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Transposable elements (TEs) are mobile genetic elements, highly
enriched in heterochromatin, that constitute a large percentage of
the DNA content of eukaryotic genomes. Aging in Drosophila mel-
anogaster is characterized by loss of repressive heterochromatin
structure and loss of silencing of reporter genes in constitutive
heterochromatin regions. Using next-generation sequencing, we
found that transcripts of many genes native to heterochromatic
regions and TEs increased with age in fly heads and fat bodies. A
dietary restriction regimen, known to extend life span, repressed
the age-related increased expression of genes located in heterochro-
matin, as well as TEs. We also observed a corresponding age-associ-
ated increase in TE transposition in fly fat body cells that was delayed
by dietary restriction. Furthermore, we found that manipulating
genes known to affect heterochromatin structure, including overex-
pression of Sir2, Su(var)3–9, and Dicer-2, as well as decreased expres-
sion of Adar, mitigated age-related increases in expression of TEs.
Increasing expression of either Su(var)3–9 or Dicer-2 also led to an
increase in life span. Mutation of Dicer-2 led to an increase in DNA
double-strand breaks. Treatment with the reverse transcriptase inhib-
itor 3TC resulted in decreased TE transposition as well as increased
life span in TE-sensitized Dicer-2mutants. Together, these data sup-
port the retrotransposon theory of aging, which hypothesizes that
epigenetically silenced TEs become deleteriously activated as cel-
lular defense and surveillance mechanisms break down with age.
Furthermore, interventions that maintain repressive heterochroma-
tin and preserve TE silencing may prove key to preventing damage
caused by TE activation and extending healthy life span.
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There is mounting evidence that preservation of the epigenetic
structure of chromatin is important to maintaining healthy

aging, and loss of this chromatin structure may be a hallmark of
the aging process (reviewed in ref. 1). In aging yeast, cells lose
characteristic silencing in heterochromatic regions, resulting in
deleterious age-related consequences such as sterility, and replica-
tive life span is regulated by the histone H4K16 acetylation mark (2,
3). In Caenorhabditis elegans, genetic manipulation of chromatin
factors affecting histone methylation and acetylation directly affect
life span (4). In Drosophila, the integrity of constitutive repressive
heterochromatin declines with age at both the genomic and cellular
level (5), with one consequence of these changes being an age-re-
lated loss of gene silencing in repressive constitutive heterochro-
matin regions in multiple tissues of the fly (6). In mice, changes in
epigenetic chromatin marks are seen with age, and age-related
phenotypes of behavior, memory, and learning are observed on
genetic manipulation of certain histone marks (1). A breakdown in
heterochromatin organization has also been observed during repli-
cative senescence of human cells in culture, with expression and
copy number of transposable elements (TEs) increasing (7, 8).
TEs are mobile genetic elements that make up a large per-

centage of eukaryotic genomes and that are particularly enriched

in regions of heterochromatin (reviewed in ref. 9). Because TEs
function by either excising or copying themselves from the ge-
nome and integrating into new genomic locations, there is a
high potential for deleterious effects on cellular function. Over-
expressing TE RNAs is sufficient to cause cytotoxicity, and
inhibiting expression of these TEs causes reversal of both se-
nescence and cytotoxic phenotypes (10, 11). TE activation has
been observed with age in mice (8, 12), as well as C. elegans (13),
yeast (14), Drosophila (15, 16), and senescent human tissue culture
cells (7).
To combat the genomic threat of activation of TEs and loss of

