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Microorganisms are the most abundant lifeform on Earth, medi-
ating global fluxes of matter and energy. Over the past decade,
high-throughput molecular techniques generating multiomic se-
quence information (DNA, mRNA, and protein) have transformed
our perception of this microcosmos, conceptually linking microor-
ganisms at the individual, population, and community levels to a
wide range of ecosystem functions and services. Here, we develop
a biogeochemical model that describes metabolic coupling along
the redox gradient in Saanich Inlet—a seasonally anoxic fjord with
biogeochemistry analogous to oxygen minimum zones (OMZs).
The model reproduces measured biogeochemical process rates as
well as DNA, mRNA, and protein concentration profiles across the
redox gradient. Simulations make predictions about the role of
ubiquitous OMZ microorganisms in mediating carbon, nitrogen,
and sulfur cycling. For example, nitrite “leakage” during incomplete
sulfide-driven denitrification by SUP05 Gammaproteobacteria is pre-
dicted to support inorganic carbon fixation and intense nitrogen
loss via anaerobic ammonium oxidation. This coupling creates a
metabolic niche for nitrous oxide reduction that completes denitri-
fication by currently unidentified community members. These results
quantitatively improve previous conceptual models describing micro-
bial metabolic networks in OMZs. Beyond OMZ-specific predictions,
model results indicate that geochemical fluxes are robust indicators
of microbial community structure and reciprocally, that gene abun-
dances and geochemical conditions largely determine gene expres-
sion patterns. The integration of real observational data, including
geochemical profiles and process rate measurements as well as meta-
genomic, metatranscriptomic and metaproteomic sequence data, in-
to a biogeochemical model, as shown here, enables holistic insight
into the microbial metabolic network driving nutrient and energy
flow at ecosystem scales.
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Microbial communities catalyze Earth’s biogeochemical cycles
through metabolic pathways that couple fluxes of matter

and energy to biological growth (1). These pathways are encoded
in evolving genes that, over time, spread across microbial lineages
and today shape the conditions for life on Earth. High-throughput
sequencing and mass-spectrometry platforms are generating
multiomic sequence information (DNA, mRNA, and protein)
that is transforming our perception of this microcosmos, but
the vast majority of environmental sequencing studies lack a
mechanistic link to geochemical processes. At the same time,
mathematical models are increasingly used to describe local- and
global-scale biogeochemical processes or predict future changes in
global elemental cycling and climate (2, 3). Although these models
typically incorporate the catalytic properties of cells, they fail to

integrate the information flow fromDNA to mRNA, proteins, and
process rates as described by the central dogma of molecular bi-
ology (4). Hence, a mechanistic framework integrating multiomic
data with geochemical information has remained elusive.
Recent work based on metagenomics and quantitative PCR

(qPCR) suggests that biogeochemical processes may be de-
scribed by models focusing on the population dynamics of indi-
vidual genes (5, 6). In such gene-centric models, genes are used
as proxies for particular metabolic pathways, with gene pro-
duction rates being determined solely by the Gibbs free energy
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released by the catalyzed reactions. Although compelling, these
models stop short of incorporating the entire central dogma of
molecular biology, and therefore do not achieve a truly quanti-
tative integration of multiomic information and geochemical
processes. For example, although such models allowed for a
qualitative comparison between modeled gene production rates
and selected transcript profiles, they do not provide any explicit
mechanistic links (5). The absence of a quantitative validation
against process rate measurements or other proxies for activity
(e.g., proteins) leaves the adequacy of gene-centric models as a
description for microbial activity unsubstantiated.
Here, we construct a gene-centric model for Saanich Inlet, a

seasonally anoxic fjord on the coast of Vancouver Island, Canada
(7) and a tractable analog for the biogeochemistry of oxygen
minimum zones (OMZs). OMZs are widespread and expanding
regions of the ocean, in which microbial community metabolism
drives coupled carbon, nitrogen, and sulfur cycling (8, 9). These
processes exert a disproportionately large influence on global N
budgets, with resulting feedbacks on marine primary productiv-
ity and climate (10, 11). Extensive time-series data collection in
Saanich Inlet provides an opportunity to interrogate biogeochem-
ical processes across defined redox gradients extensible to coastal
and open ocean OMZs (12, 13). Our model explicitly describes
DNA, mRNA, and protein dynamics as well as biogeochemical
reaction rates at ecosystem scales. To calibrate and validate our
model, we use geochemical depth profiles; rate measurements for
N cycling processes; and metagenomic, metatranscriptomic, and
metaproteomic sequence data as well as qPCR-based abundance
estimates for SUP05 Gammaproteobacteria—the dominant deni-
trifiers in Saanich Inlet (14), all obtained from a single location in
Saanich Inlet in early or mid-2010.

