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Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC)
offer a powerful avenue for improving the sampling efficiency of computer simulations of com-
plex systems. These neMD/MC algorithms are also increasingly finding use in applications where
conventional approaches are impractical, such as constant-pH simulations with explicit solvent.
However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a
non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms
and protocols within the theoretical framework of linear response theory. The approximations
are validated against constant pH-MD simulations and shown to provide accurate predictions of
neMD/MC performance. An assessment of a large set of protocols confirms (both theoretically and
empirically) that a linear work protocol gives the best neMD/MC performance. Finally, a well-defined
criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an
adaptive algorithm that improves the performance on-the-fly with minimal cost. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4964288]

I. INTRODUCTION

A general aim of molecular dynamics (MD) and
Monte Carlo (MC) simulations is to sample configurations
from a probability distribution dictated by equilibrium
statistical mechanics. Nonequilibrium MD/MC (neMD/MC)
simulations expand on these techniques by considering
configurations generated by a nonequilibrium procedure.1–7

That is, these neMD configurations are then treated as
candidates to be accepted or rejected on the basis of an
appropriately constructed criterion to recover the proper
equilibrium distribution. An especially interesting family of
neMD/MC algorithms are those that sample from expanded
ensembles comprised of a set of potentials defined over a
discrete parameter space.1,3–5 While neMD/MC methods have
distinct advantages over conventional MD and MC, achieving
improved sampling efficiency is not always straightforward.
In the worst case, a poorly designed neMD/MC algorithm can
even lead to adverse performance.

The efficiency of neMD/MC depends on maximizing the
production of uncorrelated configurations while minimizing
the effort expended in generating them. The main drawback of
neMD/MC simulations is that each new attempted MC move
requires a nonequilibrium MD simulation; a low acceptance
rate necessarily implies that a large fraction of computer
time is discarded by the algorithm. A direct solution for
this problem is not obvious. On the one hand, long neMD
trajectories might yield a high acceptance probability, but
are computationally prohibitive. Conversely, short neMD
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trajectories are computationally inexpensive but expected to
yield vanishingly low acceptance probabilities. The most
efficient algorithm is obviously a compromise balancing these
opposing factors, but it is generally unclear as to how to
systematically achieve this balance. While the optimization
of nonequilibrium protocols has been considered previously
by seeking to minimize the mean work9,10 or mean error,11

the issue of balancing the acceptance probability against the
cost of the neMD trajectories, which is critical to maximize
the efficiency of neMD/MC algorithms, has not been explored
systematically.

The goal of this article is to assess and mitigate efficiency
problems in a broad class of neMD/MC algorithms. The
results of the present analysis are quite general, but a specific
focus is given to neMD/MC schemes designed to generate
constant-pH simulations with explicit solvent molecules.1,5

The efficiency of neMD/MC simulations is shown to depend
on specific dynamic properties of the system being studied
and these are in turn related to the controllable parameters,
including the nonequilibrium protocol. The theoretical results
and approximations are tested against constant-pH simulations
of propionic acid in water, a simple but realistic molecular
system. Finally, a well-defined efficiency metric is developed
and an adaptive procedure for maximizing the performance is
proposed.

II. THEORY

Consider a classical system evolving according to
the Hamiltonian H(x; λ), with coordinates and conjugate
momenta x and a state parameter λ varying over the interval
[0,1]. The neMD/MC algorithm consists of carrying out a
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short nonequilibrium MD trajectory of length τ to switch the
state (λ → λ ′) in order to generate a candidate configuration
(x → x′) that must subsequently be accepted or rejected
according to a Metropolis criterion

Pacc(W ) = min
�
1,e−βW

�
, (1)

where β ≡ 1/kBT is the inverse temperature and W is the
work done during the nonequilibrium switch.6 In addition,
alterations to the sign of the atomic momenta must be
introduced to ensure microscopic detailed balance.4 For the
sake of simplicity, the following analysis is restricted to a
linear coupling between two endpoint Hamiltonians

