genetic knockout, targeting of SGs to autophagy appeared to increase 

(Buchan et al., 2013). The metabolic and homeostatic mechanisms of mRNA translation and 

degradation likely reflect a very dynamic, complex cycle, of which autophagy is a critical 

player.

c. Autophagy in Animal Models of ALS

Connections between autophagy and ALS have been observed in animal models. The first 

gene linked to familial ALS was superoxide dismutase 1 (SOD1). Induction of the 

autophagy pathway has been observed in a transgenic mouse model of SOD1-ALS, as well 

as spinal cord tissues from SOD1-ALS patients, supporting the idea that pathogenic 

mutations in SOD1 impair, or require, autophagy pathways (Morimoto et al., 2007; Sasaki, 

2011). Since autophagy is critical to managing the burden of misfolded and toxic proteins, it 

is not unexpected that perturbed autophagy has also been observed in the postmortem tissues 

of sporadic ALS patients (Morimoto et al., 2007). Retinoic acid has been demonstrated to 

act on PQC pathways including autophagy, and interestingly, control rats maintained on a 

retinoid-free diet show ALS-like symptoms (Anguiano et al., 2013; Castillo et al., 2013; 

Corcoran et al., 2002; Kolarcik and Bowser, 2012; Rajawat et al., 2010; Rajawat et al., 2011; 

Riancho et al., 2015; Riancho et al., 2016). Furthermore, treatment with Bexarotene, a 

retinoid-X receptor agonist, or induction of autophagy in a SOD1 mutant mouse model 

drastically delayed motor symptoms and ALS pathology suggesting that targeting PQC 

machinery could be a good therapeutic target for SOD1-ALS (Castillo et al., 2013; Crippa et 

al., 2010; Riancho et al., 2015; Riancho et al., 2016).

Autophagic dysfunctions have also been implicated in subtypes of ALS caused by mutations 

in TDP-43 and FUS (discussed more below). It has been suggested that TDP-43 is involved 

in regulating autophagy in general and particularly autophagosomal and lysosomal 

biogenesis (Bose et al., 2011; Filimonenko et al., 2007; Xia et al., 2016; Ying et al., 2016). 

Interestingly, TDP-43 is managed by both proteasome and autophagy pathways where the 

soluble form of TDP-43 is degraded by the proteasome; and oligomeric and aggregated 

forms of TDP-43 are cleared by autophagy (Xia et al., 2016). Given that TDP-43 is a highly 

aggregation-prone protein, it is not surprising to observe that impaired turn-over of TDP-43 

directly correlates with motor dysfunctions and reduced autophagy-related proteins in a 

mouse model of TDP-43 proteinopathy (Caccamo et al., 2015). Similarly, pathogenic 

mutations in FUS have been shown to impair the autophagy pathway in cellular models and 

ALS patient cells (Soo et al., 2015). Importantly, pharmacological induction of autophagy 

ameliorates neurodegenerative symptoms as well as TDP-43 protein mislocalization in 

Drosophila and rodent models of TDP-43 proteinopathy, further supporting a notion that 

autophagy could be a potential therapeutic target for ALS (Barmada et al., 2014; Caccamo et 

al., 2009; Cheng et al., 2015; Wang et al., 2012).

4. Intersections Between ALS, Stress Granules and Autophagy

A curious feature of many SG proteins is low-complexity domains resembling the prion-

forming domains of certain yeast proteins. Moreover, many SG proteins are also found in the 

pathological inclusions in ALS patients’ motor neurons. In fact, many ALS-associated 
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proteins have significant structural or functional overlap with SG proteins. This predicted 

overlap is due to the presence of RNA-binding domains and prion-like domains (Arai et al., 

2006; Ju et al., 2011; Kwiatkowski et al., 2009; Maekawa et al., 2009; Neumann et al., 2006; 

Udan and Baloh, 2011; Vance et al., 2009), as well as observed functional interactions in 

experimental models (Acosta et al., 2014; Baron et al., 2013; Daigle et al., 2016; Dewey et 

al., 2012; Di Salvio et al., 2015; Lenzi et al., 2015; McDonald et al., 2011; Parker et al., 

2012; Sama et al., 2013). These observations encourage the idea that RNA homeostasis and 

prion-like mechanisms of protein self-association are critical to ALS pathogenesis.