heterochromatic gene silencing, somatic cells have evolved mecha-
nisms to suppress TE transcription, primarily through establish-
ment and maintenance of repressive heterochromatin at TE sites
(17). In Drosophila, the small interfering RNA (siRNA) pathway,
through the proteins Dicer-2 and Argonaute 2 (AGO2), recruits the
histone H3K9 methyltransferase Su(var)3–9 to catalyze formation
of repressive heterochromatin at TE sites (18–20). Mutation of Dicer-
2, the double-stranded RNase responsible for generating siRNAs,
results in TE reactivation and heterochromatin disorganization (19,
20). The RNA-editing enzyme ADAR (adenosine deaminase act-
ing on RNA) is thought to modify the effectiveness of siRNA-
directed heterochromatinization, and therefore the efficacy of
TE silencing, by editing the dsRNA substrates used for siRNA
biogenesis, thereby preventing proper processing by Dicer-2
(21). Sir2/Sirt1, the founding member of the sirtuin family of
proteins, is a protein deacetylase important in maintaining gene
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silencing in heterochromatin regions of yeast and flies through
deacetylation of specific histone lysines required for establishment
and spreading of heterochromatin (3, 6, 22). Increasing Sir2 ex-
pression has been shown to repress the normal age-related loss of
gene silencing in heterochromatin regions in both yeast and flies
(3, 6), as well as the loss of gene silencing seen in mammalian
embryonic stem cells undergoing genotoxic stress (23). In addition
to their roles in heterochromatin formation and maintenance, these
pathways have also been linked to aging. Decreasing activity of the
siRNA pathway through Ago2 and Dicer-2 mutants leads to de-
repression of TE activity and shortened life span (15, 24). Sir2 has a
central role in aging, with increased gene dosage shown to extend
life span in yeast (2) and in nine of 10 studies in nematodes and flies
(25–28). Hypomorphs of Adar, a negative regulator of the siRNA
pathway, also exhibit an extension of life span (21). These pathways
share an ability to affect heterochromatin formation and life span.
Here we report a characterization of the heterochromatic tran-

scriptome in adult Drosophila tissues and show activation of TEs
and increased transposition with age. We provide evidence that the

aging process is characterized by a failure to properly control and
repress expression of heterochromatin-based genes and TEs in the
soma. We show that genetic interventions positively modifying het-
erochromatin structure or negatively modulating TE activity extend
metazoan life span. Finally, we show that attenuating TE ac-
tivity pharmacologically decreases transposition and extends life span
in Dicer-2 mutants. This study offers the first comprehensive char-
acterization of the effect of known life span-extending interventions
on heterochromatic regions and explores new interventions for
controlling age-associated TE reactivation.

Results
Expression of Genes Located Within Heterochromatin Increases with
Age and Is Attenuated Under Dietary Restriction. Because hetero-
chromatic regions change in structure with age, specifically in
female heads and fat bodies (5), we reasoned that genes located
within these regions may also show changes in silencing or gene
expression with age. We used RNA-seq to assay the expression of the
∼250 genes natively located within the Drosophila heterochromatin
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Fig. 1. DR attenuates age-related loss of silencing
in heterochromatin genes and TEs. (A and B) Heat
map shows log2 fold change (old/young) values for
heterochromatin genes in both (A) heads and (B) fat
bodies. (Left) Log2 fold change under HC conditions.
(Right) Log2 fold change under DR. Heat map shows
genes with log2 fold changes greater than 0.263
(1.2× fold change) under HC conditions that are lo-
cated within annotated heterochromatin regions
(29). Ninety-five percent of shown genes in heads
and 89% in fat bodies are suppressed by DR. (C and
D) Heat map shows log2 fold change (old/young) of
TE expression for both HC (Left) and DR (Right) diet
in both (C) heads and (D) fat bodies. Heat map
shows TEs with log2 fold changes greater than 0.322
(1.25× fold change) under HC conditions. Eighty-
seven percent of shown TEs were suppressed by DR
in both heads and fat bodies.
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compartments (29) from young (10 d) and old (40 d) female fly heads
and fat bodies. The vast majority of cells in the head are neurons and
glial cells. The fly fat body is the functional homolog of mammalian
adipose tissue and liver, and a central organ in the fly immune sys-
tem. We found a number of genes located in heterochromatic re-
gions increased expression with age in both wild-type heads and fat
bodies (Fig. 1 A and B). Gene ontology analysis reveals no sig-
nificantly enriched pathways among these genes, suggesting the
age-related increase in expression of these genes is likely to be a
consequence of loss of heterochromatic silencing, rather than a
specific compensatory or correlative response tied to aging.
Dietary restriction (DR) is an intervention known to extend