H(x; λ) = λH1(x) + (1 − λ)H0(x)
≡ H0(x) − λA(x), (2)

where A(x) ≡ −∂H(x; λ)/∂λ is the coupling “force.” In
the present context, the Hamiltonian H(x; λ) is purely a
construction meant to couple the two physical endpoints, H1
and H0, and thus, the linear coupling assumption should not
present any significant limitations in practice. For example,
in the context of constant-pH neMD/MC simulations, the
physical endpoints would correspond to the unprotonated and
protonated states. More generally, the analysis is also valid if
the endpoints correspond to artificially biased states intended
to enhance sampling in configuration space.12

During a nonequilibrium simulation, λ is treated as a
continuous protocol function, λ(t), varying within the range
[0,1] during the time interval [0, τ]. Outside this time interval,
λ is strictly fixed at a value of either 0 or 1, and sampling
is performed in an equilibrium phase space of coordinates
and momenta. The mean expected work W (τ) from this
protocol can be computed by integrating the average power
P(t) = ∂H/∂t = ∂H/∂λλ̇(t) = −λ̇(t)A(t) (an overline bar
indicates an average over the repeated application of a
nonequilibrium protocol to equilibrium starting conditions).
Introducing the response relative to equilibrium δA(t)
≡ A(t) − ⟨A⟩ allows a straightforward decomposition into
reversible (free energy ∆F) and excess quantities [power
Pex(t) and work Wex(t)],8

W (τ) = −
 τ

0
dt λ̇(t) (⟨A⟩λ(t) + δA(t))

=

 1

0
dλ ′


∂H(x; λ)

∂λ


λ′
+

 τ

0
dt Pex(t)

= ∆F +Wex(τ). (3)

The first term in the second line formally corresponds to the
work resulting from a switch applied infinitely slowly, such
that the equilibrium average changes with time.13 Equation (3)
yields the nonequilibrium “protocol” work which is formally
only one component of the quantity W in Eq. (1). In practice,
an additional contribution arising from the fact that the MD
propagator relies on a discrete time step ∆t should also be
taken into account in the Metropolis acceptance criterion
to rigorously maintain microscopic detailed balance.6,14,15

This small quantity ∼O(τ∆t4) is referred to as the “shadow”
work.14 For the sake of simplicity, the small contribution from
shadow work will be ignored in the present analysis (see
the supplementary material). Aspects of this problem were

recently addressed by Sivak and Crooks,8 and their analysis
is extended in the following for a Metropolis neMD/MC
framework.

To make progress, it is assumed that the work distribu-
tion is predominantly unimodal (i.e., the mean and modal
behavior are similar). In this scenario, the mean acceptance
probability Pacc(τ) is a reasonable proxy for the most prob-
able acceptance behavior. In the linear coupling case, the value
of Pacc(τ) is dictated by the forward (0 → 1) and backward
(1 → 0) work distributions ρf(W ; τ) and ρb(W ; τ). Each
contribution must be weighted by the equilibrium probability
of its starting point, P0 and P1, respectively, with P0 + P1 = 1
and P1/P0 ≡ exp(−β∆F). This leads to the following expres-
sion for the mean acceptance probability between the two
states:

Pacc(τ) =
 ∞

−∞
dW Pacc(W )[P0 ρf(W ; τ) + P1 ρb(W ; τ)]. (4)

So long as the MC scheme only considers pairwise state
transitions, this is equally applicable when considering more
than two states.

