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Abstract

The human mitochondrial genome is replicated by DNA polymerase γ in concert with key 

components of the mitochondrial DNA (mtDNA) replication machinery. Defects in mtDNA 

replication or nucleotide metabolism cause deletions, point mutations, or depletion of mtDNA. 

The resulting loss of cellular respiration ultimately induces mitochondrial genetic diseases, 

including mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral 

syndromes, and mtDNA deletion disorders such as progressive external ophthalmoplegia, ataxia-

neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. Here we review the 

current literature regarding human mtDNA replication and heritable disorders caused by genetic 

changes of the POLG, POLG2, Twinkle, RNASEH1, DNA2 and MGME1 genes.
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Introduction

Human mitochondrial DNA (mtDNA) occurs as a double stranded negatively supercoiled 

circular genome of 16,569 base pairs (bp) that encodes 37 genes required for energy 

production (Figure 1). Thirteen genes encode proteins required for the mitochondrial 

electron transport chain or oxidative phosphorylation (OXPHOS). The remaining 24 genes 

encode 22 transfer RNAs and 2 ribosomal RNAs required for synthesis of the 13-

mitochondrial polypeptides. A cell can contain several thousand copies of mtDNA 

distributed within hundreds of individual mitochondria [1] or within an elaborate 

intracellular network of reticular mitochondria Several proteins associate with mtDNA at 

distinct nucleoid structures on the matrix-side of the inner membrane [2], and such protein-
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mtDNA nucleoids can be visualized as foci or puncta via immunocytochemistry or live-cell 

fluorescence microscopy [3,4].

Mitochondrial disorders can be caused by genetic defects in mtDNA or in nuclear genes that 

encode proteins that function within mitochondria [5]. A class of genes specifically linked to 

instability of mtDNA has emerged over the last fifteen years (Table 1). Disorders associated 

with multiple mtDNA deletions and point mutations comprise commonly known disorders 

such as progressive external ophthalmoplegia (PEO) and ataxia-neuropathy syndromes but 

also some very rare disorders of TCA cycle abnormalities [6]. MtDNA depletion syndromes 

(MDS) include early childhood disorders such as Alpers-Huttenlocher syndrome (AHS), 

hepatocerebral syndromes, myocerebrohepatopathy spectrum (MCHS), and fatal myopathies 

[7,8]. Mutations in genes required for nucleotide biosynthesis and mitochondrial 

homeostasis are also linked to MDS and deletion syndrome (Table 1), although a 

comprehensive review is beyond the scope of this paper. Here we review the known enzymes 

and proteins comprising the human mtDNA replication machinery and briefly discuss the 

current models of mtDNA replication. Attention is focused on mtDNA maintenance 

disorders associated with mutation of genes encoding components of the mtDNA replication 

and repair machinery: POLG, POLG2, Twinkle, RNASEH1, DNA2, and MGME1 genes.

The mtDNA replisome

MtDNA is replicated and repaired by the mtDNA polymerase γ (pol γ). Human pol γ is a 

heterotrimer consisting of one 140-kDa catalytic subunit (p140 encoded by POLG) and a 

110-kDa homodimeric processivity subunit (p55 accessory subunit encoded by POLG2), 

Figure 1 and Figure 2. The p140 catalytic subunit harbors active sites for 5′-3′ DNA 

polymerase, 3′-5′ exonuclease, and 5′ dRP lyase activities [9,10]. The p55 imparts high 

processivity onto the holoenzyme by increasing the binding affinity to DNA [4,11]. The 

majority of intermolecular contacts occur between the C-terminal region of the ‘proximal’ 

p55 monomer (purple in Figure 2) and the AID subdomain (Accessory-Interacting 

Determinant subdomain that extends an an ‘arm’ around p55) of the p140 catalytic subunit 

[12–15]. Pol γ functions in conjunction with a number of additional replisome components 

including: 1) topoisomerase, 2) Twinkle mtDNA helicase, 3) mitochondrial RNA 

polymerase (mtRNAP), 4) RNaseH1, 5) mitochondrial single-stranded DNA-binding protein 

(mtSSB), and 6) mitochondrial DNA ligase III, (Figure 1). Other factors critical for 

maintenance of the mitochondrial genome include: the multifunctional mitochondrial 

transcription factor A (TFAM) with important roles in mtDNA replication and packaging, 

the RecB-type mitochondrial genome maintenance 5′-3′ exonuclease 1 (MGME1), the 

RNA and DNA 5′ flap endonuclease (FEN1), and the helicase/nuclease, DNA2 [16–18]. 

