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Summary

Semi-parametric methods are often used for the estimation of intervention effects on correlated 

outcomes in cluster-randomized trials (CRTs). When outcomes are missing at random (MAR), 

Inverse Probability Weighted (IPW) methods incorporating baseline covariates can be used to deal 

with informative missingness. Also, augmented generalized estimating equations (AUG) correct 

for imbalance in baseline covariates but need to be extended for MAR outcomes. However, in the 

presence of interactions between treatment and baseline covariates, neither method alone produces 

consistent estimates for the marginal treatment effect if the model for interaction is not correctly 

specified. We propose an AUG-IPW estimator that weights by the inverse of the probability of 

being a complete case and allows different outcome models in each intervention arm. This 

estimator is doubly robust (DR), it gives correct estimates whether the missing data process or the 

outcome model is correctly specified. We consider the problem of covariate interference which 

arises when the outcome of an individual may depend on covariates of other individuals. When 

interfering covariates are not modeled, the DR property prevents bias as long as covariate 

interference is not present simultaneously for the outcome and the missingness. An R package is 

developed implementing the proposed method. An extensive simulation study and an application 

to a CRT of HIV risk reduction-intervention in South Africa illustrate the method.
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1. Introduction

In clustered randomized clinical trials (CRTs), the unit of treatment assignment is a cluster 

of subjects, which we also refer to as community. In such settings, outcomes are likely to be 

correlated among subjects within the same cluster. Often used for estimation, generalized 

estimating equations (GEE) based on semi-parametric methods (Zeger and Liang, 1986) 

target marginal effects of treatment. Within clusters, dependence can be modeled using a 

working correlation structure. Compared to mixed effects models, this approach has the 

advantage of focusing on population average effects rather than cluster specific effects 

(which are equal for continuous outcomes) and requires fewer parametric assumptions on 

the outcome distribution (Hubbard et al., 2010). Moreover, because both the outcome and 

the missing data mechanism can be modeled, this approach allows doubly robust estimation, 

which is impossible with mixed effect models. Finally, this approach to estimation is robust 

to misspecification of the correlation structure. However, challenges arise in developing a 

consistent and efficient estimator of marginal treatment effects; these include the need to 

adjust for missing data and accommodate covariate interference (wherein a subject’s 

outcome may be affected by covariates of other subjects) and interactions (wherein the effect 

of treatment varies by covariate-defined subgroups). We propose a method that addresses 

these issues and is practical to implement for evaluating novel interventions in CRTs.

In CRTs, covariates may be fully observed even if the outcome is missing. When data are 

assumed missing completely at random (MCAR) – i.e. the observed process is independent 

of observed and unobserved information (Rubin, 1976) – the standard GEE approach 

provides consistent and asymptotically normal (CAN) estimators. If the pattern of 

missingness depends on observed information but not on missing data, the data are said to be 

Missing at Random (MAR). In this setting, the standard GEE may yield biased estimates 

although likelihood-based approaches, such as mixed effect models, can provide unbiased 

estimators. Imputation (Paik, 1997) or reweighing (Robins et al., 1995) methods can correct 

for this bias. Although useful if the missingness mechanism is not completely known, 

multiple imputation requires correct specification of the joint distribution of the outcomes, 

which is especially difficult when they are correlated and the cluster sizes are large 

(Beunckens et al., 2008). In this article, we consider the Inverse Probability Weighting 

(IPW) approach to analyze incomplete data. If the model for the missingness mechanism 

represents the MAR data generating process, the IPW estimation provides CAN estimators 

of treatment effects by reweighing complete cases according to the probability of being 

observed (Liang and Zeger, 1986; Robins et al., 1994).

Recent methodological developments improve estimation efficiency by leveraging baseline 

covariates; they may be based on targeted maximum likelihood (Moore and van der Laan, 

2009) and on augmentation (Robins et al., 1994; Robins, 2000; Tsiatis et al., 2008; Zhang et 
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al., 2008). Stephens et al. (2012) developed the augmented GEE (AUG) methods in the 

setting of dependent outcomes such as in CRTs. The AUG adds a term to the standard GEE 

which relates the outcome to covariates and treatment. Randomization assures that the AUG 

is CAN even in the case of OM misspecification. However in the case of outcome data that 

are MAR but not MCAR, the AUG may be biased. There exists theory for extending these 

methods to MAR data for individual randomized Trials (RTs) with possibly correlated data 

(Van der Laan and Robins, 2003; Glynn and Quinn, 2010), we focus on the details of 

implementing the methods in CRTs.