Prion-like mechanisms have been implicated in a variety of neurodegenerative diseases, 

most notoriously the transmissible spongiform encephalopathies (TSEs) (Gielbert et al., 

2015). In TSEs, auto-catalytic processes drive the propagation of misfolded protein isoforms 

within the nervous tissue of infected animals. This propagation results in the accumulation 

of insoluble protein aggregates that spatially correlates with cell death (Jeffrey et al., 1995). 

Soluble misfolded oligomeric species, resistant to proteolytic degradation, presumably 

precede the formation of macroscopic aggregates (Bessen et al., 1997; Jeffrey et al., 1995). 

Together, these oligomeric and larger aggregates are thought to exert cellular toxicity. Thus, 

the fact that ALS-linked SG proteins have prion-resembling domains that are aggregation-

prone suggests that ALS could have a prion-like mechanism in which toxic misfolded 

proteins self-propagate.

Given the potential that prion-like mechanisms underlie disease pathologies, as well as SG 

dynamics, interest in the intersection between disease and SG homeostasis is unsurprisingly 

robust (Acosta et al., 2014; Baron et al., 2013; Bentmann et al., 2013; Daigle et al., 2016; 

Dewey et al., 2010; Dewey et al., 2012; Di Salvio et al., 2015; Lenzi et al., 2015; Li et al., 

2013; McDonald et al., 2011; Parker et al., 2012; Sama et al., 2013; Walker et al., 2013) . 

The high local concentration of proteins with prion-like domains in SGs is thought to 

facilitate the transient phase-separated granule structure. However, self-association between 

these domains is not static (Burke et al., 2015). Instead, under certain conditions, the normal 

internal interactions are hypothesized to evolve into terminally-aggregated species that are 

not easily cleared by the cell. Specifically, an inappropriate persistence, or excessive mRNA 

binding, of SGs may be a critical element in neurodegeneration. If SG pathology 

overwhelms autophagy pathways, cellular pathology may follow. Potential consequences of 

ALS-associated genetic mutations are listed in Table 1 and discussed below.

a. FUS, TDP-43, Matrin-3 and hnRNPA2/A1 as Stress Granule-Associated Proteins

The proteins fused-in-sarcoma (FUS) and TAR DNA binding protein-43 kDa (TDP-43) are 

well-established DNA/RNA-binding proteins that are implicated in similar functions, 

including transcription regulation and RNA splicing (Lagier-Tourenne et al., 2010; Lagier-

Tourenne et al., 2012). They have similar structures, including nucleic acid binding domains 

and prion-like domains of low intrinsic complexity. Mutations of both proteins, 

characteristically in domains regulating subcellular localization, are correlated with 

development of ALS. In diseased cells, a characteristic pattern of cytoplasmic foci and 

structural association with SGs has been widely reported in diverse organisms (Acosta et al., 

2014; Arai et al., 2006; Barmada et al., 2010; Baron et al., 2013; Bentmann et al., 2013; 
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Dewey et al., 2012; Di Salvio et al., 2015, Daigle, 2016 #305; Johnson et al., 2008; Ju et al., 

2011; Kwiatkowski et al., 2009; Lenzi et al., 2015; Li et al., 2010; Maekawa et al., 2009; 

McDonald et al., 2011; Neumann et al., 2006; Parker et al., 2012; Sama et al., 2013; Sun et 

al., 2011; Udan and Baloh, 2011; Vance et al., 2009; Walker et al., 2013).

Both FUS and TDP-43 have default nuclear localization consistent with their RNA-related 

functions. They also demonstrate an ability to regulate their own expression (Avendano-

Vazquez et al., 2012; Budini and Buratti, 2011; D'Alton et al., 2015; Dormann and Haass, 

2011; Zhou et al., 2013b). An abundance of intranuclear FUS causes exon 7 skipping in FUS 

transcription, driving FUS transcripts to nonsense mediated decay and preventing 

pathological protein buildup (Zhou et al., 2013b); an accumulation of FUS outside of the 

nucleus could thus result in self-perpetuating high expression, exacerbating the potential for 

misfolding in the cytoplasm. FUS is also implicated in DNA repair. It accumulates at sites of 

DNA damage and is implicated in regulating DNA repair pathways (Hicks et al., 2000; 

Lagier-Tourenne et al., 2010; Mastrocola et al., 2013; Patel et al., 2015a; Rulten et al., 2014; 

Sama et al., 2013; Wang et al., 2013). This self-association is likely mediated by its prion-

like domain, leading to intranuclear phase-separated droplets that facilitate DNA repair by 

recruiting specific proteins (Patel et al., 2015a; Rulten et al., 2014).