MGME1, FEN1, and DNA2 have all been implicated in the mtDNA base excision repair 

(BER) pathways [19]. Interestingly, DNA2 has also been demonstrated to stimulate pol γ 
activity and co-localizes with Twinkle in the mitochondrial nucleoid, suggesting an 

important role in the replisome [20,21]. Most all DNA polymerases start DNA synthesis by 

extension of an RNA primer that is synthesized by a primase. In mitochondria primase 

function is afforded by the mitochondrial RNA polymerase (mtRNAP) [22]. Recently the 

translesion DNA polymerase-primase, PrimPol, was identified in mitochondria isolated from 

a human embryonic kidney cell line [23]. Translesion DNA polymerases are specialized 
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enzymes that pass through DNA damage. However, PrimPol is likely required for mtDNA 

repair and not for mtDNA replication, as PRIMPOL−/− knockout mice are viable. Of note to 

human genetic disease, mutation of PRIMPOL is associated with the ocular disorder high 

myopia [24,25].

Overview of human mtDNA replication

Replication of animal cell mtDNA is complex and slow, taking approximately one hour to 

synthesize both daughter strands [26]. An asymmetric mode of replicating animal mtDNA 

daughter strands was proposed in the 1970s [27]. In this strand displacement model of 

mtDNA replication, two origins of replication direct the replisome to initiate continuous 

DNA synthesis but initiation is temporally regulated at these locations [26]. First, daughter 

heavy (H) strand synthesis is initiated at the H-strand origin of replication (OH) located 

within the control region (Figure 1). The two mtDNA strands are named heavy and light (L) 

based on the ability to separate them on alkaline cesium chloride buoyant density gradients 

[28]. To initiate nascent H-strand synthesis pol γ must add nucleotides to the 3′-end of an 

existing RNA primer and in human mitochondria these RNA primers occur at very low 

frequency [26]. This low frequency implies that either primers are removed very quickly or 

another initiation mechanism takes place. Evidence supporting the role of human mtRNAP 

as the mtDNA primase comes from the identification of primers located adjacent to nascent 

displacement-loop (D-loop) H-strands isolated from human KB cell mitochondria [29] and 

from in vitro experiments demonstrating that mtRNAP has primase activity [22]. MtRNAP 

directs polycistronic transcription from H- and L-strand promoters located in the mtDNA 

control region (Figure 1). The 5′-end of RNA primers have been mapped to the L-strand 

promoter and, therefore, likely serve to initiate mtDNA replication at OH [29]. Support for 

RNA priming of mtDNA synthesis comes from observations that replicating mtDNA 

obtained from mouse embryonic fibroblasts, and lacking RNase H1, retain unprocessed 

primers at replication [30].

According to the strand displacement model when H-strand synthesis is two-thirds of the 

way complete L-strand synthesis is initiated at OL, the L-strand origin of replication. The 

template H-strand OL sequence is predicted to adopt a stem-loop structure that is recognized 

by mtRNAP [31]. OL-dependent initiation has been faithfully reconstituted in vitro and 

mtRNAP initiates primer synthesis from a poly-dT stretch located within the single-stranded 

region of the stem-loop [31]. Recent experiments utilizing mitochondria isolated from 

human HeLa cells demonstrated there are sufficient in vivo levels of mtSSB to cover the 

displaced parental H-strand during mtDNA replication and mtSSB specifically restricts the 

initiation of nascent L-strand synthesis to OL [32]. Furthermore, exploiting 

immunoprecipitation and DNA sequencing, mtSSB was demonstrated to bind exclusively to 

the H-strand and there is a gradient of high to low mtSSB occupancy from immediately 

downstream of OH in the control region towards OL, in a clockwise direction, Figure 1 [32]. 