The term interference can refer to different types of relationships among exposures, 

outcomes and covariates. Interference in RTs arises when one subject’s treatment may 

impact the outcomes of other subjects (Rosenbaum, 2007; Vansteelandt, 2007; Tchetgen 

Tchetgen and VanderWeele, 2012; Hudgens and Halloran, 2012). A similar phenomenon, 

confounding by clusters, has been discussed in the context of observational studies (Seaman 

et al., 2014); we will refer to such confounding as exposure interference. In CRTs all 

subjects within a cluster receive the same treatment; hence if the clusters are independent as 

typically assumed in practice, there is no exposure interference measured at the cluster level. 

Therefore, any choice of working correlation structure for the standard GEE will give a 

consistent estimator of the marginal treatment effect (Pepe and Anderson, 1994). We will 

investigate covariate interference among individuals nested within clusters: the setting in 

which one subject’s covariate may impact the outcomes of other subjects.

The IPW and the AUG can be combined in a doubly-robust method we refer to as the DR; 

we investigate its properties regarding robustness to misspecification of the missing data and 

outcome generating process. By considering a variety of data generating mechanisms, we 

investigate settings in which the DR has advantageous properties (consistency and precision) 

compared to the IPW and the AUG, and discuss the impact of covariate interference and 

treatment-covariate interactions. This paper is organized as follows. Section 2 introduces 

notation and assumptions for the IPW and the AUG GEE approaches. Section 3 describes 

the DR approach, investigates CAN properties and discusses the issue of covariate 

interference. Section 4 provides a motivating example with data arising from a CRT of an 

HIV/Sexually Transmitted Infection (STI) risk reduction intervention in South Africa 

(Jemmott III et al., 2014). Simulation studies regarding bias, relative efficiency and coverage 

are described in Section 5, and concluding remarks are made in Section 6.

2. Notation, basic models and assumptions

2.1 Notation for CRTs and marginal treatment effect

We consider a study design in which a vector of P baseline covariates 

and outcome Yij are recorded for each subject j = 1,…, ni in community i = 1,…, M. The 

sample size within each community is assumed fixed by design and non-informative. Our 

setting compares two arms (treated Ai = 1 and control Ai = 0); the probability of treatment 

assignment is known and given by p = P (Ai = 1); extension to a greater number of 

treatments is straightforward but complicates the notation. In this article, the outcome 

 is assumed to be continuous, but extension to other types of outcomes is 
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straightforward. The vector  is the indicator of missingness; Yij is observed 

when Rij = 1. The matrix of covariates  is assumed to be fully observed 

and consists only of pre-exposure covariates measured at baseline.

Interest lies in estimating the marginal effect of the treatment given by 

. For estimating , we make inference about 

the parameters β = (β0, βA)T indexing the marginal model g(μij(β, Ai)) = g(E(Yij|Ai)) = β0 + 

βAAi, where  and g is a one-to-one link function, which is an 

identity function in this article. Of particular interest, βA is equal to . Of note, extension 

to binary outcome Yij using a logistic function for g and considering odd-ratios is based on 

the same reasoning.

When the outcome is believed to be MCAR, the missingness process is independent of Xi, 

Ai, and Yi. If one assumes MAR and the missingness pattern is monotone, the probability of 

missingness can be estimated by a multistep approach by decomposing a monotone missing 

pattern into multiple uniform missing data models (Robins et al., 1994; Li et al., 2011). In 

CRTs, any component of Yi can be missing; hence the missingness pattern is non-monotone. 

Therefore, we make a stronger assumption than MAR that we refer to as restricted MAR 

(rMAR): the probability that the outcome for one individual is missing is independent of all 

outcomes in the cluster, conditional on baseline exposure Ai and cluster characteristics Xi. 

The conditional probability that the outcome is observed is denoted πij(Xi, Ai) = P (Rij = 1|
Xi, Ai) and is called the propensity score (PS). When data are rMAR, ignoring missing data 

leads to biased inference if missingness depends both on Xi and Ai. This is because the 

presence of missing data no longer assures balance of confounding factors between 

treatment arms. Therefore, analysis must include adjustment for missing data; appropriate 

models for this adjustment may require treatment-covariate interactions, which may be 

difficult to specify and require many parameters. Combining the IPW and the AUG, which 

this paper proposes, makes it possible to obtain consistent estimates of the marginal effect of 

treatment without explicitly specifying interaction terms while also improving efficiency.