Despite the intranuclear roles described above, there is very clearly a cytosolic role for both 

proteins, as evidenced by the presence of a nuclear export sequence (Lorenzo-Betancor et 

al., 2014). This cytoplasmic shuttling follows various types of cell stress (Sama et al., 2013), 

perhaps facilitating physiological SG metabolism. FUS, for example, localizes to the 

cytoplasm following post-translational modifications, including methylation and 

phosphorylation (Deng et al., 2014; Scaramuzzino et al., 2013; Tradewell et al., 2011). 

Normally, an intact nuclear localization signal (NLS) likely ensures a prompt return to the 

nucleus, especially in the context of SG disassembly (Sama et al., 2013). In the case that the 

proteins contain an NLS mutation, persistent cytosolic localization of FUS or TDP-43 

results (Acosta et al., 2014; Barmada et al., 2010; Dormann and Haass, 2011). The 

subsequent cytosolic co-localization with SGs is perhaps a consequence of FUS/TDP-43 

having prion-like domains similar to the domains found in many SG constituent proteins 

(Gilks et al., 2004; Udan and Baloh, 2011). Co-localization may modify the properties of 

SGs. Both FUS and TDP-43 have domains that would presumably bind resident mRNAs 

(Schwartz et al., 2013; Ugras and Shorter, 2012). Thus, cytoplasmic localization of both 

proteins may drive inappropriate interactions within SGs. Subsequent modification of SG 

homeostasis, such as excessively promiscuous SG-mRNA binding or inappropriate 

persistence of SGs, may overwhelm regulatory processes and lead to intractable aggregation. 

Such a model is especially attractive in light of the biophysical properties of liquid-liquid 

phase-separated FUS droplets (Burke et al., 2015; Patel et al., 2015a; Zhang et al., 2015), 

which have been shown in vitro to evolve into irreversible aggregates in a time-dependent 

manner. If FUS and SGs behave so similarly in isolation, such mechanisms may drive 

pathology when driven into cytosolic juxtaposition by ALS-associated mutations.

The interaction of FUS and TDP-43 with cytosolic SGs represents a putative cytosolic gain-

of-function toxicity pathway. This hypothesis is supported by a variety of studies (Ju et al., 

2011; Kryndushkin et al., 2011; Lanson et al., 2011; Scaramuzzino et al., 2013; Sharma et 
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al., 2016; Sun et al., 2011). In model systems, ectopic expression of human FUS or TDP-43 

results in cytoplasmic aggregation into discrete FUS or TDP-43-positive foci, as well as 

cellular toxicities. Toxicity can be partially ameliorated by disruption of either the prion-like 

domain or the RNA-binding domains (Daigle et al., 2013; Sun et al., 2011), suggesting that 

both of these domains are critical to exerting toxicity. Interruption of the prion-like domain 

may interfere with protein association, while the RNA-binding interruption may prevent 

RNA from being irreversibly sequestered in the aggregates. Moreover, disruption of RNA-

binding capacity may hamper further protein association by preventing RNA-nucleation of 

protein interactions (Schwartz et al., 2013). Importantly, in a transgenic FUS mouse line, 

postnatal knockdown of FUS did not promote motor neuron degeneration, whereas 

expression of FUS mutants was dominant negative for motor neuron survival ((Sharma et al., 

2016).

While gain-of-function toxicity appears to be a major part of the FUS/TDP-43 story, 

deletion of these proteins has also been shown to have deleterious consequences for 

mammalian cells (Ayala et al., 2008; Chiang et al., 2010; Fiesel and Kahle, 2011; Hicks et 

al., 2000; Kuroda et al., 2000; Orozco et al., 2012; Sama et al., 2014; Shan et al., 2010). 