This observation supports the hypothesis that mtSSB stabilizes the H-strand when displaced 

during replication. Before termination of daughter strand replication, the two mtDNA must 

segregate to avoid catenation. A recent study of human breast cancer and osteosarcoma cell 

lines has determined that the type IIA topoisomerase, Top2α is the most prevalent human 

mitochondrial gyrase critical for decatenation of mtDNA circles during replication and 
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relaxation of positive supercoils introduced during transcription and mtDNA replication 

[33].

Another model termed the bootlace model posits that processed RNA transcripts are 

“threaded” onto the displaced H-strand in a 3′-5′ direction and remain hybridized until they 

are displaced, degraded or further processed during the replication cycle [34]. Thus, the 

bootlace model suggests that formation of single-stranded sections of H-strand could be 

prevented. Advantages of mtDNA harboring an H-strand duplexed with mtRNA include: 

increased genomic stability due to the ability to repair single H-strand breaks annealed to 

RNA, protection of the H-strand from base damage, and providing the information for 

mtDNA repair, as pol γ is proficient in performing single-nucleotide reverse transcription 

[35].

Of the two models, recent evidence using ChIP-seq mapping of the mtSSB to the displaced 

loop and the retention of primers at the two origins in RNaseH1 deficient cells clearly points 

to the strand-displacement model as the more favored model of mtDNA replication.

Disorders of POLG, the catalytic subunit of the human mtDNA polymerase 

γ

In 2001, Van Goethem et al. published a seminal paper describing 4 mutations in the POLG 
gene associated with progressive external ophthalmoplegia (PEO) [36]. To date, there are 

nearly 300 pathogenic mutations in POLG (http://tools.niehs.nih.gov/polg/) [6,37–40], 

Figure 3. POLG disorders are very polymorphic in regard to the timing of presentation, 

organ-systems affected and overall symptoms. These disorders are currently defined by at 

least six major phenotypes of neurodegenerative disease that include: AHS, MCHS, 

myoclonic epilepsy myopathy sensory ataxia (MEMSA), the ataxia neuropathy spectrum 

(ANS), autosomal recessive PEO (arPEO), and autosomal dominant PEO (adPEO) 

[7,8,41,42]. Also, alteration of the (CAG)10 repeat in the 2nd exon of POLG has been 

implicated in male infertility, testicular cancer, and Parkinsonism [8]. The POLG gene is 

unique in regard to the number of pathogenic mutations spread out over the gene and by the 

variety of diseases that they cause.

PEO is a mitochondrial disorder associated with mtDNA deletions and point mutations 

[36,43–45]. PEO is characterized by late onset (between 18 and 40 years of age) bilateral 

ptosis (sometimes initially unilateral), progressive weakening of the external eye muscle 

(ophthalmoparesis), proximal muscle weakness and wasting, and exercise intolerance. The 

disease is often accompanied by cataract, hypogonadism, dysphagia, hearing loss and may, 

within several years, lead to development of neuromuscular problems [43,46]. Neurological 

problems may include depression or avoidant personality [47]. Skeletal muscles of PEO 

patients present ragged red fibers and lowered activity of respiratory chain enzymes. AdPEO 

mutations in POLG are generally found in very conserved residues within the active site of 

the p140 DNA polymerase domain [48], while recessive PEO mutations are spread 

throughout the gene.
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Alpers syndrome typically occurs as an autosomal recessive mtDNA depletion disorder that 

affects children and young adults. It is a devastating disease characterized by psychomotor 

retardation, hepatic failure, and intractable seizures, as well as tissue-specific mtDNA 

depletion. Alpers patients rarely survive past 10 years of age.

In an attempt to understand the disease progression and severity, biochemical and genetic 

analysis of POLG mutations have provided a useful understanding of the defects as well as 

the ability to predict the recessive or dominant nature of mutations. Structures of the pol γ 
trimer (3.2 Å resolution), the pol γ-DNA complex bound to 2′-3′-dideoxycytidine 

triphosphate (3.3 Å), and the pol γ-DNA complex bound to deoxycytidine triphosphate (3.5 

Å) have been solved by Yin and coworkers, Figure 2 [14,15]. These structures reveal 

asymmetric binding of the dimeric processivity subunit with the catalytic subunit, providing 

valuable insight into our understanding of the p140-p55 subunit interface. The catalytic 

subunit partially extends an ‘arm’, known as the AID subdomain around p55 (Figure 2). In 

the structures of the replication complexes, p55 rotates by 22° toward the p140 polymerase 

domain but does not alter the interface between p140 and the proximal p55 monomer. 