2.2 Inverse Probability Weighted Generalized Estimating Equations (IPW)

In order to account for missing data, semi-parametric estimators based on the IPW are found 

by solving the estimating equation 1:

(1)

where  is the design matrix, Vi is the covariance matrix equal to 

 with Ui a diagonal matrix with elements var(yij) and C(α) is the working 

correlation structure with non-diagonal terms α. For example, for an independence 

correlation structure α are zero; for exchangeable all the elements of α are identical. 
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Parameters α could also depend on the treatment group C(α(Ai)) but we do not consider this 

possibility in our implementation. In this article, we estimate the α parameters using 

moment estimators from the Pearson residuals as in McDaniel et al. (2013). The ni × ni 

matrix of weights is , where the PS is 

obtained by fitting a binary response model that regresses the indicator Rij on functions of Ai 

and Xij. The ηW are nuisance parameters estimated in the PS. A necessary assumption for 

this method is that probabilities for the PS are bounded away from zero. Several authors 

have noted the instability that may arise from small probabilities of observation (i.e. large 

weights) and proposed use of stabilized or truncated weights; see Seaman and White (2013) 

for a review. To ensure that the IPW provides a CAN estimator, the PS must include all 

variables that are associated simultaneously with both the missingness and outcome 

processes (Brookhart et al., 2006) including treatment-covariate interaction terms (Belitser et 

al., 2011). In other words, the PS must be correctly specified, in the sense that πij(Xi, Ai, 

ηW) = P (Rij = 1|Xi, Ai) for some ηW.

2.3 Augmented Generalized Estimating Equations (AUG)

For settings with complete data, Stephens et al. (2012) proposed the AUG estimator which 

can improve efficiency relative to the standard GEE by incorporating baseline covariates. 

The AUG is constructed by subtracting from the set of GEEs the orthogonal projection of 

the standard estimating function onto the span of scores corresponding to all smooth 

parametric models for the treatment assignment mechanism given covariates. The AUG is 

given in Equation 2:

(2)

The term  is similar to ψi(Yi, Ri, Ai, β, ηW) in Equation 1 for the IPW except 

that Wi is set to identity because there is no adjustment for missing data. Definitions for Di 

and Vi remain the same. The vector  is an 

arbitrary function of Xi given for each treatment arm. The ηB are nuisance parameters that 

must be estimated. The estimator in Equation 2 is most efficient if Bij(Xi, Ai = a, ηB) is 

equal to E(Yij|Xi, Ai = a) (Robins et al., 1994; Zhang et al., 2008). For this reason, we shall 

refer to Bi(Xi, Ai = a, ηB) as the outcome model (OM), and describe the OM as correctly 

specified when Bij(Xi, Ai = a, ηB) = E(Yij|Xi, Ai = a) for some ηB. In the absence of missing 

data, the AUG remains consistent even if the OM is not correctly specified. Correct 

specification can lead to substantial efficiency gains compared to the standard GEE. 

Moreover, in presence of treatment-covariate interactions, it is useful to fit a different 

regression model for the OM for each treatment group, e.g. 

 with , thereby obviating 
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the need to fit covariate-treatment interactions terms. In presence of rMAR, the AUG does 

not ensure consistent estimation; instead, one must combine the AUG with the IPW as we 

show below.

3. Methods to accommodate missing data, treatment-covariate interactions 

and covariate interference in CRTs

3.1 Doubly Robust Augmented IPW Generalized Estimating Equations (DR)

We extend the AUG in Equation 2 to account for missing data using the IPW in Equation 1 

by subtracting from the set of GEEs the orthogonal projection of ψi(Yi, Ri, Ai, β, ηW) onto 

the span of scores corresponding to all smooth parametric models for the missing data 

process and the treatment assignment mechanism given covariates (Tsiatis, 2006). This gives 

the following estimating equation (see Web-Supplementary Material B for details):

(3)

The Di, Vi and the PS are defined such as in Equation 1, the OM denoted Bi(Xi, Ai = a, ηB) 

is defined for each treatment group such as in Equation 2. The estimator denoted  is 

found by solving the estimating equation given in equation 3. Although analytic solutions 

sometimes exist, coefficient estimates are generally obtained using an iterative procedure 

such as the Newton-Raphson method. To get  we use the estimated PS 

and estimated OM . As mentioned above, treatment-covariate interactions 

can be accounted for by fitting OM regressions separately by treatment group. One could 

also estimate parameters of the PS model separately by treatment groups. This approach, 

however, may provide less stable results due to variability in the calculation of weights. In 

this paper,  in  are obtained using a logistic regression and  in 

 are obtained using a linear regression. Thus, we treat Rij and  as 

conditionally independent given Ai and Xi. In the presence of correlation of Rij and , one 

might be able to improve efficiency of estimation of πij and therefore of the marginal 

treatment effect by accounting for this correlation. Of note, estimation procedures other than 

generalized linear models could also be used to compute the OM and the PS values. The DR 

estimator is doubly robust in the sense that it is CAN under correct specification of either the 

OM (i.e. Bij(Xi, Ai = a, ηB) = E(Yij|Ai = a, Xi) for some ηB) or the PS (i.e. πij(Xi, Ai, ηW) = 

P (Rij = 1|Xi, Ai) for some ηW) (see Web-Supplementary Material Section C1). 