Thus, a loss of intranuclear function must be considered as a contributor to pathology. First, 

it may lead to a loss of nucleic-acid regulation as well as other intranuclear functions 

ascribed to both FUS and TDP-43 (Avendano-Vazquez et al., 2012; Budini and Buratti, 

2011; D'Alton et al., 2015; Dormann and Haass, 2011; Hicks et al., 2000; Lagier-Tourenne 

et al., 2010; Mastrocola et al., 2013; Patel et al., 2015a; Rulten et al., 2014; Sama et al., 

2014; Wang et al., 2013; Zhou et al., 2013b). Second, the loss of autoregulation of 

expression could lead to unchecked transcription, cytosolic translation, and continued 

cytoplasmic aggregation with SGs as described above. Specifically, TDP-43-linked ALS 

cases were recently shown to exhibit an abundance of so-called cryptic exons in nervous 

system tissue (Pochet et al., 2015). TDP-43 has a role, similar to FUS autoregulation, to 

repress expression of the cryptic exons. Loss of intranuclear TDP-43 to cytoplasmic SGs/

aggregates may lead to excessive cryptic exon expression, driving nervous system pathology 

in ALS patients (Ling et al., 2015).

Additional ALS-linked proteins Matrin-3 and hnRNPA2/A1 have DNA/RNA-binding 

properties. Matrin-3 is, like FUS and TDP-43, a resident of the nucleus and is implicated in 

various RNA-related functions. Matrin-3 was shown to interact with TDP-43 in cytosolic 

aggregates in spinal neurons. Also, ALS-linked mutations appear to modulate the degree of 

this interaction (Gallego-Iradi et al., 2015; Johnson et al., 2014; Millecamps et al., 2014). 

While less well characterized than FUS and TDP-43, the potential for Matrin-3 to interact 

with SGs, perhaps even via a direct association with TDP-43, would have obvious functional 

implications.

In the case of hnRNPA2/A1, we again see nucleic acid binding capacity joined by the 

presence of a prion-like domain. Proteins harboring mutations linked to ALS phenotypes 

display an increased in vitro aggregation propensity relative to wild-type, capacity to 

propagate as a yeast prion when swapped with the native Sup35 prion-domain in yeast, as 

well as an enhanced recruitment to stress granules (Kim et al., 2013). All of these 
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observations strongly support the importance of SG association and protein self-association 

in facilitating pathways of toxicity.

While the roles of FUS, TDP-43, Matrin-3, and hnRNPA2/A1 in ALS will likely continue to 

be clarified, there are intriguing hints of a link between these proteins and SGs and 

autophagy. Indeed, the clearance of FUS and TDP-43 aggregates by autophagy has been 

reported (Caccamo et al., 2009; Ryu et al., 2014; Wang et al., 2010). Recent reports suggest 

that autophagy of FUS aggregates can be enhanced by overexpression of the critical 

autophagy protein Rab1 (Soo et al., 2015). This suggests aggregates are overwhelming 

autophagic machinery in degenerating motor neurons.

b. C9ORF72 and VCP as Regulators of Autophagy

Beyond the prion-like nucleic acid binding proteins discussed thus far, a number of other 

proteins have been associated with ALS pathogenesis. These proteins also offer pathogenetic 

connections with SGs and autophagy. In fact, the most common genetic abnormality linked 

with familial ALS is a disordered intron in the nucleic acid sequence located on 

chromosome 9, open reading frame 72 (C9ORF72). Specifically, ALS has been associated 

with a hexanucleotide repeat expansion (HRE) GGGGCC inherited in an autosomal 

dominant fashion (DeJesus-Hernandez et al., 2011; Renton et al., 2011). The potential 

avenues by which the HRE may drive neurotoxicity are numerous, and include both nucleic 

acid-driven and protein-driven explanations.

It is yet not entirely clear how HRE causes motor neuron degeneration associated with ALS. 

It has been demonstrated that the C9 expanded hexanucleotides abnormally bind and 

sequester RNA binding proteins in nuclear foci in ALS patient neurons (Donnelly et al., 

2013). Expression of the HRE is enough to cause the formation of SGs under stress 

conditions. These SGs sequester other disease-associated proteins such as hnRNPA1 and 

hnRNPA2/B1 (Farg et al., 2014). Moreover, repeat expression leads to elevated levels of a 

protein called p62 in motor neurons differentiated from C9 induced pluripotent stem cells 

(Almeida et al., 2013). Importantly, p62 has been implicated as an adaptor protein for 

selective autophagy of protein aggregates (Pankiv et al., 2007). In addition to this, C9 

hexanucleotide repeat causes increased sensitivity to cellular stress induced by autophagy 

inhibitors, further supporting the role of autophagy in C9ORF72 mediated 

neurodegeneration (Almeida et al., 2013).