However, the distal p55 monomer becomes 16 Å closer, resulting in a substantial 

enhancement of the inter-subunit contacts between p140 and the distal monomer. 

Collectively these differences contribute to a dynamic p140-distal p55 interface that may 

permit greater regulation of the DNA polymerase and 3′-5′ exonuclease functions, as 

compared to the subunit interface in the 3.2 Å pol γ structure. Analysis of the structure-

function relationship of Alpers mutations has revealed that recessive mutations cluster 

within five distinct functional modules in the pol γ catalytic subunit [49]. This clustering can 

serve as a diagnostic tool to evaluate the consequence of new POLG mutations.

A study of unrelated families with two mutant POLG alleles reported that A467T is the most 

common POLG disease mutation [40]. G848S, W748S, and T251I-P587L mutations are the 

second, third, and fourth most common POLG disease alleles, respectively. A467T is 

commonly associated with Alpers, PEO, and ataxia-neuropathy. Biochemical studies of the 

A467T p140 variant demonstrated reduced template binding, lower processivity and ~4% 

activity [50,51]. Furthermore, this residue results in compromised p55 interaction [52]. The 

A467 residue is located in a hydrophobic center of the thumb subdomain and the T467 

hydroxyl group substitution may interrupt the local hydrophobicity of this region as 

previously suggested [49].

With a single exception, all dominant POLG mutations that cause PEO map to the 

polymerase domain of pol γ. Three of the substitutions, H932Y, R943H and Y955C, change 

side chains that interact directly with the incoming dNTP [48,53]. These enzymes retain less 

than 1% of the WT polymerase activity and display a severe decrease in processivity [48], 

characteristics that likely cause the severe clinical presentation in heterozygotes. In addition, 

the Y955C substitution increases nucleotide misinsertion errors 10- to 100-fold in the 

absence of exonucleolytic proofreading [54], and the Y955C pol γ displays relaxed 

discrimination during incorporation of 8-oxo-dGTP or translesion synthesis opposite 8-oxo-

dG [55]. A mouse transgenic model with the Y955C POLG allele targeted to the heart 

resulted in cardiomyopathy, loss of mtDNA, and enlarged hearts [56]. These experiments 
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strongly suggest that large reductions in pol γ polymerase activity are sufficient to cause 

mitochondrial dysfunction that is central to POLG-related disease.

Disorders of POLG2, the mtDNA polymerase γ p55 processivity subunit

The first POLG2 mutation described (c.1352G>A; p.G451E) was identified in a late onset 

PEO patient with multiple mtDNA deletions in muscle and ptosis [57]. Biochemical 

experiments revealed that the G451E p55 homodimer completely failed to stimulate pol γ 
due to an inability to bind p140 [57,58]. The second case also involved a late onset adPEO 

patient with mtDNA deletions and harbored a c.1207–1208ins24 mutation, causing mis-

splicing and skipping of exon 7, thus impairing the C-terminal domain required for enzyme 

processivity [38].

Seven more novel heterozygous mutations in POLG2 were identified in a cohort of 112 

patients suspected of POLG involvement but lacking POLG mutations [58]. Recombinant 

homodimeric proteins harboring these alterations were assessed for stimulation of processive 

DNA synthesis, binding to the catalytic subunit, binding to dsDNA and self-dimerization 

[58,59]. In this analysis, G103S, L153V, D386E and S423Y displayed wild-type behavior, 

while P205R and R369G had reduced stimulations of processivity. The L475DfsX2 variant 

was unable to bind the p140 catalytic subunit [58,59].

Because currently identified POLG2 patients harbor heterozygous mutations, and because 

monomers within the p55 homodimer do not readily dissociate, the patients should harbor a 

mixture of p55 molecules: 25% WT homodimers, 25% variant homodimers, and 50% 

heterodimers [4]. Using a tandem affinity strategy and biochemistry to study p55 

heterodimers we showed that one p55 disease variant, G451E, is dominant negative and 

associates with a wild-type p55 monomer in pol γ to poison the enzyme’s activity. These 

results are in agreement with previous observations, that homodimeric G451E substitutions 

are located in critical regions of both monomers that interact with p140 [15] and that these 

substitutions result in decreased processivity due to compromised p55-p140 subunit 

interaction [57,58].