Implementation in R is available on the CRAN in the package ’CRTgeeDR’. Source code 

had been made available as Web-Supplementary material. We note that in contrast with 

several existing software packages (for example proc GENMOD in SAS (2015)), our 
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implementation of the weighted GEE, which uses  instead of 

, guarantees consistency for all choices of 

working correlation structure (see details in Web-Supplementary Material Section C2 and 

D).

3.2 Variance of the DR estimator

The variance of  is estimated by the sandwich variance estimator. There are two external 

sources of variability that need to be accounted for: estimation of ηW for the PS and of ηB 

for the OM. We denote Ω = (β, ηW, ηB) the estimated parameters of interest and nuisance 

parameters. We can stack estimating functions and score functions for Ω:

where  and  represent the score equations for patients in cluster i for the estimation of 

ηW and ηB in the PS and the OM. A standard Taylor expansion paired with Slutzky’s 

theorem and the central limit theorem provide the sandwich estimator adjusted for nuisance 

parameters estimation in the OM and PS. We refer to this as the nuisance-adjusted sandwich 

estimator:

(4)

The variance estimator  is obtained by estimating unknown quantities upon 

substituting empirical means for expectations and  for Ω. Thus, the term 

is given by  and  is given by 

In small sample settings, it is likely that this estimator of the variance of  is biased. We 

implemented Fay’s bias-correction approach, which is particularly suitable for M-estimators 

(Fay et al. 2001). The term  in Equation 4 is replaced by  given by 

, where  is a diagonal matrix with diagonal terms 

, q = 0.75 is a frequently-used bound.
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3.3 Definition of covariate interference and implication for analysis

In previous sections, we discussed covariates measured on the index subject (j), but other 

subjects’ (j′) covariates may also impact the outcome for the index subject. An example of a 

potentially interfering covariate is described by Kaiser et al. (2011) who found a positive 

association between age of partner and infection with HIV. Similarly, the characteristics of 

subgroups to which the index case belongs (household, neighborhoods,…), whether known 

or not, may be interfering covariates (Brumback and He, 2011). In this paper, we consider 

the phenomenon of covariate interference where there exists at least one individual j′ ≠ j 

such that . That is, even after all covariates for the index 

subject j have been included in the model, the covariates of individuals other than the index 

subject still affect the outcome of the index subject j; we refer to such covariates as 

interfering covariates. See Pepe and Anderson (1994) for a similar definition in longitudinal 

data and see Seaman et al. (2014); Liu and Hudgens (2014) for an analogous definition in 

non-randomized clustered data in the context of confounding by cluster and interference. 

Refer to Web-Supplementary Material Section A for a causal interpretation of covariate-

interference.

When interfering covariates affect either the outcome  or the 

missingness process , but not both, the DR estimator is 

CAN even if the interfering covariates are not included in the models, provided that either 

the PS or the OM is correctly specified. Accounting for covariate interference in the OM 

increases efficiency if and only if interfering covariates predict the outcome. When such 

covariates impact both the outcome and the missing data generating processes, they must be 

included in either the OM or the PS models. Thus, the DR estimator is CAN if the model for 

either the OM or the PS is correctly specified; i.e. either the PS or the OM includes all the 

covariates Xi in a model that correctly represents the data generation processes. We 

acknowledge that this model for interfering covariates is not likely to be known and can be 

difficult to identify. Different cluster sizes and sub-clustering structures (such as households) 

may make infeasible the use of regression techniques in the OM or the PS because of the 

potentially different dimensions of the individual and interfering covariates. Cluster 

summary measures such as the mean or maximum of individual covariates in the cluster (or 

sub-groups in each cluster) may nonetheless be useful in incorporating interference 

covariates in models (Brumback et al., 2010).