In addition to RNA foci, C9ORF72 repeat transcripts can produce unconventional, repeat-

associated non-ATG mediated (RAN) translation products. These RAN peptides, translation 

of which occurs without a start codon, have been observed in ALS patient tissues as well as 

in different experimental models (Gendron et al., 2013; Mori et al., 2013; Wen et al., 2014). 

RAN translation can occur in all possible reading frames, producing dipeptide repeat 

proteins in the sense and antisense direction (antisense: poly-PR and poly-PA; sense: poly-

GA and poly-GR; both sense: poly-GP). These C9 RAN products have been examined in 

cellular and animal models where it has been shown that GR and PR dipeptides are 

extremely toxic as well as being especially aggregation-prone (Mizielinska et al., 2014; Wen 

et al., 2014). Additionally, GA proteins have been shown to form neuronal inclusions that 

stain positive for the autophagy-mediator p62 (Schludi et al., 2015). Proteins known to 
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sequester in SGs such as PABP-1 localize to TDP-43 positive inclusions more frequently in 

patients carrying expansions in C9ORF72 (McGurk et al., 2014).

Interestingly, it has been demonstrated that the C9ORF72 translation product colocalizes 

with proteins implicated in regulating autophagy and endocytic transport such as Rab1, 

Rab5, Rab7 and Rab11 in mammalian neuronal cells and human spinal cord motor neurons. 

Perhaps most intriguing, depletion of C9ORF72 led to an increase in autophagosome 

dysregulation, specifically by disrupting function of receptors Trk-beta and LC3. Moreover, 

pharmacological inhibition of the 26S proteasome in addition to C9ORF72 overexpression 

led to an accumulation of SGs (Farg et al., 2014). These findings suggest that C9ORF72 is a 

regulator of endosomal trafficking, functions with critical importance to autophagy. This role 

in regulating endosomal and vesicular trafficking is further evident from the fact that 

C9ORF72 colocalizes with other ALS-linked proteins in ubiquilin-2 and LC3-positive 

vesicles. Protein interaction by C9ORF72 also includes heterogeneous nuclear 

ribonucleoproteins, Matrin 3, hnRNPA2/B1 and hnRNPA1 (Donnelly et al., 2013; Farg et 

al., 2014; Haeusler et al., 2014).

The link between dysregulated autophagy, SGs, and development of an ALS phenotype is 

further enhanced by studies of Valosin-containing protein, VCP. Ju and colleagues showed 

the importance of intact VCP in allowing for normal autophagic pathways (Ju et al., 2009). 

Specifically, this study demonstrated the accumulation of both autophagosomes arrested 

before association with lysosomes, and TDP-43 positive protein inclusions in cells depleted 

of wild type VCP (Ju et al., 2009). Moreover, Buchan et al. showed that VCP helps target 

SGs to the autophagosome for disassembly, while Cherkasov and workers showed that this 

disassembly was chaperone mediated (Buchan et al., 2013; Cherkasov et al., 2013). 

Surprisingly, another report showed that impaired VCP led to a reduction in the size and 

formation of SGs, suggesting that VCP may play an important role in both SG assembly and 

targeting to the autophagosome (Seguin et al., 2014). This same study showed a concomitant 

accumulation of ubiquitinated proteins with a reduction in SG formation.

c. Optineurin, TBK1 and Ubiquilin-2 as Modulators of Stress Granule Clearance by 
Autophagy

Optineurin is an additional protein implicated in both ALS (Maruyama et al., 2010) and 

autophagic pathways, specifically by binding to the autophagosome receptor LC3 (N'Diaye 

et al., 2009; Rothenberg et al., 2010; Wong and Holzbaur, 2014). Optineurin has been shown 

to act as an adaptor for selective autophagy, similarly to p62 previously described (Pankiv et 

al., 2007; Wild et al., 2011). It is well documented that optineurin binds LC3, and that this 

association facilitates mitophagy (autophagy of mitochondria). A protein called Parkin, 

which has been associated with Parkinson’s disease, enhanced the stability of the association 

between optineurin and mitochondria (Wong and Holzbaur, 2014). Moreover, Shen and 

colleagues demonstrated that overexpression of wild-type optineurin facilitated the 

autophagy-mediated clearance of cytosolic aggregates containing the aggregation-prone 

protein mutant huntingtin (Shen et al., 2015).