In contrast to the WT/G451E p55 heterodimer, L475DfsX2, P205R, and R369G p55 

heterodimers maintain WT levels of processivity in vitro. However, the P205R and 

L475DfsX2 p55 disease variants failed to localize to mitochondrial nucleoids in vivo when 

tagged with GFP. Furthermore, homogenous preparations of P205R and L475DfsX2 formed 

aberrant reducible multimers in vitro. This suggests that abnormal protein folding or 

aggregation or both contribute to the pathophysiology in patients harboring these mutations. 

Lastly, bioenergetics analysis in HEK293 cell lines stably expressing mutant p55 proteins 

utilizing the Seahorse Extracellular Flux Analyzer demonstrated significant decreases in 

reserve respiratory capacity [4]. We predict that the various defects associated with p55 

disease variants ultimately result in diminished cellular energy reserves and by extension 

mitochondrial disease.

While the catalytic subunit has been shown to be essential for embryo development [60], 

genetic data regarding the processivity subunit has been lacking in mammalian systems. To 
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address the role of POLG2 in vertebrates we generated heterozygous (Polg2+/−) and 

homozygous (Polg2−/−) knockout (KO) mice [61]. Polg2+/− mice are haplosufficient and 

developed normally with no discernable difference in mitochondrial function through 2 

years of age. In contrast, Polg2−/− mice were embryonic lethal at day 8.0–8.5 p.c. with 

concomitant loss of mtDNA and mtDNA gene products. This finding was similar to the 

POLG KO mouse [60]. Electron microscopy demonstrated severe ultra-structural defects 

and loss of organized cristae in mitochondria of the Polg2−/− embryos as well as an increase 

in lipid accumulation compared with both WT and Polg2+/− embryos. This data indicates 

that p55 and p140 function is essential for mammalian embryogenesis and mtDNA 

replication.

Disorders of Twinkle, the mtDNA helicase

The mitochondrial replicative helicase, referred as the Twinkle helicase, is encoded by the 

Twinkle gene (also known as PEO1 or C10orf2) and was originally identified by Spelbrink 

and co-workers in 2001 [62]. Electron microscopy and small angle X-ray scattering were 

recently utilized to examine the structure of Twinkle and revealed it forms hexamers and 

heptamers of variable conformation [63]. Missense mutations in Twinkle co-segregate with 

mitochondrial disorders such as adult-onset PEO, hepatocerebral syndrome with mtDNA 

depletion syndrome, and infantile-onset spinocerebellar ataxia. Screening of Twinkle in 

individuals with adPEO, associated with multiple mtDNA deletions, identified 11 different 

mutations that co-segregated with the disorder in 12 affected families [62]. At least 23 

additional missense mutations in Twinkle associated diseases have been reported in adPEO 

[64,65]. Although mutations in Twinkle are mainly associated with adPEO, several reports 

have described recessive mutations as a cause of either epileptic encephalopathy with 

mtDNA depletion or infantile-onset spinocerebellar ataxia [66–68].

Expression of this protein in baculovirus, purification, and characterization has verified that 

Twinkle functions as a 5′-3′ DNA helicase and its activity is stimulated by mtSSB [69]. 

Furthermore, when the core replisome components are combined in an in vitro reaction 

(containing pol γ p140 + pol γ p55, Twinkle, and mtSSB) the reconstituted system 

efficiently utilize dsDNA mini-circle templates to synthesize ssDNA molecules greater than 

15,000 nucleotides in length, about the size of human mtDNA [70]. Overexpression of 

dominant disease variants of the mtDNA helicase in cultured human or Schneider cells 

results in stalled mtDNA replication or depletion of mtDNA [71–73], which emulates the 

disease state. Two of five adPEO mutants exhibited a dominant negative phenotype with 

mtDNA depletion in Schneider cells [72]. Disease mutations in the linker region were shown 

to disrupt protein hexamerization and abolish DNA helicase activity [74]. Four mutations in 

the N-terminal domain demonstrated a dramatic decrease in ATPase activity [75].