life span and delay numerous age-related phenotypes. We pre-
viously observed that DR can oppose age-related loss of gene
silencing of reporter genes in constitutive heterochromatin (6).
On this basis, we examined whether the age-dependent increase
in expression of native genes in the constitutive heterochromatin
regions were also suppressed under a DR regimen. The vast ma-
jority (95% in heads, 89% in fat bodies) of heterochromatin genes
that increased expression with age on high-calorie food increased
less or decreased in expression with age on DR food [high calorie
(HC) vs. DR] in both heads (Fig. 1A) and fat bodies (Fig. 1B).
Although we observed a similar fraction of euchromatin genes that
increased expression with age, this pattern of suppression by DR
was not maintained in the most highly up-regulated euchromatin
genes (Fig. S1 A and B), suggesting DR has a selective effect on
heterochromatin genes. Similar to previous studies using reporter
genes in both yeast (2) and flies (6), these data suggest that gene
expression in heterochromatic regions becomes dysregulated with
age, and that a known life span-extending intervention, DR, can
prevent this.

TE Expression Increases with Age and Is Attenuated Under DR.One of
the most notable attributes of heterochromatin is the abundant
enrichment of TEs within these regions. The Drosophila genome
is rich in retroviral-like long terminal repeat (LTR) and long
interspersed nuclear elements (LINEs) (30), and activation of
both LINEs and LTRs has been observed in the fly nervous system
and fat body during aging (15, 16). Because heterochromatin in-
tegrity declines with age in multiple model systems (1), we hy-
pothesized that a loss of heterochromatin in regions highly enriched
with TEs would show a correlated increase in TE expression with
age. To test this hypothesis, we examined the expression profile of
TEs with age and diet in female fly heads and fat bodies, using
whole transcriptome RNA-seq. Similar to our observations for
native heterochromatin genes, we also found many TEs that in-
creased their expression with age, in both heads and fat bodies
(Fig. 1 C and D). We observed a high degree of overlap in the TEs
that increased expression most with age between these two tissues,
most of which were retrotransposons (Fig. S2A). In both tissue
types, as observed with the heterochromatin genes, DR attenu-
ated the age-related increase in expression observed in HC food
(Fig. 1 C and D, right “DR” columns). TEs that had the highest
increase in expression with age on HC food tended to increase
less or even decrease in expression with age under DR conditions
(87% lower in DR relative to HC in both heads and fat bodies;
Dataset S1). These data suggest that, similar to reporter genes in
heterochromatin (2, 6) and native heterochromatin genes (Fig. 1 A
and B), TE silencing is lost with age, and DR opposes this.

TE Transposition Increases with Age and Is Delayed by DR. An age-
dependent increase in TE expression and transposition in the
Drosophila brain associated with decline in neural function has
been reported (15). Similar increases in TE expression levels and
copy numbers have been observed in aging mouse tissue (8). To
assay for age-related transposition in our flies, we used the gypsy-
TRAP reporter system (15). This system is designed such that
green fluorescent protein (GFP) becomes expressed when an

