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Summary

Semi-parametric methods are often used for the estimation of intervention effects on correlated
outcomes in cluster-randomized trials (CRTs). When outcomes are missing at random (MAR),
Inverse Probability Weighted (IPW) methods incorporating baseline covariates can be used to deal
with informative missingness. Also, augmented generalized estimating equations (AUG) correct
for imbalance in baseline covariates but need to be extended for MAR outcomes. However, in the
presence of interactions between treatment and baseline covariates, neither method alone produces
consistent estimates for the marginal treatment effect if the model for interaction is not correctly
specified. We propose an AUG-IPW estimator that weights by the inverse of the probability of
being a complete case and allows different outcome models in each intervention arm. This
estimator is doubly robust (DR), it gives correct estimates whether the missing data process or the
outcome model is correctly specified. We consider the problem of covariate interference which
arises when the outcome of an individual may depend on covariates of other individuals. When
interfering covariates are not modeled, the DR property prevents bias as long as covariate
interference is not present simultaneously for the outcome and the missingness. An R package is
developed implementing the proposed method. An extensive simulation study and an application
to a CRT of HIV risk reduction-intervention in South Africa illustrate the method.

" mprague@hsph.harvard.edu.

Web-Supplementary Materials

Web Appendices, Tables, Figures, simulated data and, R sources implementing the estimators referenced in Sections 3.1, 3.3 and 5.2
are available with this paper at the Biometrics website on Wiley Online Library.
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1. Introduction

In clustered randomized clinical trials (CRTS), the unit of treatment assignment is a cluster
of subjects, which we also refer to as community. In such settings, outcomes are likely to be
correlated among subjects within the same cluster. Often used for estimation, generalized
estimating equations (GEE) based on semi-parametric methods (Zeger and Liang, 1986)
target marginal effects of treatment. Within clusters, dependence can be modeled using a
working correlation structure. Compared to mixed effects models, this approach has the
advantage of focusing on population average effects rather than cluster specific effects
(which are equal for continuous outcomes) and requires fewer parametric assumptions on
the outcome distribution (Hubbard et al., 2010). Moreover, because both the outcome and
the missing data mechanism can be modeled, this approach allows doubly robust estimation,
which is impossible with mixed effect models. Finally, this approach to estimation is robust
to misspecification of the correlation structure. However, challenges arise in developing a
consistent and efficient estimator of marginal treatment effects; these include the need to
adjust for missing data and accommodate covariate interference (wherein a subject’s
outcome may be affected by covariates of other subjects) and interactions (wherein the effect
of treatment varies by covariate-defined subgroups). We propose a method that addresses
these issues and is practical to implement for evaluating novel interventions in CRTSs.

In CRTs, covariates may be fully observed even if the outcome is missing. When data are
assumed missing completely at random (MCAR) — i.e. the observed process is independent
of observed and unobserved information (Rubin, 1976) — the standard GEE approach
provides consistent and asymptotically normal (CAN) estimators. If the pattern of
missingness depends on observed information but not on missing data, the data are said to be
Missing at Random (MAR). In this setting, the standard GEE may yield biased estimates
although likelihood-based approaches, such as mixed effect models, can provide unbiased
estimators. Imputation (Paik, 1997) or reweighing (Robins et al., 1995) methods can correct
for this bias. Although useful if the missingness mechanism is not completely known,
multiple imputation requires correct specification of the joint distribution of the outcomes,
which is especially difficult when they are correlated and the cluster sizes are large
(Beunckens et al., 2008). In this article, we consider the Inverse Probability Weighting
(IPW) approach to analyze incomplete data. If the model for the missingness mechanism
represents the MAR data generating process, the IPW estimation provides CAN estimators
of treatment effects by reweighing complete cases according to the probability of being
observed (Liang and Zeger, 1986; Robins et al., 1994).

Recent methodological developments improve estimation efficiency by leveraging baseline
covariates; they may be based on targeted maximum likelihood (Moore and van der Laan,
2009) and on augmentation (Robins et al., 1994; Robins, 2000; Tsiatis et al., 2008; Zhang et
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al., 2008). Stephens et al. (2012) developed the augmented GEE (AUG) methods in the
setting of dependent outcomes such as in CRTs. The AUG adds a term to the standard GEE
which relates the outcome to covariates and treatment. Randomization assures that the AUG
is CAN even in the case of OM misspecification. However in the case of outcome data that
are MAR but not MCAR, the AUG may be biased. There exists theory for extending these
methods to MAR data for individual randomized Trials (RTs) with possibly correlated data
(Van der Laan and Robins, 2003; Glynn and Quinn, 2010), we focus on the details of
implementing the methods in CRTSs.