4. Application

4.1 Description of the SAM study

We analyze data from the “South African Men” (SAM) study which randomized 22 pair-

matched clusters to a health-promotion intervention (control) and an HIV/STI risk-reduction 

intervention in a CRT design; the study included 1181 South African men who have sex with 

women. A complete description of the study design can be found in (Jemmott III et al., 

2014). We focus on a cross-sectional analysis of these data after one year and ignore 

matching. The primary outcome of our analysis is the overall percentage of acts of protected 

intercourse among the total number of acts of intercourse. When the total number of acts of 
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intercourse is zero, we set the percentage to 100%, as no exposure implies no risk. 

Secondary outcomes are the percentages of protected acts of intercourse by type of 

partnership and type of intercourse (vaginal and anal sex with main and casual partners). 

Descriptive statistics for these outcomes, including proportion of missing observations by 

type of partner and intercourse are provided in Table 1. Slightly more observations are 

missing in the HIV/STI intervention group (20.8% versus 17.5%). The overall protection 

percentage after one year are about 64% for the HIV/STI intervention compared to 60% for 

the control group.

As the proportion of missing baseline covariates was less than 0.1%, we consider them to be 

MCAR and exclude observation with missing covariates from the analysis. No community 

sub-structure, such as household or neighborhood structures, was described in the SAM 

study. Here we consider potential interfering covariates at a cluster level by taking the mean 

(or mode for qualitative variables) of baseline measures in the community: 

 For example Hawkes et al. (2013) demonstrated that the mean 

religiosity score for a community, defined as the mean of individual religiosity score in the 

community, may have an impact on each individual outcome and missingness in particular 

regarding sexual behaviors. Table 1 describes socio-demographical individual-level variables 

and interfering covariates. We provide p-values for Wald tests testing the association of 

covariates and treatment-covariate interactions with the outcome and the missingness 

indicator. In this study, there is evidence of interactions of individual covariates with 

treatment for both the outcome and the missing data generation processes. However, the 

interfering covariates defined here do not appear to be significantly associated with both the 

outcome and the missing data generation process.

4.2 Results

We analyze these data with the GEE, the AUG, the IPW and the DR using both 

independence (−I) and exchangeable (−E) working correlation structures. Variables for the 

PS, and the OM were selected using a forward stepwise regression (separately for each 

treatment group) from among all the individual covariates Xij presented in Table 1. We did 

not include the interfering covariates  in the analysis as none impacted both outcome and 

missingness processes (Table 1). We used the step function in R based on the AIC criterion. 

Results of these selections are given in Web-Supplementary Material F. We describe here the 

results for the primary outcome. The amount of missingness is larger in the treated arm and 

increases with age; it decreases with religiosity, good health score, and exercise. The OM 

patterns are substantially different for treated and control; the only common variable is the 

CAGE score. In both arms lower alcohol consumption is associated with a greater 

percentage of protected acts of intercourse. Results are presented in Table 2 for primary and 

secondary outcomes. With the DR-E, we observe a significant difference of 7.4% (sd=2.9%, 

p=0.01) in the overall percentage of protected intercourse in the HIV/STI intervention group 

compared to the control group. Analyses of the secondary outcomes suggest that this result 

is mainly driven by condom use during vaginal intercourse with a marital partner. The 

HIV/STI intervention has no significant impact on other outcomes. Using the DR rather than 

the standard GEE or the AUG has an impact on the treatment effect estimates and associated 
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standard errors (SE). The difference between these approaches is apparent in the magnitude 

and direction of the marginal treatment effect estimate. For example, the analysis for the 

GEE-I (3.8 [−1.0; 8.5]) does not demonstrate a significant effect of the HIV/STI intervention 

on overall percentage of protected intercourse, whereas this effect is stronger and significant 

for the DR-I (7.3 [1.6; 13.0]). Both the GEE-I and the AUG-I (5.4 [2.2; 8.7]) are probably 

biased due to missing data. Using the DR instead of the IPW leads to an increased 

magnitude of the treatment effect and an increased level of statistical significance: for 

example, the DR-E (7.4 [1.73; 13.0]) compared to the IPW-E (3.4 [−1.4; 8.3]).