In seeking to study the behavior of Eq. (4), it is
necessary to know the form of ρf(W ; τ) and ρb(W ; τ).
A reasonable assumption is to use Gaussian distributions
(this shifts the time dependence of the distributions into
the mean and variance parameters). This assertion follows,
for example, from fluctuation-dissipation arguments16 or by
a cumulant expansion of Jarzynski’s equality.13 Although
this is not exact except in very particular instances, only
a semiquantitative idea of the behavior of Eq. (4) is being
sought. This approximation has been considered extensively
in the literature and, in conjunction with Crooks’s fluctuation
theorem, leads to an expression for the excess work in
both directions in terms of a single variance σ2(τ) but different
means Wf(τ) and Wb(τ),17–19

Wex(τ) = βσ2(τ)
2

= −∆F +Wf(τ) = ∆F +Wb(τ). (5)

Equation (5) can be used to give an approximate, but explicit,
form to Eq. (4) (see the supplementary material),

Pacc(τ) = P0 erfc *
,

βσ2(τ) + 2∆F

2


2σ2(τ)
+
-

+ P1 erfc *
,

βσ2(τ) − 2∆F

2


2σ2(τ)
+
-
. (6)

In the case that ∆F = 0, this reduces to

Pacc(τ) = erfc *
,

β

2


σ2(τ)

2
+
-
. (7)

This is especially relevant in neMD/MC simulations where a
splitting of the transition operator can be performed such that
the free energy is effectively set to zero (see Chen and Roux5).
The actual deviations from zero are subsumed into a proposal
probability that is strictly independent of the switch process.
The efficacy of this approach can be inferred from a graph
of Eq. (6) which shows that the highest mean acceptance
probability is obtained for small |∆F | and σ2(τ) (Fig. 1). A
more rigorous proof is given by Chen and Roux.5

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-022638
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-022638


134109-3 B. K. Radak and B. Roux J. Chem. Phys. 145, 134109 (2016)

FIG. 1. Assuming Gaussian work distributions, the mean acceptance prob-
ability decreases monotonically as either a function of absolute relative free
energy or variance. See Eq. (6).

In seeking an expression for σ2(τ), it is noted that Eq. (2)
is a standard departure point in nonequilibrium linear response
theory.20–22 Specifically, a mechanical observable B(x) at
equilibrium up to a perturbation at time t = 0 will have a
mean response

δB(t) ≈ −β
 t

0
dt ′ λ̇(t ′)CAB (t − t ′) (8)

to first order in perturbation of the phase space density. The
effect of the coupling force enters through the definition of the
equilibrium correlation function CAB(t) ≡ ⟨δA(0)δB(t)⟩. The
excess power from linear response is obtained by the choice
δB(t) = −λ̇(t)δA(t),

Pex(t) = βλ̇(t)
 t

0
dt ′ λ̇(t ′)CAA (t − t ′). (9)

Equation (9) was previously formulated by Sivak and Crooks8

(Eq. (9) therein). The excess work follows

Wex(τ) = β

 τ

0
dt λ̇(t)

 t

0
dt ′ λ̇(t ′)CAA (t − t ′). (10)

The validity of this expression is apparent when taking the
limit in which the perturbation is instantaneous. In this case
λ̇(t) is a Dirac delta function and Wex(τ) = β⟨δA(0)2⟩/2
= βσ(0)2/2. This recovers Eq. (5) for τ = 0 and clarifies the
connection between the Gaussian approximation and linear
response.13,16

For any pair of states, the opposing protocols have
formally different work distributions and correlation functions.
However, linear response lifts this asymmetry if λ(t) is
assumed to be symmetric in time [i.e., λ(t) = 1 − λ(τ − t)],
since then Eq. (2) is invariant to swapping H0(x) and H1(x) (the
signs on A(t), λ̇(t), and ∆F are just inverted). The derivation
for the backward protocol thus follows in a nearly identical
way. The correspondence between Eqs. (5) and (10) now
becomes apparent such that the work variance is a simple
functional of a correlation function and the work protocol

σ2(τ) = 2
 τ

0
dt λ̇(t)

 t

0
dt ′ λ̇(t ′)CAA (t − t ′). (11)

Since there is a single variance parameter these approxi-
mations also require that the correlation functions at both

endpoints be identical. A simple and natural approximation is
an exponentially decaying function, CAA(t) = ⟨δA(0)2⟩e−t/τm,
which introduces a molecular relaxation time τm. With this
approximation and a choice of λ(t), it is possible to solve
Eq. (11) directly. The solutions can then be inserted into Eq. (7)
to yield an expression for the mean acceptance probability in
terms of τ only.