The term interference can refer to different types of relationships among exposures,
outcomes and covariates. Interference in RTs arises when one subject’s treatment may
impact the outcomes of other subjects (Rosenbaum, 2007; Vansteelandt, 2007; Tchetgen
Tchetgen and VanderWeele, 2012; Hudgens and Halloran, 2012). A similar phenomenon,
confounding by clusters, has been discussed in the context of observational studies (Seaman
et al., 2014); we will refer to such confounding as exposure interference. In CRTs all
subjects within a cluster receive the same treatment; hence if the clusters are independent as
typically assumed in practice, there is no exposure interference measured at the cluster level.
Therefore, any choice of working correlation structure for the standard GEE will give a
consistent estimator of the marginal treatment effect (Pepe and Anderson, 1994). We will
investigate covariate interference among individuals nested within clusters: the setting in
which one subject’s covariate may impact the outcomes of other subjects.

The IPW and the AUG can be combined in a doubly-robust method we refer to as the DR;
we investigate its properties regarding robustness to misspecification of the missing data and
outcome generating process. By considering a variety of data generating mechanisms, we
investigate settings in which the DR has advantageous properties (consistency and precision)
compared to the IPW and the AUG, and discuss the impact of covariate interference and
treatment-covariate interactions. This paper is organized as follows. Section 2 introduces
notation and assumptions for the IPW and the AUG GEE approaches. Section 3 describes
the DR approach, investigates CAN properties and discusses the issue of covariate
interference. Section 4 provides a motivating example with data arising from a CRT of an
HIV/Sexually Transmitted Infection (STI) risk reduction intervention in South Africa
(Jemmott 111 et al., 2014). Simulation studies regarding bias, relative efficiency and coverage
are described in Section 5, and concluding remarks are made in Section 6.

2. Notation, basic models and assumptions

2.1 Notation for CRTs and marginal treatment effect

We consider a study design in which a vector of Pbaseline covariates Xl-j:(X}j, . ,ij)
and outcome Yj;are recorded for each subject = 1,..., 7;in community /=1,..., M. The
sample size within each community is assumed fixed by design and non-informative. Our
setting compares two arms (treated A;= 1 and control A, = 0); the probability of treatment
assignment is known and given by p= P (A;=1); extension to a greater number of
treatments is straightforward but complicates the notation. In this article, the outcome

YF[YZ--]J-:LM,,” is assumed to be continuous, but extension to other types of outcomes is
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straightforward. The vector Riz[sz]j:L_“’m is the indicator of missingness; Yj;is observed

when R;;= 1. The matrix of covariates X:=[ X];_; . is assumed to be fully observed
and consists only of pre-exposure covariates measured at baseline.

Interest lies in estimating the marginal effect of the treatment given by

M} =E(E(Yy|Ai=1, X;) — E(Y3;]A;=0, X;)). For estimating M, we make inference about
the parameters 8= (B, B4) " indexing the marginal model 9B, A)) = AE(YGiA)) = Bo +
BaA; where p; (B, Ai)=[p55(B, Ai)l;_; _,, and gis a one-to-one link function, which is an

identity function in this article. Of particular interest, B4 is equal to M. Of note, extension
to binary outcome Yj;using a logistic function for g and considering odd-ratios is based on
the same reasoning.

When the outcome is believed to be MCAR, the missingness process is independent of X,
Aj, and Y,. If one assumes MAR and the missingness pattern is monotone, the probability of
missingness can be estimated by a multistep approach by decomposing a monotone missing
pattern into multiple uniform missing data models (Robins et al., 1994; Li et al., 2011). In
CRTSs, any component of Y;can be missing; hence the missingness pattern is non-monotone.
Therefore, we make a stronger assumption than MAR that we refer to as restricted MAR
(rMAR): the probability that the outcome for one individual is missing is independent of all
outcomes in the cluster, conditional on baseline exposure A;and cluster characteristics X;.
The conditional probability that the outcome is observed is denoted m;(X; A) = P(Rj=1/
X, Aj) and is called the propensity score (PS). When data are rMAR, ignoring missing data
leads to biased inference if missingness depends both on X;and A;. This is because the
presence of missing data no longer assures balance of confounding factors between
treatment arms. Therefore, analysis must include adjustment for missing data; appropriate
models for this adjustment may require treatment-covariate interactions, which may be
difficult to specify and require many parameters. Combining the IPW and the AUG, which
this paper proposes, makes it possible to obtain consistent estimates of the marginal effect of
treatment without explicitly specifying interaction terms while also improving efficiency.