Construction and Calibration of a Gene-centric Model
A recurring cycle of deep water renewal and stratification in
Saanich Inlet results in an annual formation of an oxygen-
depleted (O2) zone in deep basin waters (Fig. 1B). As this OMZ
slowly expands upward during spring, anaerobic carbon reminerali-
zation in the underlying sediments leads to an accumulation of

ammonium (NH+
4 ) and hydrogen sulfide (H2S) at depth (15). The

oxidation of sulfide using nitrate produced through nitrification in
the upper water column fuels chemoautotrophic activity and
promotes the formation of a narrow sulfide–nitrate transition zone
(SNTZ) at intermediate depths (12, 16, 17).
Our model describes the dynamics of several genes involved in

carbon, nitrogen, and sulfur cycling across the Saanich Inlet re-
dox gradient. Each gene is a proxy for a particular redox pathway
that couples the oxidation of an external electron donor to the
reduction of an external electron acceptor. The model builds on
a large reservoir of previous work that provides conceptual in-
sight into the microbial metabolic network in Saanich Inlet (12–14,
16–18) and includes aerobic remineralization of organic matter
(ROM), nitrification, anaerobic ammonium oxidation (anammox),
and denitrification coupled to sulfide oxidation (Fig. 1A). Certain
pathways found in other OMZs, such as aerobic sulfide oxidation
(19), dissimilatory nitrate reduction to ammonium (DNRA), (20)
and sulfate reduction (5), were excluded from our model based on
information from previous studies (12–14, 16–18) as well as pre-
liminary tests with model variants (as explained below). Reaction
rates (per gene) depend on the concentrations of utilized me-
tabolites according to first- or second-order (Michaelis–Menten)
kinetics (21). In turn, the production or depletion of metabolites
at any depth is determined by the reaction rates at that depth. The
production of genes is driven by the release of energy from their
catalyzed reactions and proportional to the Gibbs free energy
multiplied by the reaction rate (22).
The model was evaluated at steady state between 100- and

200-m depth. Accordingly, free parameters were calibrated using
geochemical profiles obtained in early 2010 during a period of
intense water column stratification, which resulted in an exten-
sive anoxic zone that approached a steady state (Fig. 2 and SI
Appendix, Section S2.7). After calibration, most residuals to the
data are associated with an upward offset of the predicted SNTZ
(Fig. 2 B, C, and F) and an underestimation of nitrous oxide
(N2O) concentrations in deep basin waters (Fig. 2E). These resid-
uals can be explained by subtle deviations from a steady state. Such
deviations were revealed in subsequent time-series measurements,

A B
POM

Fig. 1. Metabolic network and selected time-series data. (A) Coupled carbon, nitrogen, and sulfur redox pathways considered in the model: Aerobic reminer-
alization of organic matter (ROM), aerobic ammonia oxidation (amo), aerobic nitrite oxidation (nxr), and anaerobic ammonia oxidation (hzo), as well as sulfide-
driven partial denitrification to nitrous oxide (PDNO) and reduction of nitrous oxide (nosZ) coupled to hydrogen sulfide oxidation. Depth profiles of all shown
substrates, except for particulate organic matter (POM), were explicitly modeled; POM concentrations were fixed (more details are in Materials and Methods).
Major taxonomic groups encoding specific pathways are indicated. (B) Water column oxygen (O2), nitrate (NO−

3 ), and hydrogen sulfide (H2S) concentrations
measured at Saanich Inlet station SI03 from January 2008 to December 2011. The shaded interval and the dates at the bottom indicate the chemical measurements
that were used for model calibration. The vertical white line marks the time of molecular sampling. The model considers depths between 100 and 200 m.
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during which the SNTZ continued to migrate upward in the
water column (Fig. 2).