Three main classes of protocols are considered here: (1)
step functions, (2) sigmoid-like functions, and (3) inverse
sigmoid-like functions. The first class only approximately
satisfies the symmetry requirements, although this appears
to be no worse than other approximations employed here.
In any event, this is primarily intended for illustrative
purposes. The other protocols are introduced as Chebyshev
expansions (3rd, 5th, or 9th order) of tanh (t/τ) and
arctanh (t/τ), respectively. This is convenient, since a first
order expansion reduces to a linear protocol. The solutions
for a step function and arbitrary polynomial are given in the
supplementary material. The linear solution is particularly
simple

σ2(τ) = 2⟨δA(0)2⟩ τ
2
m

τ2

(
e−τ/τm − 1 +

τ

τm

)
. (12)

It is easily verified that limτ→0 σ
2(τ) = ⟨δA(0)2⟩ and

limτ→∞σ
2(τ) = 0, as expected.

III. COMPUTATIONAL METHODS

The above expressions were numerically tested by
constant-pH neMD/MC simulations run with a developmental
version of NAMD 2.11.23 Propionic acid was modeled
with the CGenFF force field and solvated in a ∼24 Å
cube containing 464 rigid mTIP3P water molecules.24

Alchemical coupling between the protonated and deprotonated
forms of propionic acid was accomplished via a “dual-
topology” paradigm with additional, zero-length bonds
between equivalent but otherwise non-interacting atoms
(force constant 100 kcal/mol Å2).25 Langevin dynamics was
employed at 300 K with a friction coefficient of 5 ps−1 and
a 2 fs time step; all bonds with hydrogen were kept rigid.
Periodic boundary conditions were applied using particle
mesh Ewald (30 grid points per axis) and force switching of
the Lennard-Jones interactions between 6 and 8 Å, after which
an isotropic long-range approximation was used.

In order to minimize the statistical variance between
different protocols and for convenient parallelization, a
constant-pH-like MD simulation was run as follows. The
system was first minimized, equilibrated (100 ps), and
simulated (10 ns) at both non-alchemical endpoints; during
production coordinate/velocity snapshots were saved at
10 ps intervals (2000 snaphots total). These snapshots were
“alchemified” by adding atoms for the opposite alchemical
endpoint via direct sampling (the phase space distributions are
simple multivariate Gaussians). All nonequilibrium protocols
were evaluated on this set of initial conditions (but with
different pseudo-random seeds). Each set of trajectories
generated in this fashion is statistically equivalent to a
neMD/MC constant-pH simulation with the pH equal to the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-022638
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reference pKa value (since the protonated and deprotonated
forms are equally populated).5 Since no energy shift constants
are required a priori in this context, these were determined
via post-processing using the Bennett acceptance ratio on
the trajectories generated with the longest switching time
(40 ps).26 All reported nonequilibrium work calculations were
adjusted by this value (−67.33 kcal/mol) such that the effective
free energy is zero.

A single work variance and distribution was estimated
for each set of trajectories produced by the same protocol
and switching time. This is because the forward and reverse
work values can be pooled as a single sample within the
Gaussian approximation (see the supplementary material).
Accordingly, variances (and parametric density estimates)
were computed using a modified maximum likelihood
estimator. Non-parametric density estimates were made using
a Gaussian kernel density estimator with the bandwidth
selected according to Silverman’s method.27 Error bars were
estimated based on the standard deviation of 100 bootstrap
trials.