2.2 Inverse Probability Weighted Generalized Estimating Equations (IPW)

In order to account for missing data, semi-parametric estimators based on the IPW are found
by solving the estimating equation 1:

M
():ZD;FVJIM(XiaAm’?W) [ Yi - Il’l(ﬂJ A7)],
i=1

i(Yi,Ri,AiBmy,) 1)

_Oni(B, Ai)

where Di= 0BT is the design matrix, Vis the covariance matrix equal to

Uil/QC(a)Uil/Q with U, a diagonal matrix with elements var(y;;) and C(a) is the working

correlation structure with non-diagonal terms a. For example, for an independence
correlation structure a are zero; for exchangeable all the elements of a are identical.
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Parameters a could also depend on the treatment group C(a(A;)) but we do not consider this
possibility in our implementation. In this article, we estimate the a parameters using
moment estimators from the Pearson residuals as in McDaniel et al. (2013). The n; x n;

matrix of weights is Wi(X, Ai,n,, )=diag[ Ry/my(Xi, Aisny, )], where the PS is
obtained by fitting a binary response model that regresses the indicator ”;;on functions of A;
and X, The my are nuisance parameters estimated in the PS. A necessary assumption for
this method is that probabilities for the PS are bounded away from zero. Several authors
have noted the instability that may arise from small probabilities of observation (i.e. large
weights) and proposed use of stabilized or truncated weights; see Seaman and White (2013)
for a review. To ensure that the IPW provides a CAN estimator, the PS must include all
variables that are associated simultaneously with both the missingness and outcome
processes (Brookhart et al., 2006) including treatment-covariate interaction terms (Belitser et
al., 2011). In other words, the PS must be correctly specified, in the sense that ;{X; A;,

) = P(Rjj=1/X;, A)) for some py.

2.3 Augmented Generalized Estimating Equations (AUG)

For settings with complete data, Stephens et al. (2012) proposed the AUG estimator which
can improve efficiency relative to the standard GEE by incorporating baseline covariates.
The AUG is constructed by subtracting from the set of GEEs the orthogonal projection of
the standard estimating function onto the span of scores corresponding to all smooth
parametric models for the treatment assignment mechanism given covariates. The AUG is
given in Equation 2:

M

0=>_ [D?V}l( Y — pi(B, Ai))

i=1 —
wi(YmAzaﬂ)
+ Z pa(l - p)liaD?‘/i_l (Bi(XivAi:avnB) - l“'i(.Bv Ai:a’)>
a=0,1 (2)

The term o), (Y;, A;, B) is similar to wAY; R, Aj B, nw) in Equation 1 for the IPW except
that W/ is set to identity because there is no adjustment for missing data. Definitions for D,

and V,;remain the same. The vector Bi(Xi, Ai=a,n,,)=[Bi;(Xi, Ai=a,n)]._, . isan
arbitrary function of X, given for each treatment arm. The 7z are nuisance parameters that
must be estimated. The estimator in Equation 2 is most efficient if B;{(X; A;= a, ng) is
equal to £(Y;/X;; Aj= &) (Robins et al., 1994; Zhang et al., 2008). For this reason, we shall
refer to B(X; A;= & np) as the outcome model (OM), and describe the OM as correctly
specified when Bj(X;, A;j= a ng) = E(Yjj)X;; Aj= a) for some ng. In the absence of missing
data, the AUG remains consistent even if the OM is not correctly specified. Correct
specification can lead to substantial efficiency gains compared to the standard GEE.
Moreover, in presence of treatment-covariate interactions, it is useful to fit a different
regression model for the OM for each treatment group, e.g.

1 P L " - - -
By(Xi, Ai=a,n,)=16+Y_ _ 1w Xjwithn,=(17,...,7%,~1,...,~1), thereby obviating
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the need to fit covariate-treatment interactions terms. In presence of rMAR, the AUG does
not ensure consistent estimation; instead, one must combine the AUG with the IPW as we
show below.

3. Methods to accommodate missing data, treatment-covariate interactions
and covariate interference in CRTs

3.1 Doubly Robust Augmented IPW Generalized Estimating Equations (DR)

We extend the AUG in Equation 2 to account for missing data using the IPW in Equation 1
by subtracting from the set of GEEs the orthogonal projection of w(Y; R; A B, nu) onto
the span of scores corresponding to all smooth parametric models for the missing data
process and the treatment assignment mechanism given covariates (Tsiatis, 2006). This gives
the following estimating equation (see Web-Supplementary Material B for details):

M
0=y [Dy-,TVflVVi(XuAi’ﬂB)(Yi - Bi(X;,A:m,,))

=1

+ Z pa(l _p)liaDzT‘/i_l (BZ(XZ,Al:avnB) _p'L(ﬂ,Al:a)> B

a=0,1
M

=> ®i(Y;, Ri, Ai, Xi,8,1,,.1m,)-
i=1 @)

The D;, V;and the PS are defined such as in Equation 1, the OM denoted B{X;, A;= & 1g)

is defined for each treatment group such as in Equation 2. The estimator denoted Baug is
found by solving the estimating equation given in equation 3. Although analytic solutions
sometimes exist, coefficient estimates are generally obtained using an iterative procedure

such as the Newton-Raphson method. To get Baug we use the estimated PS (7 (X, A;,7,,))

and estimated OM (B; (X, A;,9,)). As mentioned above, treatment-covariate interactions
can be accounted for by fitting OM regressions separately by treatment group. One could
also estimate parameters of the PS model separately by treatment groups. This approach,
however, may provide less stable results due to variability in the calculation of weights. In