endogenous gypsy retrotransposon jumps into an engineered site
containing known hotspot sequences from the ovo locus (31). We
monitored flies as they aged and visually sorted them into either
low, medium, or high categories based on the number of GFP-
positive cells observed in the fat body (Fig. 2A). Longitudinal fly
cohorts were assayed for transposition every 7 d on either HC
or DR foods (Fig. 2B). We observed a clear age-associated in-
crease in transposition, and DR delayed this increase relative to HC
controls (Fig. 2 B and C). Similar results were seen in two additional
genetic backgrounds (Fig. S3 A–D). We examined the life spans of
these three different genetic background gypsy-TRAP lines and
observed that life span correlated with the timing of increased
transposition. Lines exhibiting earlier transposition showed shorter
life span, and those with later transposition longer life span
(Fig. S3E). Similarly, the delay in age-related transposition
resulting from DR correlated with the ability of DR to extend life
span in each line. To ensure the increased GFP expression we
observed with age was caused by transposition rather than age-
related disruption in the GAL80/GAL4/GFP reporter system, we
examined a gypsy-TRAP line with a mutant ovo locus not sus-
ceptible to transposition and observed no significant increase in
GFP expression with age (Fig. S3F). Rather than a constant linear
increase in GFP expression with time, the gypsy-TRAP assay
showed a clear age-associated increase in TE mobilization, consis-
tent with the TE theory of aging, which posits an age-related loss of
normal cellular surveillance mechanisms and consequent increase in
deleterious TE activity. The relationship between the timing of in-
creased gypsy transposition and life span further supports TE mo-
bilization as an age-associated phenomenon.
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Fig. 2. DR delays age-related increase in TE transposition. (A) Gypsy-TRAP flies
(genotype: w1118; If/+; r4-GAL4, UAS-GFP/tub-ovo-GAL80) were categorized as
low (<20 GFP-positive cells), medium (20–100), or high (>100) based on number
of GFP-positive cells observed in fat body (representative images shown). The
demarcation between low and medium categories is clear; most flies have ei-
ther fewer than 10 cells staining, or more than 50. (Scale bar, 200 μm.) (B)
Percentage of observed flies falling into each category at indicated points for
HC (Top) and DR (Bottom) diets (n = ∼120 per cohort). (C) Transposition (de-
fined here as medium- or high-category GFP staining) increases with age and is
delayed by DR. Percentage of flies falling into either medium or high categories
is displayed with time for both HC and DR diets. Log-rank P < 10−10.
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Age-Related Increases in TE Expression Are Attenuated by Genetic
Interventions That Affect Heterochromatin Structure. Our data dem-
onstrate a correlation between changes in heterochromatin struc-
ture with age and expression and transposition of TEs during normal
aging. This led us to examine whether genetically manipulating
heterochromatin structure and maintenance, either directly or
indirectly, could also affect the age-related changes in expres-
sion of TEs. To test our hypothesis, we genetically increased the
activity of two important systems that maintain repressive het-
erochromatin in somatic cells: the siRNA pathway and Sir2. Using
transgenic fly lines, we increased gene dosage of Sir2, Dicer-2, and
Su(var)3–9 and also used an Adar hypomorph, interventions we
expect to stabilize heterochromatin. Each of these genes offers a
unique and complementary approach to simultaneously manipu-
lating heterochromatic regions and enhancing TE silencing.
We assayed age-dependent loss of silencing of TEs in each of

these various transgenic [Sir2, Su(var)3–9, and Dicer-2] or hypo-
morphic (Adar) fly lines compared with their respective controls.
The TEs that showed the greatest increase in expression with age
in the control lines were overwhelmingly attenuated or decreased
with age by these genetic interventions [Fig. 3 A–D; Sir2, 72%;
Adar, 84%, Su(var)3–9, 92%; Dicer-2, 68%]. Interestingly, we again

observed significant overlap in the TEs that increased with age
among the different genetic backgrounds (Fig. S2B). Together,
these data suggest that increased expression of Sir2, Dicer-2, or Su
(var)3–9, as well as decreased gene dosage of Adar, all prevent the
age-related loss of silencing of TEs observed in wild-type and con-
trol lines, suggesting a common link between heterochromatin fac-
tors and proper maintenance of TE silencing.
TE activation is known to disrupt gene expression and destabilize

the genome. Increased DNA damage has been observed in aging fat
body nuclei, as assayed by γH2Av immunostaining (16). Our finding
of a repression of TE expression with increased Dicer-2 expression
led us to investigate whether genomic integrity was similarly com-
promised in animals with disrupted RNAi/heterochromatin path-
ways and increased TE activity. Similar to depletion of AGO2 in fat
body cells (16), we observed an increase in double-strand breaks in
Dicer-2 mutants compared with controls in fat body nuclei (Fig.
S4A), suggesting deleterious genomic consequences when proper
TE silencing is disrupted.