IV. RESULTS AND DISCUSSION

The observed work distributions for a linear work
protocol with multiple switching times are plotted in
Fig. 2. The distributions from other protocols display
essentially the same pattern (not shown). The similarity
between nonparametric and Gaussian parametric estimates
qualitatively and quantitatively increases with switching time.
This also coincides with a decrease in the difference between
free energy estimates from the Bennett acceptance ratio
method26 and the Gaussian form of Crooks’s fluctuation
theorem.19

Equation (11) is tested directly by inserting each protocol,
deriving a variance expression, and then performing nonlinear
least squares regression on the observed variances (Fig. 3). It
is apparent that a linear protocol always leads to the lowest
variance amongst all protocols tested here. This was implicitly
predicted (but not stated) by Sivak and Crooks8 for the case
that τm ≪ τ and CAA(t) is not a function of λ (as is consistent
with linear response).

FIG. 2. Kernel density (solid lines) and Gaussian estimates for the work
distribution (dashed lines) show that increasing the switch time for a linear
protocol corresponds to both decreased peak width and modal work value.
This also correlates with increasing similarity between the two estimates.

FIG. 3. The observed work variances and mean acceptance probabilities
match well with those predicted from linear response. Least squares fitting
is performed for each individual protocol for the variances only and then
transformed via Eq. (7).

This result thus empirically addresses discussions in the
literature regarding the efficacy of nonlinear protocols.28–30

Both fit parameters (i.e., the variance and relaxation time)
are, in principle, equilibrium constants and therefore the
data sets can be fit globally. However, independently fitting
the data leads to a broad range of values and superior
residuals (see the supplementary material). All plots presented
here show the independent fits. Rather than fitting Eq. (7)
directly, the same fit parameters are used to compare with
the mean acceptance probabilities obtained by bootstrap
sampling (Fig. 3). This indirect fitting scheme seems to slightly
underestimate the observed probability at longer switch
times.

The accuracy of the theoretical framework outlined here
is only semiquantitative (as evidenced by the poor global fit).
However, treating ⟨δA(0)2⟩ and τm as adjustable parameters
yields a predictive model that can be used to optimize
neMD/MC efficiency by seeking to maximize the effective
state-to-state transition rate during a simulation. Let us assume
that n switches are to be attempted over a total simulation
time τtot. Since only the time spent on switches directly
impacts the transition rate, it is assumed, for simplicity,
that all of this simulation time is spent on switches such
that the switch length is τ = τtot/n. This is somewhat of
an arbitrary construction, since the present framework does
not offer any clear answers on how to divide computational
resources between switching and nonswitching trajectories.
With this in mind, the expected transition rate between states
is k(τ) = nPacc(τ)/τtot = Pacc(τ)/τ. Maximizing k(τ) seeks to
balance the cost of increasing the acceptance probability
against decreasing the rate at which moves are attempted.

As seen in Fig. 4 extracted from constant-pH simulations
of propionic acid in explicit solvent, this expression displays
a distinct peak, implying that an optimal switching time τopt
achieving maximum efficiency can be found. In this case, the
most efficient neMD/MC scheme is obtained using an optimal
switching time of ∼11 ps, which yields an effective transition
rate of ∼20 ns−1. Knowledge of kopt = k(τopt) can be used
to estimate the minimal simulation time necessary in order

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-022638
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-022638
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FIG. 4. The maximum of the expected transition rate (dashed line) does not
coincide with that of the mean acceptance probability (solid line). Here the
most efficient neMD/MC scheme is obtained using a linear work protocol
with switch length ∼11 ps, yielding an acceptance probability of ∼22% and
an effective transition rate of ∼20 ns−1 (i.e., roughly one accepted transition
every 50 ps).

to obtain a desired accuracy in the state populations. The
total number of state-to-state transitions expected during a
given simulation is on the order of Nt = koptτtot. For example,
assuming for the sake of argument that Nt ≈ 100 transitions
are necessary to obtain reasonable convergence, the optimal
transition rate determined here suggests that a total simulation
time of about 5 ns should be adequate to determine the
relative population of the protonated and deprotonated states
(neglecting the simulation time between switches). Because
neMD/MC does not require an explicit enumeration of all
states a priori, this argument may be extended to systems with
a larger number of titratable sites (i.e., the algorithm is size
extensive). Thus, for a system comprising N distinguishable
titratable sites that are not strongly coupled to one another,
a total simulation time proportional to N Nt/kopt would be
expected. However, in practice, the sites in a complex system
could be strongly correlated and each transition is likely to
have a different value of kopt. For these reasons, the estimated
simulation time is best regarded as a lower bound.