this paper, 9, in m;(X;, A;, 7, ) are obtained using a logistic regression and 4, in
B;(X;, A;,7,,)are obtained using a linear regression. Thus, we treat /j;and 12, as
conditionally independent given A;and X;. In the presence of correlation of Rj;and R/, one

ig
might be able to improve efficiency of estimation of rj;and therefore of the marginal
treatment effect by accounting for this correlation. Of note, estimation procedures other than
generalized linear models could also be used to compute the OM and the PS values. The DR
estimator is doubly robust in the sense that it is CAN under correct specification of either the
OM (i.e. Bij{X; A;j= a ng) = E(YjlAj= a X)) for some np) or the PS (i.e. (X, Aj nu) =
P(Rjj=1/Xj A)) for some ) (see Web-Supplementary Material Section C1).
Implementation in R is available on the CRAN in the package "CRTgeeDR’. Source code
had been made available as Web-Supplementary material. We note that in contrast with

several existing software packages (for example proc GENMOD in SAS (2015)), our
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implementation of the weighted GEE, which uses V[leL(Xi, Aim,, ) instead of

WA (X, A, )V W, (XG, Aiym,, ), guarantees consistency for all choices of
working correlation structure (see details in Web-Supplementary Material Section C2 and

D).

3.2 Variance of the DR estimator

The variance of Baug is estimated by the sandwich variance estimator. There are two external
sources of variability that need to be accounted for: estimation of 74/ for the PS and of 5z
for the OM. We denote Q = (B, nu; np) the estimated parameters of interest and nuisance
parameters. We can stack estimating functions and score functions for Q:

®,(Y;, X;,Ai,B,m,,,m,)
Uz(Q): SLVZV?(XZ Ai7ﬂwv) )
Si (X'i7Ai7ﬂB)

where 5!V and S5 represent the score equations for patients in cluster /for the estimation of
nwand ngin the PS and the OM. A standard Taylor expansion paired with Slutzky’s

theorem and the central limit theorem provide the sandwich estimator adjusted for nuisance
parameters estimation in the OM and PS. We refer to this as the nuisance-adjusted sandwich

estimator:
_ —17 ) -1
Var(Q)=E [ alggz)} E[U, @)Ul (Q)E { a({;{(zﬂ)} .
A a5
T @)

The variance estimator va7(8,,,,) is obtained by estimating unknown quantities upon

substituting empirical means for expectations and Q= (3,7, %, ) for Q. Thus, the term A,

I <M o~ A AT 1 M OU;(Q
is given byﬁzilei( )Ui(Q) and T, is given byMZiﬂ%

In small sample settings, it is likely that this estimator of the variance of Baug is biased. We
implemented Fay’s bias-correction approach, which is particularly suitable for M-estimators

(Fay et al. 2001). The term A.,,; in Equation 4 is replaced by A, given by

1M [ a s A \T
U 2ict {Hz'Ui(Q)(Hz‘Uz‘(QD ] where £, is a diagonal matrix with diagonal terms

19,9 ik 9= 0.75 is a frequently-used bound.
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3.3 Definition of covariate interference and implication for analysis

In previous sections, we discussed covariates measured on the index subject (), but other
subjects’ () covariates may also impact the outcome for the index subject. An example of a
potentially interfering covariate is described by Kaiser et al. (2011) who found a positive
association between age of partner and infection with HIV. Similarly, the characteristics of
subgroups to which the index case belongs (household, neighborhoads,...), whether known
or not, may be interfering covariates (Brumback and He, 2011). In this paper, we consider
the phenomenon of covariate interference where there exists at least one individual j* # j

such that E£(Y3|Xy) # E(Yy[ Xy, X,/ ). That is, even after all covariates for the index
subject s have been included in the model, the covariates of individuals other than the index
subject still affect the outcome of the index subject /; we refer to such covariates as
interfering covariates. See Pepe and Anderson (1994) for a similar definition in longitudinal
data and see Seaman et al. (2014); Liu and Hudgens (2014) for an analogous definition in
non-randomized clustered data in the context of confounding by cluster and interference.
Refer to Web-Supplementary Material Section A for a causal interpretation of covariate-
interference.

When interfering covariates affect either the outcome (£/(Yy|X ) # E(Y3| X5, X)) or the

missingness process (£(1y| X ;) # E(1y| Xy, X)), but not both, the DR estimator is
CAN even if the interfering covariates are not included in the models, provided that either
the PS or the OM is correctly specified. Accounting for covariate interference in the OM
increases efficiency if and only if interfering covariates predict the outcome. When such
covariates impact both the outcome and the missing data generating processes, they must be
included in either the OM or the PS models. Thus, the DR estimator is CAN if the model for
either the OM or the PS is correctly specified; i.e. either the PS or the OM includes all the
covariates X;in a model that correctly represents the data generation processes. We
acknowledge that this model for interfering covariates is not likely to be known and can be
difficult to identify. Different cluster sizes and sub-clustering structures (such as households)
may make infeasible the use of regression techniques in the OM or the PS because of the
potentially different dimensions of the individual and interfering covariates. Cluster
summary measures such as the mean or maximum of individual covariates in the cluster (or
sub-groups in each cluster) may nonetheless be useful in incorporating interference
covariates in models (Brumback et al., 2010).