Optineurin has a robust aggregation propensity in addition to its ability to regulate 

autophagy (Kryndushkin et al., 2012). The case of optineurin actually offers a very 

Monahan et al. Page 11

Brain Res. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compelling example of how complicated is the interaction between aggregation propensity 

and autophagy. Mutations in the ubiquitin-binding domain of optineurin have been shown to 

reduce its ability to perform its autophagic function (Shen et al., 2015). Mutations in this 

domain include the E478G mutation linked to ALS (Maruyama et al., 2010). Optineurin 

E478G, despite its reduced ability to bind ubiquitin, still has the potential to associate with 

and trap wild-type optineurin in the cytosol. This prevents the association of wild-type 

optineurin to autophagic machinery, and therefore the appropriate maturation of 

autophagosomes. The authors used LC3 turnover as a measure of autophagic flux to show 

that this wild-type optineurin trapping effect of E478G led to measurable decreases in 

autophagy for the cell, as well as a subsequent increase the abundance of cytosolic 

aggregates (Shen et al., 2015).

As described above, optineurin may offer an example of how aggregation propensity and 

dysregulation of autophagy are directly related in the cell. If a key function of autophagy is 

to clear intracellular protein aggregates, it makes sense that major regulators of autophagy 

would have the capacity to interact with protein aggregates. It is perhaps via this property of 

self-association that proteins are able to physically interact with aggregates, and then 

modulate autophagy via other protein domains.

Optineurin is also implicated in ALS pathogenesis as a result of interaction with kinase 

pathways. Phosphorylation is perhaps the most widely used cellular signal for countless 

metabolic processes. Unsurprisingly, kinases like TBK1 have been implicated in diverse 

human pathologies from hepatic dysfunction to neurodegeneration (Bonnard et al., 2000; 

Freischmidt et al., 2015). Indeed, TBK1 was first linked to ALS in 2015 (Cirulli et al., 

2015). Subsequent studies showed that TBK1-linked ALS was likely due to 

haploinsufficiency of this kinase, an observation that builds on many of the ideas so far 

discussed in this review (Freischmidt et al., 2015). Perhaps the simplest explanation for 

TBK1-mediated ALS pathogenesis arises from the observation that TBK1 phosphorylates 

optineurin in cell models (Heo et al., 2015; Morton et al., 2008; Wild et al., 2011). Indeed, 

this phosphorylation has been shown to enhance autophagy in the context of autophagic 

anti-microbial innate immunity (Pilli et al., 2012; Radtke et al., 2007; Wild et al., 2011). 

Despite the differing context, there is clearly the potential for insufficient phosphorylation of 

optineurin to impair autophagosome formation and maturation.

Optineurin and TBK1 have also been discovered co-localizing in protein aggregates, and the 

phosphorylation of optineurin at serine 177 has been shown to be critical to its function in 

mediating clearance of aggregated proteins via autophagy (Korac et al., 2013). Again, the 

aggregation propensity of optineurin may facilitate its role as a modulator of autophagy-

mediated aggregate clearance, and TBK1 association with optineurin in aggregates may be 

an additional factor necessary for this process. Specifically, the phosphorylation event may 

drive the conversion of optineurin from simply a ubiquitin/aggregate-associated protein to an 

LC3-mediated autophagy receptor (N'Diaye et al., 2009; Rothenberg et al., 2010; Wong and 

Holzbaur, 2014). This would specifically facilitate the autophagy of ubiquitinated and 

aggregated proteins, precisely the role of selective autophagy (Lee et al., 2010).
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The above model makes sense in the context of disease-associated optineurin mutations. For 

instance, open-angle glaucoma has been associated with an E50K mutation in optineurin. 