DNA Profiles and Process Rates
The calibrated model makes predictions about gene abundance
and process rates, which can be validated using metagenomic
sequence data and N process rate measurements from the same
location and period as the geochemical calibration data (Fig. 3).
Consistent with metagenomic depth profiles, the model predicts
a redox-driven partitioning of pathways across the water column.
Genes associated with ROM (ABC transporters mapped to
dominant aerobic heterotrophs), aerobic ammonium oxidation
to nitrite [ammonia monooxygenase (amo)], and aerobic nitrite
oxidation to nitrate [nitrite oxidoreductase (nxr)] decline pre-
cipitously in deep basin waters, whereas genes associated with
partial denitrification to nitrous oxide [PDNO; represented by
nitric oxide reductase (norBC)], nitrous oxide reduction [nitrous
oxide reductase (nosZ)], and anammox [hydrazine oxidoreduc-
tase (hzo)] are most abundant in the SNTZ (Fig. 3).
The similarity of the PDNO, nosZ, and hzo gene profiles is in-

dicative of their strong metabolic interaction (Fig. 3A). In partic-
ular, the co-occurring peaks of PDNO and nosZ gene abundances
in the absence of N2O accumulation (Fig. 2E) reflect a quantitative
coupling between the two denitrification steps and imply that both
steps support extensive microbial growth at the SNTZ. This cou-
pling is intriguing, because genomic reconstructions from both
uncultivated and cultivated SUP05, the dominant denitrifier in
Saanich Inlet, have not identified the nosZ gene (14, 17, 23).
The absence of nosZ from SUP05 suggests that incomplete
nitrate reduction by SUP05 and reduction of nitrous oxide by
unidentified community members constitute separate and com-
plementary metabolic niches in Saanich Inlet under low-oxygen
and anoxic conditions (24).
The superposition of electron donor–acceptor pairs in redox

transition zones supports chemical energy transfer in stratified
water columns (25, 26), and previous studies have revealed rel-
atively high cell abundances and chemoautotrophic activity in
such zones (12, 27, 28). At the SNTZ in Saanich Inlet, the si-
multaneous availability of NO−

3 and H2S fuels chemoautotrophic

nitrate reduction coupled to sulfide oxidation, in turn supplying
anammox with NO−

2 via “leaky” denitrification (up to 88% of
NO−

2 supplied by PDNO) (SI Appendix, Section S2.11). Most of
the NH+

4 used by anammox (0.3 mmol ·m−2 · d−1), however, is
predicted to originate from the underlying sediments and reach
the SNTZ via eddy diffusion. Accordingly, both anammox and
denitrification rates are predicted to peak around the SNTZ and
lead to production of N2. This prediction is consistent with
process rate measurements from discrete depth intervals during
subsequent cruises in 2010 (Fig. 3B) as well as elevated SUP05
abundances at the SNTZ (Fig. 3A) (estimated via qPCR). In fact,
the good agreement between predicted PDNO gene counts and
observed SUP05 abundances suggests that energy fluxes associated
with denitrification can be accurately translated to denitrifier growth
rates. Predicted peak sulfide-driven denitrification rates are
somewhat higher than peak anammox rates, although depth-
integrated nitrogen loss rates are comparable for both pathways
(∼ 0.3 mmol−N2 ·m−2 · d−1). These predictions are partly consis-
tent with rate estimates derived directly from the geochemical
profiles using inverse linear transport modeling (ILTM) (details
in Materials and Methods and Fig. 3B). Hence, near steady-state
conditions, coupled sulfide-driven denitrification and anammox can
concurrently drive significant nitrogen loss in the water column.
The fraction of NO−

2 leaked during denitrification, compared
with the total NO−

3 consumed (LPDNO = 0.352) (SI Appendix,
Section S2.3), was calibrated as a free model parameter based on
the observed geochemical profiles. Such a high NO−

2 leakage may
result from an optimization of energy yield under electron donor
limitation. Additional experimental work is needed to determine
the mechanisms controlling this leakage by SUP05. Heterotro-
phic denitrification and nitrification are conventionally thought
of as the primary sources of both nitrite and ammonium for
anammox in OMZs (20, 29), and so far evidence for a direct
coupling between sulfide-driven denitrification and anammox
has been scarce (28). Our results indicate that incomplete sul-
fide-driven denitrification can be an important precursor for
anammox, particularly under conditions of organic carbon limi-
tation (30). This coupling and the benthic supply of ammonium
lead to a substantial departure of the fraction of total nitrogen