4. Application

4.1 Description of the SAM study

We analyze data from the “South African Men” (SAM) study which randomized 22 pair-
matched clusters to a health-promotion intervention (control) and an HIV//STI risk-reduction
intervention in a CRT design; the study included 1181 South African men who have sex with
women. A complete description of the study design can be found in (Jemmott 11 et al.,
2014). We focus on a cross-sectional analysis of these data after one year and ignore
matching. The primary outcome of our analysis is the overall percentage of acts of protected
intercourse among the total number of acts of intercourse. When the total number of acts of
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intercourse is zero, we set the percentage to 100%, as no exposure implies no risk.
Secondary outcomes are the percentages of protected acts of intercourse by type of
partnership and type of intercourse (vaginal and anal sex with main and casual partners).
Descriptive statistics for these outcomes, including proportion of missing observations by
type of partner and intercourse are provided in Table 1. Slightly more observations are
missing in the HIV/STI intervention group (20.8% versus 17.5%). The overall protection
percentage after one year are about 64% for the HIV/STI intervention compared to 60% for
the control group.

As the proportion of missing baseline covariates was less than 0.1%, we consider them to be
MCAR and exclude observation with missing covariates from the analysis. No community
sub-structure, such as household or neighborhood structures, was described in the SAM
study. Here we consider potential interfering covariates at a cluster level by taking the mean
(or mode for qualitative variables) of baseline measures in the community:

_ 1 &
Xf:—zjzlmmXﬁ- For example Hawkes et al. (2013) demonstrated that the mean

religiggiw score for a community, defined as the mean of individual religiosity score in the
community, may have an impact on each individual outcome and missingness in particular
regarding sexual behaviors. Table 1 describes socio-demographical individual-level variables
and interfering covariates. We provide p-values for Wald tests testing the association of
covariates and treatment-covariate interactions with the outcome and the missingness
indicator. In this study, there is evidence of interactions of individual covariates with
treatment for both the outcome and the missing data generation processes. However, the
interfering covariates defined here do not appear to be significantly associated with both the

outcome and the missing data generation process.

We analyze these data with the GEE, the AUG, the IPW and the DR using both
independence (1) and exchangeable (-E) working correlation structures. Variables for the
PS, and the OM were selected using a forward stepwise regression (separately for each
treatment group) from among all the individual covariates X ;presented in Table 1. We did

not include the interfering covariates (X;) in the analysis as none impacted both outcome and
missingness processes (Table 1). We used the step function in R based on the AIC criterion.
Results of these selections are given in Web-Supplementary Material F. We describe here the
results for the primary outcome. The amount of missingness is larger in the treated arm and
increases with age; it decreases with religiosity, good health score, and exercise. The OM
patterns are substantially different for treated and control; the only common variable is the
CAGE score. In both arms lower alcohol consumption is associated with a greater
percentage of protected acts of intercourse. Results are presented in Table 2 for primary and
secondary outcomes. With the DR-E, we observe a significant difference of 7.4% (sd=2.9%,
p=0.01) in the overall percentage of protected intercourse in the HIV/STI intervention group
compared to the control group. Analyses of the secondary outcomes suggest that this result
is mainly driven by condom use during vaginal intercourse with a marital partner. The
HIV/STI intervention has no significant impact on other outcomes. Using the DR rather than
the standard GEE or the AUG has an impact on the treatment effect estimates and associated
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standard errors (SE). The difference between these approaches is apparent in the magnitude
and direction of the marginal treatment effect estimate. For example, the analysis for the
GEE-I (3.8 [-1.0; 8.5]) does not demonstrate a significant effect of the HI\V//STI intervention
on overall percentage of protected intercourse, whereas this effect is stronger and significant
for the DR-I (7.3 [1.6; 13.0]). Both the GEE-I and the AUG-I1 (5.4 [2.2; 8.7]) are probably
biased due to missing data. Using the DR instead of the IPW leads to an increased
magnitude of the treatment effect and an increased level of statistical significance: for
example, the DR-E (7.4 [1.73; 13.0]) compared to the IPW-E (3.4 [-1.4; 8.3]).