This mutation has been shown to enhance the TBK1-optineurin interaction, as well as 

reducing appropriate intracellular solubility of optineurin (Kryndushkin et al., 2012; 

Minegishi et al., 2013). A reduced solubility of the TBK1-optineurin complex could be 

expected to deplete the pool of available phosphorylated optineurin to act as an autophagy 

adaptor. Moreover, insufficient availability of TBK1 would clearly impair autophagy, and 

may simply lead to the uncontrolled association of optineurin with aggregates. This itself 

may actually promote more and more promiscuous cytosolic binding of cytosolic SG-

associated proteins.

Like optineurin, mutations in the X-linked protein ubiquilin-2 are associated with familial 

ALS (Deng et al., 2011). Ubiquilin-2 has been well characterized for its function in 

delivering ubiquitin-tagged proteins to the proteasome for degradation (Deng et al., 2011; 

Walters et al., 2004) (Williams et al., 2012; Zhang et al., 2014). It has also been implicated 

in delivering polyubiquitinated substrates to the autophagy receptor LC3 (Rothenberg et al., 

2010). Reduction in ubiquilin-2 is associated with concomitant reduction in autophagosome 

formation (Rothenberg et al., 2010). Given its role in protein turnover, the simplest 

explanation for the association of ubiquilin-2 and ALS would be a loss of function and the 

resulting accumulation of intracellular aggregates. SGs are enriched for ubiquitinated 

species (Kwon et al., 2007), thus failure to identify these species by ubiqulin-2 could reduce 

SG turnover by autophagy, leading to SG persistence.

d. Other Proteins Linked to ALS and Autophagy

The final step in autophagy is the fusion of the autophagosome with the lysosome. This 

organelle maturation appears to be mediated by the cytosolic protein HDAC6, which 

contains ubiquitin-binding and dynein-interacting domains (Kawaguchi et al., 2003; Lee et 

al., 2010). It has been implicated as a regulator of diverse cellular processes through 

deacetylating and destabilizing microtubules, mediating the transport of ubiquitinated 

proteins into aggresomes and facilitating autophagosome-lysosome fusion (Kawaguchi et 

al., 2003; Lee et al., 2010; Pandey et al., 2007a; Pandey et al., 2007b). Interestingly, HDAC6 

physically interacts with G3BP, a known component of SGs, and is sequestered into SGs 

under different stress conditions. Moreover, genetic or pharmacological inhibition of 

HDAC6 impairs SG formation, suggesting that HDAC6 is essential for the assembly of SGs 

(Kwon et al., 2007).

The impairment of HDAC6 has been further implicated in pathogenesis of certain types of 

ALS (Gal et al., 2013), though its precise effect remain unclear (Gal et al., 2013; Taes et al., 

2013). In a mouse model of SOD1 disease, HDAC6 promoted increased life span and 

autophagolysosome formation (Chen et al., 2015). Recent studies have shown that the 

autophagy-adapter p62 localizes with HDAC6 and controls its deacetylase activity (Yan et 

al., 2013). Mutations in p62 itself have also been linked to cases of ALS in multiple studies 

(Fecto et al., 2011; Teyssou et al., 2013). While their relationship to autophagy and protein 

aggregation in driving ALS pathogenesis is likely complicated, their implication serves to 

further bolster the importance of autophagy-related proteins in motor neuron disease.
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5. Pharmacological Modulators of Autophagy in ALS Models

Numerous studies have found autophagy to be involved in the degradation of misfolded 

proteins associated with many neurodegenerative diseases. Several autophagy-modulating 

molecules have been evaluated for their specific effects on ALS models (Cipolat Mis et al., 

2016). In a cell model of TDP-43-linked ALS, the autophagy-inhibitor 3-methyladenine was 

found to significantly inhibit the degradation of TDP-43 species (Scotter et al., 2014). 

Likewise, activation of autophagy by rapamycin, decreased the severity of motor 

dysfunction in a mouse model of TDP-43/ALS (Wang et al., 2012) and locomotive defects 

in a TDP-43/ALS Drosophila model (Cheng et al., 2015). Similar observations were made in 

cultured neuronal cells expressing mutant ALS-causing FUS; rapamycin reduced FUS-

positive SGs, as well as neurite fragmentation and cell death in neurons expressing mutant 

FUS under oxidative stress (Ryu et al., 2014). Also, inducing autophagy with rapamycin was 

shown to improve in vivo pathology of transgenic mice harboring a disease-causing VCP 

mutation (Nalbandian et al., 2015). Other autophagy modifiers have also been shown to have 

varying success in ALS models, including trehalose, lithium and Withaferin A (Castillo et 

al., 2013; Fornai et al., 2008; Patel et al., 2015b). Small molecule library screens have also 

yielded authopagy-modulating compounds that show promise in reducing ALS-linked 

cytotoxicity in primary neuronal models (Barmada et al., 2014). Thus, in conclusion, 

autophagy enhancement remains a promising strategy for future ALS therapeutics.