A comprehensive study of 20 recombinant disease variants overproduced and purified from 

Escherichia coli has reveled mild to moderate defects in helicase activity and ATP hydrolysis 

[37]. Utilizing optimized in vitro conditions some of the 20 variants also displayed partial 

reductions in DNA binding affinity and thermal stability. Such partial defects are consistent 

with the delayed presentation of mitochondrial diseases associated with mutation of the 

Twinkle gene.
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A mouse model of Twinkle deficiency has been produced by transgenic expression of a 

Twinkle cDNA with an autosomal dominant mutation found in patients [76,77]. These mice 

developed progressive respiratory chain deficiency at 1 year of age in skeletal muscle, 

cerebellar Pukinje cells, and hippocampal neurons. The affected cells accumulated multiple 

mtDNA deletions. These ‘Deletor’ mice recapitulates many of the symptoms associated with 

PEO and provides a useful model for further study.

Disorders of RNASEH1

A recent study by Reyes et al. examined three families with recessive inheritance patterns 

consistent with affected individuals harboring causative homozygous or compound-

heterozygous mutations [78]. Whole-exome sequencing revealed mutations in the 

RNASEH1 gene. RNASEH1 encodes the nuclear and mitochondrial isoforms of RNaseH1 

endoribonuclease, which hydrolyze RNA strands in RNA-DNA hybrids containing a stretch 

of at least four ribonucleotides [79]. Two in-frame methionine codons are located at the 5′-

end of the gene and translation from the first produces RNaseH1 harboring a MTS that 

localizes it to the mitochondria while the second targets RNaseH1 to the nucleus [79,80]. All 

of the mitochondrial disease-associated amino acid substitutions map within the RNaseH1 

catalytic domain. Recombinant disease variants harboring these substitutions had 

significantly reduced endoribonuclease activity relative to WT RNaseH1. Two patients from 

two separate families were found to harbor compound-heterozygous mutations and four 

other affected siblings from a third family were found to harbor identical homozygous 

substitutions. All affected individuals presented with chronic PEO and exercise intolerance 

in their twenties. As the disorder progressed they also exhibited muscle weakness, 

dysphagia, impaired gait coordination, dysmetria and dysarthria. Muscle biopsies revealed 

impaired mitochondrial respiratory chain complexes as well as ragged-red and COX-

negative fibers. Presumably, virtually all damage was mitochondrial genomic alterations in 

these patients (and in RNASEH1 KO mice [80]) due to a compensatory function of nuclear 

RNaseH2, which is not found within the mitochondrion.

Disorders of DNA2, Dna2 Helicase/nuclease

While mutations in POLG are the major cause of mtDNA-deletion, disorders diagnosis is 

typically only achieved in about half of the cases. In a cohort of patients suffering from 

childhood- and adult-onset mtDNA-deletion disorders, Ronchi and co-workers identified 

mutations in the gene encoding the mitochondrial helicase/nuclease DNA2 [81]. Human 

Dna2 localizes to both the nucleus and to mitochondria and is required for mtDNA and 

nuclear DNA maintenance [21]. Dna2 participates in the mtDNA long-patch BER pathway 

(LP-BER) and the LP-BER machinery repairs small lesions such as those induced by 

oxidative damage. The four patients identified in this study harbored heterozygous DNA2 
mutations associated with hallmark mtDNA-deletion disease molecular and histochemical 

defects, mtDNA deletions and COX-negative muscle fibers respectively [81]. Recombinant 

forms of these Dna2 disease variants were determined to alter enzymatic nuclease, helicase, 

and ATPase activities and therefore, theoretically could compromise the LP-BER machinery 

in vivo.
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Disorders of MGME1, MGME1 RecB-type exonuclease

Homozygous nonsense mutations in the MGME1 gene were identified in several individuals 

with severe, recessive multi-systemic mitochondrial disorder from two families [17]. 