5. Simulation Studies

5.1 Properties of the DR estimator

We consider a setting with continuous outcome Yj;and assignment of treatment A;at a

cluster level with probability p= 1/2. We generate a normally distributed covariate X}j
(independent of A;) with mean 1 and a standard deviation of 5. For each individual, we

define a covariate X I. which is the mean of X! for all the subjects in the same cluster:

X}:;ijlX%. Similarly, we generate X~.4'(2,5)and Xjj~.# (3,5); X2 and X ? are
defined as was X_} and are possible interfering covariates. The model for simulation is given

in Equation 5:

Y =BG +BC A+ BP X5+ X+, Ai X 0 +¢9
logit(P(Ry=0)) =B +BM Ai+AM X L+ BMXT; +5M A; X} )

The parameters 8°=(55, 3%, 37, 8., B ) are the regressors associated with intercept,
treatment, covariate, interfering covariate, treatment-covariate interaction for the outcome

model. Parameters BV are the same for the missing data generating process. Scenarios with
low correlation among cluster (0.05) were simulated with giONC/V(o_, 0.05)and
e?ng/i/((), 1.0) for cluster and individual random errors; scenarios with high correlation (0.2)

were simulated with ¢ ~_4#7(0,0.25) and sgw (0,1.0). True correlation structure is
exchangeable. We investigate small sample (M= 10 and n;= (10, 20, 30) with probability
1/3 each) and large sample (M7= 100 and n;= (90, 100, 110) with probability 1/3 each)
properties. In each scenario, we generate 1000 replicates of datasets.

We evaluate the double robustness of the DR estimator in the setting of large and small
sample with low correlation, but similar results are observed for large correlation. We
investigate models of analysis with OM and PS correctly specified (TRUE), misspecified
(MISS) and partially specified omitting treatment-covariate interactions (NONE). Table 3
describes the data generation process, provides the formulations of the models of analysis,
and shows the results from analysis; on average, 26% of outcomes were missing and the
average ICC was 0.08. When there is no missing data, the traditional GEE is consistent
because of randomization. When outcome data are MAR but not MCAR, the GEE and the
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AUG analysis are biased (-1.7 for the GEE-1 and —1.8 for the AUG-1). When either the OM
or the PS models or both are correctly specified there is negligible estimated bias for the DR
—a finding that confirm consistency. In small samples, this bias is bigger when only the PS
is correct because the weights are estimated with lower accuracy. Using the more common

choice of implementation for the weighted GEE Wil/Q(nW )Vl-_ll/V,L-l/2 (n,,) leads to very

high bias if an exchangeable correlation structure is used (0.374 if the OM is correct and 858
if it is not, for large sample). When the OM is correct the coverage remains around 95% (see

Table 2 in Web-Supplementary Material E). Using V, ' W;( X, Ai,m,, ) inthe
implementation of weights addresses this problem and permits the use of correlation
structures other than independence. The IPW with correct PS also corrects the bias (-0.01)
but is less efficient than the DR approach; coverage is close to the nominal value of 95%. In
small samples, the empirical SE are underestimated. By contrast, in the large sample setting,
using the nuisance-adjusted sandwich estimator for the DR leads to good estimates of the
asymptotic SE (0.0263) compared to the empirical SE (0.0266) over 1000 replicates.
Moreover, we observe that the coverage using the DR is comparable to that of the GEE with
complete data. Finally, we note that when the treatment-covariate interactions are ignored in
the PS and only accounted for in the OM by fitting a different regression in each treatment
group, the DR approach is also consistent and achieve same precision as when both the PS
and the OM are correct (0.0014 and SE=0.027 for OM.TRUE.PS.NONE and 0.0013
SE=0.029 for OM.TRUE.PS.TRUE).

Table 4 presents the results of analyses with the GEE, the IPW, the AUG and the DR that
investigate the impact of correlation of the outcome in the data with small and large sample.
The average percentage of missing outcomes is 23%; the average ICC is 0.04 for low
correlation and 0.21 for high correlation. We analyzed the data using a PS and an OM model
that was fit using a stepwise variable selection from among all of the individual and
interfering covariates described above. The GEE and the AUG estimates are systematically
biased because there is no correction for missing data. The IPW is also biased because the
PS is incorrect in that it omits treatment-covariate interactions. The DR estimates are
consistent in all analyses. In small sample settings, the empirical SE is underestimated even
when using nuisance-adjusted SE, but estimation is improved by Fay’s correction.
Nonetheless, the coverage remained lower than 86%, but it improves for large samples.
Finally, when there is low correlation in the outcome, the robust SE better approximate the
empirical SE.

5.2 Simulations mimicking the SAM Study

To consider more complex settings, we mimic the SAM study (see Section 4). We simulate
the following individual-level covariates: employment (EMP~2(0.25)) marital status
(MARI~%(0.23)) age (AGE~A4"(27:7)), religiosity (REL~.47(0,0.8)), the CAGE score
(from a multinomial of probabilities CAGE~.#(0.3;0.1;0.1;0.2;0.3) for modalities 0,1,2,3
and 4), the HIV score (HIV~.4"(14:4)) and the condom knowledge score (CDM~.47(3;1)),
Interfering covariates are generated as means for quantitative variables or modes for
qualitative variables of the individual-level variables in each of the community (as was done
for X7, X2 and X3 in Section 5.1). We generate data from the model in Equation 6. In
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simulating the outcome, we add cluster random errors to create an exchangeable correlation

structure with :©~_#"(0, 5) and an individual random effects e?jNK/V(O, 4). This provides an
outcome correlation among clusters of 0.07. We analyzed the data using a PS and an OM
composed of all the covariates described above with a stepwise variable selection. Table 5
shows the bias, SE, and coverage of the methods we consider based on 1000 replicates for

the estimation of the parameter M/ =5.73. The percentage of missing outcomes is 21% and
the average empirical ICC is 0.06.