CBA

FD E

Fig. 2. Measured and predicted geochemical profiles. (A) Oxygen, (B) ammonium, (C) nitrate, (D) nitrite, (E) nitrous oxide, and (F) hydrogen sulfide con-
centrations, as predicted by the calibrated model at steady state (thick blue curves). Dots indicate data used for the calibration measured during cruise 41 (cr.
41) on January 13, 2010 (SI041_01/13/10; □), cr. 42 (SI042_02/10/10; ♢), and cr. 43 (SI043_03/10/10; △). Oxygen profiles were not available for cr. 41 and cr. 43;
hence, data from cr. 44 (SI044_04/07/10; *) were used instead. Thin black curves indicate data measured during cr. 47 (SI047_07/07/10), shortly before deep
water renewal. Details on data acquisition are in SI Appendix, Section S1.
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loss via anammox in Saanich Inlet (∼ 50 %; predicted at steady
state) from previous predictions based on labile organic matter
stoichiometry (∼ 28 %) (31).
Steady-state gene production rates for chemoautotrophic

pathways are predicted to peak around the SNTZ, reaching
∼ 3.2× 106   genes ·L−1 · d−1. This gene production rate cor-
responds to a dark carbon assimilation (DCA) rate of
∼ 60  nmol−C ·L−1 · d−1, assuming a carbon:dry weight ratio of
0.45 (32) and a dry cell mass of m= 5× 10−13   g (22). Previously
measured peak DCA rates in the Saanich Inlet OMZ reached
2  μmol−C ·L−1 · d−1 (16), which is significantly higher than the
values predicted here. The potential activity of pathways not
considered here, such as heterotrophic or mixotrophic inorganic
carbon assimilation (33), may explain some of these differences.
Moreover, the model assumes steady-state conditions, whereas
redox conditions were far from steady state during previous
DCA measurements (16). Transient dynamics in Saanich Inlet
can exhibit significantly higher nitrogen fluxes and chemoauto-
trophic activity (34), which might further explain discrepancies
between the model and measured DCA rates. Accounting for
chemoautotrophic productivity based on oxidant and reductant

supply in redox transition zones is generally difficult because of
limited knowledge on active pathways, the possibility of cryptic
nutrient cycling, and potential lateral substrate intrusions, and
discrepancies similar to our study are frequently reported for other
OMZs (35–38). Hence, fully accounting for measured DCA rates
remains an unresolved problem with important implications for
carbon cycling in OMZs.
Previously detected amino acid motifs similar to those found

in proteins catalyzing DNRA suggested that SUP05 may also be
providing NH+

4 to anammox through DNRA (14). DNRA, not
included in the model, is known to fuel anammox in anoxic
sediments and water columns (20, 39). So far, incubation ex-
periments have not revealed any DNRA activity in Saanich Inlet,
and measured ammonium profiles do not indicate a significant
ammonium source at or below the SNTZ (Fig. 2B). Nevertheless,
DNRA could be active in Saanich Inlet and remain undetected
because of rapid ammonium consumption by anammox (39). An
extension of the model that included DNRA as an additional
pathway, which we calibrated to the same geochemical data
(January to March 2010), predicted negligible DNRA rates com-
pared with denitrification and anammox and consistently converged

A

B

Fig. 3. Molecular and rate profiles. (A) Predicted DNA, mRNA, and protein concentrations for ROM, amo, nxr, norBC, hzo, and nosZ genes (thick curves)
compared with corresponding metagenomic, metatranscriptomic, and metaproteomic data (circles; February 10, 2010). The dashed curve under PDNO genes
(row 1, column 4) shows concurrent qPCR-based abundance estimates for SUP05, the dominant denitrifier in Saanich Inlet. (B) Denitrification and anammox
rates predicted by the model (thick blue curves) compared with rate measurements (circles) during cruise (cr.) 47 (SI047_07/07/10) and cr. 48 (SI048_08/11/10) as
well as rates estimated from geochemical concentration profiles using ILTM (SI Appendix, Section S5). The ILTM estimates calibration (calibr.) in columns 3 and
6 is based on the same geochemical data as used for model calibration (Fig. 2).
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to the same predictions as the simpler model. These results suggest
that DNRA may be absent from the Saanich Inlet water column—
at least near steady-state conditions in late spring—and that the
hydroxylamine-oxidoreductase homolog encoded by SUP05 plays
an alternative role in energy metabolism (17, 24).
DNA concentration profiles of anammox and denitrification