MGME1 encodes a mitochondrial RecB-type exonuclease of the PD-(D/E)XK nuclease 

superfamily. Cellular fractionation indicated mitochondrial localization and protease-

resistance for the native protein, and confocal microscopy convincingly demonstrated 

mitochondrial localization of a GFP-tagged recombinant form. Patient samples exhibited 

partial deletion and depletion of mtDNA, and the postulated direct involvement of MGME1 

in the maintenance of mtDNA and turnover of prematurely terminated 7S DNA replication 

intermediates is quite compelling. Indeed, MGME1 null patient fibroblasts depleted of 

mtDNA by continuous culturing in the presence of 2′, 3′-dideoxycytidine (ddC) failed to 

repopulate their mtDNA upon release from ddC. The accumulation of mtDNA replication 

intermediates in HeLa cells subjected to MGME1 siRNA was clearly demonstrated by 2D 

native agarose gel electrophoresis, further supporting a role for MGME1 in maintenance of 

mtDNA replication in vivo. Preliminary qualitative characterization revealed the 

recombinant enzyme cleaves DNA but not RNA, requires a free 5′-end to a nucleic acid 

substrate, and prefers ssDNA over dsDNA in vitro [17].

Conclusions

Many unresolved issues exist in our understanding of mitochondrial syndromes. POLG 
disorders are especially polymorphic and the question remains as to why some organs and 

tissues affected in mitochondrial disease and not others? Does mtDNA mutation, deletion, 

and depletion play a role in tissue specific effects? What role do mtDNA polymorphisms 

play in mitochondrial disease? Do environmental toxicants influence these disorders? These 

questions are important areas for future research endeavors and will pave the way to 

understand disease pathophysiology and eventually to design therapies for treatment. It is 

clear that nuclear genes functioning in maintenance of mtDNA are commonly altered alleles 

in mitochondrial disease. Disorders of mtDNA stability are found in core proteins of 

mtDNA replication or in genes involved in supplying the mitochondrial nucleotide 

precursors needed for DNA replication (Table 1). With current next generation sequencing 

techniques, and our awareness of current disease causing mutations in these genes, the 

incidence of identified variants in mitochondrial patients will continue to increase with 

molecular screening. As an example, the number of individuals harboring a recessive 

pathogenic mutation in POLG has been estimated to approach 2% in the population [82]. 

However, the varied polymorphic nature of these diseases, as well as the age of presentation 

due to these gene mutations, stumps our understanding and challenges clinicians and 

researchers. Why do individuals with certain POLG mutations present early with a 

devastating disorder, while others with the same POLG mutations present much later in life? 

Continued in vitro biochemistry and model systems, such as yeast, tissue culture, and mice, 

are essential to understanding the consequence of these mutations and to predict the in vivo 
consequences of newly identified mutations within these genes.
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Figure 1. 
Map of the human mitochondrial genome and the mtDNA replication fork. The outer circle 

represents the 16,569 bp covalently closed circular double-stranded mtDNA. 

Counterclockwise from the top of the circle: Grey, control region including the heavy-strand 

origin of replication (OH) and the displacement-loop (D-loop); Green; 12 and 16 S rRNA; 

Blue, NADH dehydrogenase (ND) 1 and 2; Red, cytochrome oxidase (COX) I and II; 

Yellow, ATPase 8 and 6; Red, COX III; Blue, ND 3, 4L, 4, 5, 6; Purple, cytochrome b. The 

D-loop form of mtDNA is a triple-stranded structure that results from the template-directed 

termination of H-strand synthesis soon after initiation resulting in mtDNA molecules with 

nascent H-strand annealed to them [83]. Recent evidence supports that the loading of the 

Twinkle helicase at the 3′-end of the D-loop is reversible, indicating that this site is critical 

to regulating the switch between formation of D-loop molecules and initiation of mtDNA 

replication [84]. Black rectangles represent the 22 tRNA genes. The inset illustrates the 

replisome at an area near the light-strand origin (OL) of replication located within the 

WANCY cluster of genes, which encode for tryptophan, alanine, asparagine, cysteine, and 

tyrosine tRNAs. Black lines represent template mtDNA while green lines represent nascent 

mtDNA. Main factors highlighted at the replication fork include: 1) the 5′-3′ DNA 

polymerase pol γ 2) the enzyme topoisomerase (Topo) required for mtDNA unwinding 

ahead of the replication fork. The phospodiester backbones of both mtDNA strands are 

enzymatically broken and rejoined allowing relaxation of positive supercoils introduced 

ahead of the replisome during replication fork elongation, 3) the hexameric replicative 