6. Discussion and Future Directions

The proposed pathways described here relating to RNP formation, autophagy, and protein 

aggregation in the context of ALS are admittedly hypothetical and complex. It appears likely 

that autophagy is critical to modulating ALS, at least in part, because it facilitates RNP 

granule turnover. With every newly-identified ALS-related protein, it becomes clear that 

many different quality-control pathways play critical disease-related roles. Understanding 

why certain quality-control pathways are central to any given neurodegeneration model 

suggests the opportunity to predict novel proteins that may be associated with various 

neurodegenerative diseases beyond ALS, as well as identifying new therapeutic targets. 

Exploring a metabolically basic function like autophagy can also have a multiplier effect 

because so many related neurodegenerative diseases could benefit from properly regulated 

autophagic processes. Thus, understanding important players in autophagic pathways will 

help identify therapeutic targets that could have wide applications.
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Highlights

• ALS is a fatal adult-onset motor neuron disease for which no cure is 

available

• Pathogenic mutations in ALS-associated genes have been shown to 

perturb autophagy pathways

• Many ALS-associated proteins accumulate in cytoplasmic stress 

granules

• Mutant ALS-causing proteins such as FUS, TDP-43, and SOD1 have 

been shown to be cleared by autophagy in cellular and human stem-cell 

derived neurons
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Figure 1. 
Schematic showing the connection between stress granules, protein aggregation and 

autophagy. Together, these structures and processes are commonly dysfunctional in ALS. 

Boxes in pink indicate mutant genes that could be affecting the indicated process.
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Table 1

Summery of ALS linked proteins, their broad functions and potential link to the disease

Gene Protein Function
Proposed Link to

Disease

Stress
Granule

Component

Present in
Pathological
Inclusions

ANG Neuroprotection and
angiogenesis

Enhanced
susceptibility to cellular

stress

ATXN2 Unknown
Persistent cytosolic

aggregates
Cytotoxic dipeptides,

Yes Yes

C9ORF72 Facilitates intracellular
endosomal trafficking

impaired autophagy,
RNA-mediated
aberrant protein

sequestration
Ambiguous

2

CHMP2B Facilitation of
endosomal trafficking Impaired autophagy

FUS DNA/RNA
homeostasis

Persistent cytotoxic
RNP aggregates, loss
of genome integrity

Yes Yes

HDAC6
Facilitates

autophagolysosome
maturation

Impaired autophagy Yes

MATR3 RNA/DNA
homeostasis

Persistent cytotoxic
RNP aggregates, loss
of genome integrity

Yes

NEFH Structural
neurofilament

Loss of neuronal
function

OPTN Facilitates autophagy Impaired autophagy Yes

P62/SQSTM1 Autophagy adapter Impaired autophagy Yes

PFN-1 Actin binding protein

Persistent cytotoxic
RNP aggregates,

impaired cytoskeletal
transport

Yes Yes

PRPH Structural
neurofilament

Loss of neuronal
function

SOD1 Reducing enzyme for
superoxide radicals

Persistent cytotoxic
aggregates Yes

TBK-1 Facilitates autophagy Impaired autophagy Ambiguous
1

TDP-43 DNA/RNA
homeostasis

Persistent cytotoxic
RNP aggregates, loss
of genome integrity

Yes Yes

UBQLN-2
Facilitates

autophagy/proteasome
degradation

Impaired
autophagy/proteasome

function
Yes

VAPB
Facilitates unfolded
protein response in

protein quality control

Persistent cytotoxic
aggregates Yes

VCP Facilitates autophagy Impaired autophagy Yes

1
Implicated in intracellular inclusions in viral infections mediated by viral proteins

2
Hexanucleotide repeat encodes aggregation-prone dipeptide repeats
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