Y, = 60+40A4; — 9.0EMP; — 8.0MARI;+1.0CDM ;;+5.0REL;

Interactions

—0.5AGE; — 7.0CDM;, — 5REL; +1.0HIV; +£0+c9

covariate interference

logit| P(R;=0)] = —3.042.04,40.01ACE;; — 0.1HIV ;j+A;[—0.1AGE; — 0.2HIV ;]

Interactions

+0.02AGE; +0.2CDM; +0.2CAGE;,

covariate interference

(6)

Table 5 provides the estimates the marginal treatment effect for small sample and for the
same sample size as that of the SAM data. The GEE, the AUG and the IPW yield biased
results whereas the DR has small bias justifying its use to analyse the data even ignoring
covariate interference. Fay’s correction with coverage around 92% in small sample and 95%
in large sample achieve good accuracy. Figure 2 in Web-Supplementary Material C3
represents the histograms of estimates over the 1000 replicates together with the true value
of marginal treatment effect. It displays the bias of the GEE, the AUG and the IPW
estimators compared to the DR and supports the approximate normal distribution of the DR
estimator.

6. Discussion

We propose a doubly robust method for the estimation of the marginal effect of treatment in
CRTs with continuous data subject to rMAR — an assumption that arises because
missingness is non-monotone in CRTSs. Extension to binary or other outcomes is
straightforward, provided that there is a one-to-one link function /A such that: ;= A(X; A)).
We extend the IPW approach proposed by Robins et al. (1995) and the AUG approach for
CRTs proposed by Stephens et al. (2012). To be CAN, the DR estimator requires that either
the OM or PS model be correctly specified regardless of the choice of the working
correlation matrix. Interfering covariates can be ignored if either the OM or the PS is
correctly specified. In presence of treatment-covariate interactions, if the PS is not correctly
specified, covariates that interact with treatment on the outcome must be included in the
OM. We accommodate these treatment-covariate interactions by modeling the OM
separately for each treatment group. Covariates for the OM and the PS may be selected
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using automatic variable selection procedures such as a stepwise procedure, and may be at
the cluster level or individual level.

We recommend using VTIVVZ-(XZ-, Aji,m,, ) to ensure consistency of the IPW and the DR for

CRTs, rather than the conventional implementation, W/,;l/Q(nW)Vleil/Q(nW ), available in
several software packages of the weighted GEE. See Tchetgen Tchetgen et al. (2012) for a
similar result for longitudinal data with observation-specific weights. If a working
independence correlation structure is used, then the two implementations lead to the same

result. When Wil/Q(nW)V;*lWil/2 (n,, ) and an arbitrary correlation structure is used in the
DR, estimation of marginal treatment effect is consistent only if the OM is correctly
specified. We provide an R package called CRTgeeDR that implements the proposed DR
estimator. The application of our methods to data from the SAM study showed an effect of
HIV/STI intervention on the percentage of protected intercourse (Jemmott 111 et al., 2014)
that reached a 0.05 level of significance. Moreover, results of the analysis that distinguishes
among different types of partners and of sexual behavior may be useful in targeting future
interventions. Our approach allows a situation that we denoted covariate interference in
CRTs, and thus extends ideas of adjustment of time-varying covariates in longitudinal
responses (Pepe and Anderson, 1994; Tchetgen Tchetgen et al., 2012). Since treatment is
randomized at a cluster level and we consider a marginal mean model which only includes
treatment, the covariate interference have a different implication for analysis than exposure
interference in causal framework (Liu and Hudgens, 2014) or confounding by cluster in
observational studies (Berlin et al., 1999; Huang and Leroux, 2011). However, when there

are interactions between X7; and A;exposure and covariate interference are related; in this

case, individual //may be seen as receiving pseudo-treatment A; X7;. For such a setting, our
work may be seen as extending the notion of exposure interference in RTs to CRTs and is
related to the work of Ogburn and VanderWeele (2014). In any case, modeling covariate
interference may lead to substantial gains of efficiency if they predict the outcome.
Therefore, it may be profitable to develop methods that make use of contact network
information to inform the selection of interfering covariates. Finally the impact of violation
of the rMAR assumption required for the consistency of the DR estimates that resulted from
a MNAR missingness mechanism can be investigated by performing sensitivity analysis
(Rotnitzky et al., 1998; Vansteelandt et al., 2007).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Descriptive statistics of outcomes, sociodemographic individual covariates and interfering covariates by

intervention group in SAM study.