Twinkle mtDNA helicase required for ATP-dependent disruption of the hydrogen bonds that 

hold the two DNA strands together causing mtDNA duplex denaturation (strand separation), 
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4) mitochondrial RNA polymerase (mtRNAP) required for mitochondrial transcription as 

well as for RNA primer formation to initiate DNA replication, 5) RNaseH1 required for 

RNA primer removal [31,70,85], 6) mitochondrial single-stranded DNA (ssDNA) binding 

protein (mtSSB) required for ssDNA stabilization during mtDNA replication, 7) DNA ligase 

III (mtLigIII) required for mtDNA break (nick) sealing, 8) mitochondrial transcription factor 

A (TFAM), 9) mitochondrial genome maintenance 5′-3′ exonuclease 1 (MGME1), 10) flap 

endonuclease (FEN1), and 11) the helicase/nuclease, DNA2.
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Figure 2. 
DNA polymerase γ ternary structure. The p140 catalytic subunit consist of: 1) an amino 

terminal domain (NTD, light grey), 2) an exonuclease domain (exo, dark grey), 3) a spacer 

domain comprised of an intrinsic processivity (IP) subdomain (yellow) plus the accessory-

interacting determinant (AID) subdomain (orange), and 4) a DNA polymerase (pol) domain, 

which folds to resemble a “right-hand” comprised of three subdomains: the thumb (green), 

fingers (dark blue), and palm (red). The p55 processivity subunit dimer is comprised of the 

proximal monomer (purple) and the distal protomer, light blue. The DNA primer strand is 

colored red while the template strand is colored pink. The figure was generated using UCSF 

Chimera and the published 3.3 Å crystal structure PDB ID 4ZTU; Szymanski et al. [15].
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Figure 3. 
Schematic diagram of POLG, the human DNA polymerase γ catalytic subunit gene, and the 

linear sequence of the p140 amino acid residues. Amino acid substitutions encoded by 

POLG disease mutations are listed on the linear map and p140 domains and subdomains are 

color coded as in Figure 2.
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Table 1

Nuclear genes identified in mitochondrial patients that affect mtDNA stability*

Gene Disorder Chromosomal locus Function

mtDNA replication and repair

POLG PEO/Alpers/ataxia 15q25 Pol γ catalytic subunit

POLG2 PEO 17q Pol γ processivity subunit

Twinkle (PEO1 or C10orf2) PEO/ataxia 10q24 MtDNA helicase

RNASEH1 PEO/ataxia 2p25 Mitochondrial and nuclear RNaseH1 [78]

DNA2 PEO 10q21.3–22.1 Mitochondrial and nuclear helicase/nuclease [81]

MGME1 PEO, MtDNA depletion 20p11.23 RecB type exonuclease

Maintaining dNTP pools

ANT1 PEO 4q35 Adenine nucleotide translocator

rTP MNGIE 22q13.33 Thymidine phosphorylase

DGUOK MtDNA depletion 2p13 Deoxyguanosine kinase

TK2 MtDNA depletion 16q22–23.1 Mitochondrial thymidine kinase

SUCLA2 MtDNA depletion 13q14.2 ATP-dependent Succinate-CoA ligase

SUCLG1 MtDNA depletion 2p11.2 GTP-dependent Succinate CoA ligase

RRM2B MtDNA depletion 8q23.1 p53-Ribonucleotide reductase, small subunit

MPV17 MtDNA depletion and deletion 2p23.3 Mitochondrial inner membrane protein

ABAT MtDNA depletion 16p13.2 4-aminobutyrate aminotransferase [86]

Mitochondrial homeostasis and dynamics

OPA1 Dominant optic atrophy 3q29 Dynamin related GTPase

MFN2 Recessive optic atrophy 1p36.22 Mitofusin 2 [87]

FBXL4 MtDNA depletion, Encephalopathy 6q16.1–16.3 Mitochondrial LLR F-Box protein

*
Additional references for genes listed in the table can be found in the text of this article and in reference [88].
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