5. Simulation Studies

5.1 Properties of the DR estimator

We consider a setting with continuous outcome Yij and assignment of treatment Ai at a 

cluster level with probability p = 1/2. We generate a normally distributed covariate 

(independent of Ai) with mean 1 and a standard deviation of 5. For each individual, we 

define a covariate . which is the mean of X1 for all the subjects in the same cluster: 

. Similarly, we generate  and ;  and  are 

defined as was  and are possible interfering covariates. The model for simulation is given 

in Equation 5:

(5)

The parameters  are the regressors associated with intercept, 

treatment, covariate, interfering covariate, treatment-covariate interaction for the outcome 

model. Parameters βM are the same for the missing data generating process. Scenarios with 

low correlation among cluster (0.05) were simulated with  and 

 for cluster and individual random errors; scenarios with high correlation (0.2) 

were simulated with  and . True correlation structure is 

exchangeable. We investigate small sample (M = 10 and ni = (10, 20, 30) with probability 

1/3 each) and large sample (M = 100 and ni = (90, 100, 110) with probability 1/3 each) 

properties. In each scenario, we generate 1000 replicates of datasets.

We evaluate the double robustness of the DR estimator in the setting of large and small 

sample with low correlation, but similar results are observed for large correlation. We 

investigate models of analysis with OM and PS correctly specified (TRUE), misspecified 

(MISS) and partially specified omitting treatment-covariate interactions (NONE). Table 3 

describes the data generation process, provides the formulations of the models of analysis, 

and shows the results from analysis; on average, 26% of outcomes were missing and the 

average ICC was 0.08. When there is no missing data, the traditional GEE is consistent 

because of randomization. When outcome data are MAR but not MCAR, the GEE and the 
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AUG analysis are biased (−1.7 for the GEE-I and −1.8 for the AUG-I). When either the OM 

or the PS models or both are correctly specified there is negligible estimated bias for the DR 

– a finding that confirm consistency. In small samples, this bias is bigger when only the PS 

is correct because the weights are estimated with lower accuracy. Using the more common 

choice of implementation for the weighted GEE  leads to very 

high bias if an exchangeable correlation structure is used (0.374 if the OM is correct and 858 

if it is not, for large sample). When the OM is correct the coverage remains around 95% (see 

Table 2 in Web-Supplementary Material E). Using  in the 

implementation of weights addresses this problem and permits the use of correlation 

structures other than independence. The IPW with correct PS also corrects the bias (−0.01) 

but is less efficient than the DR approach; coverage is close to the nominal value of 95%. In 

small samples, the empirical SE are underestimated. By contrast, in the large sample setting, 

using the nuisance-adjusted sandwich estimator for the DR leads to good estimates of the 

asymptotic SE (0.0263) compared to the empirical SE (0.0266) over 1000 replicates. 

Moreover, we observe that the coverage using the DR is comparable to that of the GEE with 

complete data. Finally, we note that when the treatment-covariate interactions are ignored in 

the PS and only accounted for in the OM by fitting a different regression in each treatment 

group, the DR approach is also consistent and achieve same precision as when both the PS 

and the OM are correct (0.0014 and SE=0.027 for OM.TRUE.PS.NONE and 0.0013 

SE=0.029 for OM.TRUE.PS.TRUE).

Table 4 presents the results of analyses with the GEE, the IPW, the AUG and the DR that 

investigate the impact of correlation of the outcome in the data with small and large sample. 

The average percentage of missing outcomes is 23%; the average ICC is 0.04 for low 

correlation and 0.21 for high correlation. We analyzed the data using a PS and an OM model 

that was fit using a stepwise variable selection from among all of the individual and 

interfering covariates described above. The GEE and the AUG estimates are systematically 

biased because there is no correction for missing data. The IPW is also biased because the 

PS is incorrect in that it omits treatment-covariate interactions. The DR estimates are 

consistent in all analyses. In small sample settings, the empirical SE is underestimated even 

when using nuisance-adjusted SE, but estimation is improved by Fay’s correction. 

Nonetheless, the coverage remained lower than 86%, but it improves for large samples. 

Finally, when there is low correlation in the outcome, the robust SE better approximate the 

empirical SE.

5.2 Simulations mimicking the SAM Study

To consider more complex settings, we mimic the SAM study (see Section 4). We simulate 

the following individual-level covariates: employment , marital status 

, age , religiosity , the CAGE score 

(from a multinomial of probabilities  for modalities 0,1,2,3 

and 4), the HIV score  and the condom knowledge score . 

Interfering covariates are generated as means for quantitative variables or modes for 

qualitative variables of the individual-level variables in each of the community (as was done 

for ,  and  in Section 5.1). We generate data from the model in Equation 6. In 

Prague et al. Page 11

Biometrics. Author manuscript; available in PMC 2016 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simulating the outcome, we add cluster random errors to create an exchangeable correlation 

structure with  and an individual random effects . This provides an 

outcome correlation among clusters of 0.07. We analyzed the data using a PS and an OM 

composed of all the covariates described above with a stepwise variable selection. Table 5 

shows the bias, SE, and coverage of the methods we consider based on 1000 replicates for 

the estimation of the parameter . The percentage of missing outcomes is 21% and 

the average empirical ICC is 0.06.