Table 1

Descriptive Statistics of the outcomes

HIVISTI Control group
Mean [IQR] % missing Mean [IQR] % missing

Primary outcome for percentage of protection (Y)

Overall 64% [26; 100] 20.8% 60% [22; 100] 17.5%
Secondary outcomes for percentage of protection (Y2, Y2,Y3 and Y4)

Main partner vaginal sex 61% [22; 100] 10.2% 56% [0; 100] 9.3%
Casual partners vaginal sex  68% [33; 100] 19.7% 68% [33; 100] 17.1%
Main partner anal sex 37% [0; 68] 11.2% 52% [0; 100] 8.6%
Casual partners anal sex 35% [0; 100] 15.1% 31% [0; 100] 12.8%

Descriptive Statistics of the covariates

p-value for association with

HIVISTI Control group e P(Y observed)*”
Mean [IQR] Mean [IQR] 7]20 £0 7]30 £0 né\/l £0 né” £0

Individual covariates Xj;
Age 26 [21; 30] 26.5 [21; 31] 0.41 0.13 0.03 0.18
Employment Yes 23% 26% 0.04 0.17 0.01 <0.001
Married Yes 23% 24% 0.05 0.76 0.68 0.50
Education Yes 46% 42% 0.58 <0.001 0.76 0.05
Number of children 1.5[0; 2] 1.7[0;2] 0.21 0.12 0.25 0.31
Wealth 5.3[4;7] 5.3 [4:7] 0.77 0.96 0.25 0.54
Social desirability 3.41[3.2;34] 3.4[3.2;3.4] 0.87 0.33 0.04 0.34
Religiosity 0.01[-0.7;0.7] 0.00[-0.7;0.6] 0.46 0.25 0.07 0.69
HIV/STI Knowledge 14.3[12;17] 14.1[12; 17 0.13 0.93 0.37 0.03
Condom Behaviors 3.7[3.3;4] 3.7[3.3;4.1] <0.001 0.36 0.16 0.33
Condom Knowledge 3.1[3;4] 3.1[3;4] 0.41 0.57 0.21 0.06
Condom Efficacy 3.9[3.7;4.2] 3.9[3.7;4.2] 0.01 0.31 0.97 0.42
Condom Peer norm 3.7[3.4,4.1] 3.7 [3.4;4] <0.001 0.71 0.49 0.32
Never had HIV test 20% 21% 0.61 0.80 0.74 0.34
Sexual Activity Yes 84% 84% 0.71 0.06 0.53 0.77
Eating attitude 4.2 [4;5] 4.2 [3.7;5] 0.76 0.01 0.74 0.53
Exercise Yes 43% 42% 0.99 0.04 0.12 0.46
CAGE >=2 62% 58% 0.22 0.41 0.18 0.08
Health Knowledge 10.8[9; 12] 10.6 [9; 13] 0.51 0.38 0.59 0.83
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Descriptive Statistics of the covariates

p-value for association with

HIV/STI Control group v* P(Y observed)*”
Mean [IQRI Mean [IQRI ng #0 7]30 #0 néw #0 7]31)\/[ #0
— 1
) ) Xl-:_,z 1. n Xi

Interfering covariates NG T I= M
Mean Age 26 [25;27] 27 [26;28] 0.39 0.96 0.05 0.10
Mean Education Yes 27% 8% 0.58 0.61 0.72 1.00
Mean Number of children 1.6 [1.2;2.1] 1.7[1.1;2.1] 0.81 0.67 0.14 0.59
Mean Wealth 5.4[4.4,6.2] 5.2[4.4,6.1] 0.45 0.38 0.23 0.92
Mean Social desirability 3.4[3.3;34] 3.4[3.3;34] 0.16 0.44 0.60 0.85
Mean Religiosity 0.00 [-0.1;0.1] 0.00 [-0.1;0.1] 0.84 0.70 0.18 0.94
Mean HIV/STD Knowledge 14.2 [14; 15] 13.9 [13;14] 0.37 0.23 0.01 0.45
Mean Condom Behaviors 3.7[3.6;3.8] 3.7[3.7;3.8] 0.37 0.40 0.02 0.95
Mean Condom Knowledge 3.1[2.9;3.3] 3.1[2.9;3.2] 0.52 0.21 0.15 0.32
Mean Condom Efficacy 3.9[3.7;4.0] 3.9[3.8;4.0] 0.23 0.38 0.21 0.58
Mean Condom peer norm 3.7 [3.6;3.8] 3.7[3.6;3.7] 0.23 0.52 <0.001 0.01
Mean Eating attitude 42[4.1,43] 42[4.0,4.3] 0.71 0.15 0.25 0.07
Mean Exercise Yes 76% 82% 0.43 0.53 0.10 0.82
Mean CAGE > =2 63% 37% 0.99 0.79 0.71 0.41
Mean Health Knowledge 10.7 [10.5;11] 10.6 [10.3;10.8] 0.10 0.10 0.15 0.73

"Wald test for 77? and 1730 in the regression Y:noo +7710A—|—7720X—|—7730AX

“Wald test for 3T and 37 in the regression logit| P(R=1)]=nd! 40} A4+n X +nit AX
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