In principle, on-the-fly tuning of τ could be performed
by gradually converging estimates for ⟨δA(0)2⟩ and τm. Un-
fortunately, gathering statistics from instantaneous switches
alone is not a reliable approach since the approximations
fail in this regime. A more plausible approach is based on
the observation that fits involving very short trajectories are
relatively consistent with longer trajectories. As such, statistics
can be inexpensively obtained by many such short trajectories.
Since these trajectories are unlikely to be accepted, it would
even be possible to run them redundantly with multiple switch
times and no intention of using them as MC candidates.
This approach was tested by running 1 ns trajectories at both
fixed protonation states. Work variances were accumulated
by running 200 and 400 fs trajectories every 10 ps. The fit
parameters from these two data points and Eq. (11) were then
used to maximize the expected transition rate. The resulting
estimates were ∼6–7 ps, depending on the endpoint. This
underestimates the global fit of ∼11 ps. This test assumed

perfect knowledge of the free energy; adding Gaussian error
(mean and standard deviation 1 kBT) to the work changed
the predictions by <1 ps. The underestimation seems to be
most strongly correlated with simultaneous underestimation
of τm (∼0.15 ps compared to 0.50). This trend in error is to
be preferred in an adaptive scheme, since increasing τ too
aggressively could waste time and cause instability due to
inconsistent statistics.

The above discussion was focused on maximizing
k(τ) in order to balance the cost of increasing Pacc(τ)
against decreasing the rate at which moves are attempted.
Alternatively, if only enhanced sampling in configuration
space is desired, another possible metric is the efficiency gain
proposed by Nilmeier et al.2 (Eq. (23) therein). Interestingly,
although this quantity is quite different from k(τ), it also seems
to predict a single maximum as a function of τ. However, the
form of the efficiency gain is largely empirical and depends
on dynamical parameters from both standard and neMD/MC
simulations.

In closing this discussion, it should be mentioned that the
present analysis considered only the protocol component of
the work W in the Metropolis acceptance criterion [Eq. (1)] for
the sake simplicity. Further analysis indicates that the present
conclusions remain unchanged when the shadow work is
taken into consideration. For instance, the contrast between
Pacc(τ) and k(τ) for large τ is likely only theoretical since,
in that regime shadow work will likely dominate and both
quantities become vanishingly small.6,14 However, this caveat
only reinforces the conclusion here that τopt be relatively small.

V. CONCLUSION

In conclusion, neMD/MC algorithms can be powerful
tools for improving conventional simulations as well as for
producing novel methods with an extended phase space.
However, clear improvements can only be realized if well-
defined metrics for efficiency are developed. Such a framework
can be built around a generalized Metropolis criterion and
linear response. Within this ansatz, the problem reduces to an
expression for the work variance as a function of the work
protocol and switching time. A substantial, but nonexhaustive,
assessment of several protocols shows that a linear protocol
is likely optimal; this is empirically validated by constant-pH
MD. Although the effects of the switching time are more
complex, they are well captured by two system dependent
constants that derive from clear physical concepts, but are
treated empirically in practice. The final results are theoretical
expressions for the mean acceptance probability of MC moves
and a related formula for the expected transition rate between
states. The latter is demonstrated as a viable means for
evaluating sampling and can be used in tandem with an
adaptive procedure to estimate the necessary constants.

SUPPLEMENTARY MATERIAL

See supplementary material for discussion of shadow
work, detailed derivations of specific results, and an extended
description of simulation protocols.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-022638
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