Genetic Interventions That Affect Heterochromatin Structure Also Affect
Life Span. In addition to their effects of delaying age-related het-
erochromatin gene and TE silencing loss, both increased Sir2
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Fig. 3. Manipulation of genes in heterochromatin
pathways affects TE expression. Heat maps of log2

fold change (old/young) of TEs for the following gen-
otypes and their respective controls: (A) elav-Gen-
eSwitch > UAS-EP2300 (Sir2 overexpression); (B) Adar
hypomorph vs. wild-type; (C) Su(var)3–9 overexpression
[SV2 and SV3 lines overexpress Su(var)3–9 from a
basally expressed UAS promoter 160–180% above
control; Fig. S4B]; and (D) tubulin-GeneSwitch >
UAS-Dicer-2 (Dicer-2 overexpression). (Left) Control
condition. (Right) Transgenic, hypomorph, or RU486-
induced condition. The percentage of shown TEs that
are suppressed by the indicated genotype are
(A) 72%, (B) 84%, (C) 92%, and (D) 68%. All TEs with
log2 fold change (old/young) greater than 0.322 (1.25×
fold change) in the control condition are shown.
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expression and decreased Adar expression have been shown to ex-
tend life span in flies (21, 25), whereas Dicer-2 and Ago2 mutants
are short-lived (15, 24). Given our findings presented earlier, we
examined whether increased expression of Su(var)3–9 or Dicer-2
also have a positive effect on life span. We found that two different
Su(var)3–9 transgenic lines, SV2 and SV3, which constitutively in-
crease Su(var)3–9 expression to 160–180% of the wild-type level in
the absence of a driver (Fig. S4B), extend life span significantly
compared with their genetically matched control (Fig. 4A). Simi-
larly, increasing Dicer-2 expression in adult life in either all tissues
(Fig. 4B) or selectively in adult neurons (Fig. 4C), using the condi-
tional inducible GeneSwitch system, was able to extend life span,
with flies fed the gene-activating drug RU486 outliving a genetically
identical control cohort fed only the diluent control EtOH. Together
with previously published data (21, 25), these observed life span
extensions suggest a coordinated response integrating maintenance
of heterochromatin structure, TE suppression, and longevity.

Pharmacological Suppression of Transposable Element Activity Delays
Age-Related Transposition and Extends Life Span. To test whether
the age-related effects we observed were a result of increased TE
activity, we sought to directly modulate transposition pharmaco-
logically. We used the reverse transcriptase inhibitor lamivudine
(3TC) to directly block TE transposition. Using the gypsy-TRAP
reporter system in the fat body, we observed that flies treated with
3TC had a significant delay in age-related transposition compared
with controls (Fig. 5A). This effect was observed whether the drug
was administered constantly throughout life (Fig. 5A) or started
during midadulthood at 20 d of age (Fig. S4C).
As our evidence suggests that maintenance of TE silencing is

important for ensuring longevity, we tested whether attenuating TE
activity directly could extend life span. In the Dicer-2L811fsX mutant

background, which exhibits high levels of TE activity because
of defective RNAi silencing (32), we found that administra-
tion of 3TC was able to extend life span significantly compared
with controls (Fig. 5B). Together, these data suggest that het-
erochromatin-altering pathways that extend life span may do so
at least in part by suppressing TE activity to ensure healthy
longevity, and confirm that suppression of TE activation is
likely to be an attractive target mechanism for pharmacological
intervention.

Discussion
Aging is characterized by a breakdown in homeostasis through-
out multiple cellular and organismal systems. Genomic and epi-
genomic stability is vital for somatic cells to maintain proper gene
expression and silencing. A number of studies have shown changes
in chromatin structure during organismal aging in various model
systems, especially in heterochromatin (1, 2). Although hetero-
chromatin regions contain some genes, a likely reason for the
central importance of maintaining repressive heterochromatin is
that heterochromatin is replete with TEs, and unchecked TE ac-
tivation has particularly damaging ramifications for genomic sta-
bility. Indeed, the expression and mobilization of TEs is disruptive
enough that cells have evolved RNAi pathways responsible for
silencing and preventing TE activation. These cellular defenses
against TE activation include siRNA-directed induction and
maintenance of repressive heterochromatin to prevent TE ex-
pression, and degradation of target transcripts. siRNA pathway
mutants exhibit both an activation of TEs and a shortening of life
span (15, 24). Here we provide evidence that many heterochro-
matin genes and TEs do in fact increase expression with age in two
different tissues. Increased transposition has been previously
reported in the aging fly brain (15). Similarly, we also observe an
increase in somatic TE transposition with age in the fat body.
DNA double-strand breaks increase with age in the fat body (16),
and we show this DNA damage also accumulates at a younger age
in Dicer-2 mutant flies with high levels of TEs. The age-related
increase in TE transcript levels as well as TE mobilization were
suppressed by DR. Together, these data suggest that an increase in
TE expression and transposition is an important hallmark of so-
matic aging, and preventing this increased TE activity is likely to
preserve genomic stability and cellular homeostasis.
We demonstrate in a whole organism model that aging is as-