(6)

Table 5 provides the estimates the marginal treatment effect for small sample and for the 

same sample size as that of the SAM data. The GEE, the AUG and the IPW yield biased 

results whereas the DR has small bias justifying its use to analyse the data even ignoring 

covariate interference. Fay’s correction with coverage around 92% in small sample and 95% 

in large sample achieve good accuracy. Figure 2 in Web-Supplementary Material C3 

represents the histograms of estimates over the 1000 replicates together with the true value 

of marginal treatment effect. It displays the bias of the GEE, the AUG and the IPW 

estimators compared to the DR and supports the approximate normal distribution of the DR 

estimator.

6. Discussion

We propose a doubly robust method for the estimation of the marginal effect of treatment in 

CRTs with continuous data subject to rMAR – an assumption that arises because 

missingness is non-monotone in CRTs. Extension to binary or other outcomes is 

straightforward, provided that there is a one-to-one link function h such that: μij = h(Xi, Ai). 

We extend the IPW approach proposed by Robins et al. (1995) and the AUG approach for 

CRTs proposed by Stephens et al. (2012). To be CAN, the DR estimator requires that either 

the OM or PS model be correctly specified regardless of the choice of the working 

correlation matrix. Interfering covariates can be ignored if either the OM or the PS is 

correctly specified. In presence of treatment-covariate interactions, if the PS is not correctly 

specified, covariates that interact with treatment on the outcome must be included in the 

OM. We accommodate these treatment-covariate interactions by modeling the OM 

separately for each treatment group. Covariates for the OM and the PS may be selected 
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using automatic variable selection procedures such as a stepwise procedure, and may be at 

the cluster level or individual level.

We recommend using  to ensure consistency of the IPW and the DR for 

CRTs, rather than the conventional implementation, , available in 

several software packages of the weighted GEE. See Tchetgen Tchetgen et al. (2012) for a 

similar result for longitudinal data with observation-specific weights. If a working 

independence correlation structure is used, then the two implementations lead to the same 

result. When  and an arbitrary correlation structure is used in the 

DR, estimation of marginal treatment effect is consistent only if the OM is correctly 

specified. We provide an R package called CRTgeeDR that implements the proposed DR 

estimator. The application of our methods to data from the SAM study showed an effect of 

HIV/STI intervention on the percentage of protected intercourse (Jemmott III et al., 2014) 

that reached a 0.05 level of significance. Moreover, results of the analysis that distinguishes 

among different types of partners and of sexual behavior may be useful in targeting future 

interventions. Our approach allows a situation that we denoted covariate interference in 

CRTs, and thus extends ideas of adjustment of time-varying covariates in longitudinal 

responses (Pepe and Anderson, 1994; Tchetgen Tchetgen et al., 2012). Since treatment is 

randomized at a cluster level and we consider a marginal mean model which only includes 

treatment, the covariate interference have a different implication for analysis than exposure 

interference in causal framework (Liu and Hudgens, 2014) or confounding by cluster in 

observational studies (Berlin et al., 1999; Huang and Leroux, 2011). However, when there 

are interactions between  and Ai exposure and covariate interference are related; in this 

case, individual ij may be seen as receiving pseudo-treatment . For such a setting, our 

work may be seen as extending the notion of exposure interference in RTs to CRTs and is 

related to the work of Ogburn and VanderWeele (2014). In any case, modeling covariate 

interference may lead to substantial gains of efficiency if they predict the outcome. 

Therefore, it may be profitable to develop methods that make use of contact network 

information to inform the selection of interfering covariates. Finally the impact of violation 

of the rMAR assumption required for the consistency of the DR estimates that resulted from 

a MNAR missingness mechanism can be investigated by performing sensitivity analysis 

(Rotnitzky et al., 1998; Vansteelandt et al., 2007).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Descriptive statistics of outcomes, sociodemographic individual covariates and interfering covariates by 

intervention group in SAM study.

Descriptive Statistics of the outcomes

HIV/STI Control group

Mean [IQR] % missing Mean [IQR] % missing

Primary outcome for percentage of protection (Y)

Overall 64% [26; 100] 20.8% 60% [22; 100] 17.5%

Secondary outcomes for percentage of protection (Y1, Y2,Y3 and Y4)

Main partner vaginal sex 61% [22; 100] 10.2% 56% [0; 100] 9.3%

Casual partners vaginal sex 68% [33; 100] 19.7% 68% [33; 100] 17.1%

Main partner anal sex 37% [0; 68] 11.2% 52% [0; 100] 8.6%

Casual partners anal sex 35% [0; 100] 15.1% 31% [0; 100] 12.8%

Descriptive Statistics of the covariates

p-value for association with

HIV/STI Control group Y* P(Y observed)**

Mean [IQR] Mean [IQR]

Individual covariates Xij

Age 26 [21; 30] 26.5 [21; 31] 0.41 0.13 0.03 0.18

Employment Yes 23% 26% 0.04 0.17 0.01 <0.001

Married Yes 23% 24% 0.05 0.76 0.68 0.50

Education Yes 46% 42% 0.58 <0.001 0.76 0.05

Number of children 1.5 [0; 2] 1.7 [0;2] 0.21 0.12 0.25 0.31

Wealth 5.3 [4; 7] 5.3 [4; 7] 0.77 0.96 0.25 0.54

Social desirability 3.4 [3.2; 3.4] 3.4 [3.2; 3.4] 0.87 0.33 0.04 0.34

Religiosity 0.01 [−0.7;0.7] 0.00[−0.7;0.6] 0.46 0.25 0.07 0.69

HIV/STI Knowledge 14.3 [12; 17] 14.1 [12; 17] 0.13 0.93 0.37 0.03

Condom Behaviors 3.7 [3.3;4] 3.7 [3.3;4.1] <0.001 0.36 0.16 0.33

Condom Knowledge 3.1 [3; 4] 3.1 [3; 4] 0.41 0.57 0.21 0.06

Condom Efficacy 3.9 [3.7;4.2] 3.9 [3.7;4.2] 0.01 0.31 0.97 0.42

Condom Peer norm 3.7 [3.4;4.1] 3.7 [3.4;4] <0.001 0.71 0.49 0.32

Never had HIV test 20% 21% 0.61 0.80 0.74 0.34

Sexual Activity Yes 84% 84% 0.71 0.06 0.53 0.77

Eating attitude 4.2 [4;5] 4.2 [3.7;5] 0.76 0.01 0.74 0.53

Exercise Yes 43% 42% 0.99 0.04 0.12 0.46

CAGE > = 2 62% 58% 0.22 0.41 0.18 0.08

Health Knowledge 10.8 [9; 12] 10.6 [9; 13] 0.51 0.38 0.59 0.83
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Descriptive Statistics of the covariates

p-value for association with

HIV/STI Control group Y* P(Y observed)**

Mean [IQR] Mean [IQR]

Interfering covariates 

Mean Age 26 [25;27] 27 [26;28] 0.39 0.96 0.05 0.10

Mean Education Yes 27% 8% 0.58 0.61 0.72 1.00

Mean Number of children 1.6 [1.2; 2.1] 1.7 [1.1;2.1] 0.81 0.67 0.14 0.59

Mean Wealth 5.4 [4.4;6.2] 5.2 [4.4;6.1] 0.45 0.38 0.23 0.92

Mean Social desirability 3.4 [3.3;3.4] 3.4 [3.3;3.4] 0.16 0.44 0.60 0.85

Mean Religiosity 0.00 [−0.1;0.1] 0.00 [−0.1;0.1] 0.84 0.70 0.18 0.94

Mean HIV/STD Knowledge 14.2 [14; 15] 13.9 [13;14] 0.37 0.23 0.01 0.45

Mean Condom Behaviors 3.7 [3.6;3.8] 3.7 [3.7;3.8] 0.37 0.40 0.02 0.95

Mean Condom Knowledge 3.1 [2.9;3.3] 3.1 [2.9;3.2] 0.52 0.21 0.15 0.32

Mean Condom Efficacy 3.9 [3.7;4.0] 3.9 [3.8;4.0] 0.23 0.38 0.21 0.58

Mean Condom peer norm 3.7 [3.6;3.8] 3.7 [3.6;3.7] 0.23 0.52 <0.001 0.01

Mean Eating attitude 4.2 [4.1;4.3] 4.2 [4.0;4.3] 0.71 0.15 0.25 0.07

Mean Exercise Yes 76% 82% 0.43 0.53 0.10 0.82

Mean CAGE > =2 63% 37% 0.99 0.79 0.71 0.41

Mean Health Knowledge 10.7 [10.5;11] 10.6 [10.3;10.8] 0.10 0.10 0.15 0.73

*
Wald test for  and  in the regression 

**
Wald test for  and  in the regression 
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