sociated with a loss of silencing of both TEs and genes natively
located in heterochromatin regions, with a resultant increase in
TE mobilization and an associated increase in DNA damage. It
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is highly likely that the pathways and processes of heterochro-
matin maintenance, RNAi, and gene and TE silencing represent
potential homeostatic failure points that lead to the phenotypes
of aging. Here we have also presented genetic evidence that
these pathways are linked to aging, as manipulating the expres-
sion of several genes involved in maintaining heterochromatin
structure, TE silencing, and RNAi efficacy directly suppresses
age-related TE expression as well as extends life span. Further-
more, we show that DR, an environmental intervention that
extends life span robustly and delays most age-related pheno-
types, also opposes the loss of silencing we observe during nor-
mal aging and delays age-dependent transposition, further
lending support to the idea that these processes are associated
with and may be relevant to aging. We also demonstrate that
inhibition of retrotransposon activity is strongly correlated with
extension of life span. Our data support the retrotransposon theory
of aging model, where proper maintenance of silent heterochro-
matin and prevention of TE activation are key to guaranteeing ge-
nomic stability and homeostasis during aging and ensuring healthy
longevity. Furthermore, our demonstration that dietary (DR), ge-
netic, and pharmacological interventions that reduce the age-related
increases in TE activity can also extend life span suggests new and
novel pathways for the development of interventions designed to
extend healthy life span.

Materials and Methods
Gypsy-TRAP Assay. Flies from the gypsy-TRAP line were aged for 5 d and
initially examined for the number of GFP-positive cells, then examined every
7 d until age 49 d, using a fluorescent dissecting microscope. Flies were
separated into three categories based on visual inspection, according to how
many fat body cells were GFP positive: low (<20 cells), medium (20–100 cells),
and high (>100 cells). The same cohort of flies was examined longitudinally
throughout each of the experiments.

RNA-seq. Total RNA from the indicated genotypes was collected from
∼100 fly heads or ∼50 dissected fat bodies, using the miRvana RNA prep

kit (Ambion). Then, 100 ng total RNA was used as input for stranded
RNA-seq library construction, using the Ovation Universal RNA-seq kit
(Nugen) with Drosophila rRNA depletion module. Libraries were sequenced
on an Illumina HiSEq. 2500 in 1 × 50 bp mode. All samples were prepared
using at least three individually isolated biological replicates for each
condition.

Bioinformatics. Standard RNA-seq analysis was performed using Tophat 2.0
for sequence alignment, followed by gene-based counting using the easy-
RNASeq R package from Bioconductor. Finally, trimmed mean of M-values
(TMM) normalization and fold change calculation was performed using
edgeR, with a generalized linear model (GLM) correcting for batch effects,
as described in the edgeR vignette. To account for repetitive sequencing
reads and perform TE quantification, RepEnrich (33) was used to generate a
count table of reads for each TE, and edgeR was used to normalize, calculate
fold changes, and perform differential expression testing. The Repbase an-
notation was used as input for RepEnrich.

Heat maps were generated by ranking the TEs or genes in order of log2

fold change of expression with age (old/young) for the reference (control/
HC) condition and then plotting log2 fold change with age for all conditions.
To show consistent trends in our data and include genes/TEs that behaved
consistently but did not meet the threshold of statistical significance, we
displayed genes or TEs where log2 fold change was greater than 0.322 (1.25×
fold; TEs) or 0.263 (1.2x fold; heterochromatin genes). Plots were generated
using the heatmap.2 function in the gplots2 R package.

See SI Materials andMethods for additional details on fly stocks andmethods.
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