genes appear more diffuse and are skewed toward deep basin
waters compared with their corresponding rate profiles and the
SNTZ (Fig. 3). The model explains this apparent discrepancy
based on turbulent diffusion and sinking, which transport genes
away from their replication origin. Hence, community composi-
tion at any depth is the combined result of local as well as
nonlocal population dynamics. Metabolic flexibility encoded in
the genomes of microorganisms mediating these processes may
also contribute to broader distributions of individual genes than
their predicted activity range (30). This disconnect between local
metabolic potential and activity needs to be considered when
interpreting metagenomic profiles in a functional context, es-
pecially in environments with strong redox gradients, such as
OMZs (9) or hydrothermal vents (6).
The concentration maxima of anammox and denitrification

genes are predicted at shallower depths than measured (Fig. 3A).
This observation is consistent with the upward offset of the pre-
dicted SNTZ and highlights an important limitation of steady-
state models applied to dynamic ecosystems. Indeed, process rate
maxima predicted via ILTM at multiple time points continue to
move upward beyond the time interval used for model calibration
(Fig. 3B). In reality, an electron donor/electron acceptor interface
as narrow as predicted by the model would only develop after
sufficient time for transport processes and microbial activity to
reach a true steady state. Such narrow interfaces do appear in
permanently stratified meromictic lakes (40) or the Baltic Sea,
where stagnation periods can persist for many years (30).

mRNA and Protein Profiles
Metatranscriptomics and metaproteomics present powerful
means to assess community metabolic activity—rather than just
metabolic potential—and each method comes with its own set of
advantages (14, 41). For example, although transcripts represent
immediate proxies for gene up-regulation (e.g., in response to
changing redox conditions), proteins reflect the immediate cat-
alytic potential of a community, and in vitro characterization of
enzyme kinetics can facilitate the projection of protein abun-
dances to in situ process kinetics (42). Transcript abundances
need not always correlate strongly with protein abundances (for
example, in cases of translational control or protein instability)
(42, 43), and hence, metatranscriptomics and metaproteomics
provide different perspectives on community activity. Hence, a
systematic evaluation of the consistency between these alterna-
tive layers of information in real ecosystems is warranted. In fact,
a unifying mechanistic model describing the processes that
control environmental mRNA and protein distributions is crucial
for the correct interpretation of multiomic data in relation to
biogeochemical processes (41).
Although DNA replication and process rates are predicted by

our gene-centric model merely based on environmental redox
conditions, it is uncertain to what extent intermediate stages of
gene expression (transcription and translation) can be explained
based on such a paradigm. For example, environmental mRNA
concentrations measured via qPCR have previously been directly
compared with predicted reaction rates (5), but such a heuristic
comparison ignores other mechanisms controlling environmental
biomolecule distributions, such as physical transport processes.
Here, in an attempt to mechanistically describe mRNA and
protein dynamics at ecosystem scales, we hypothesized that both
mRNA and protein production rates at a particular depth are
proportional to the total reaction rate at that depth (calculated
using the calibrated model). This premise is motivated by

observations of elevated transcription and translation rates during
high metabolic activity or growth (44–46). Furthermore, we as-
sumed that mRNA and protein molecules are subject to the same
hydrodynamic dispersal processes as DNA, while decaying expo-
nentially with time postsynthesis. The decay time of each molecule
as well as the proportionality factor between the reaction rate and
synthesis were estimated statistically using metatranscriptomic and
metaproteomic data (SI Appendix, Section S2.10).
The general agreement between this model and the molecular

data (Fig. 3A) suggests that the production–degradation dy-
namics of several of these molecules is, at the ecosystem level,
dominated by the mechanisms described above. The best fit (in
terms of the coefficient of determination) (SI Appendix, Table
S5) is achieved for nosZ and nxr mRNA as well as amo, norBC,
ROM, and nxr proteins. The greater number of protein over
mRNA profiles that can be explained by the model suggests that
the proteins considered here are, indeed, simply produced on
demand and slowly degrade over time, whereas mRNA dynamics
are subject to more complex regulatory mechanisms (41, 47). In
particular, the decay times of some transcripts and proteins were
estimated to be as high as several weeks (SI Appendix, Table S5).
For proteins, these estimates fall within known ranges (47);
however, for transcripts, these estimates are much higher than
decay times determined experimentally in cells (48). One reason
for this discrepancy seems to be the underestimation of the
SNTZ depth range by the model, which in turn leads to longer
estimates for mRNA decay times needed to explain the detection
of these molecules outside of the SNTZ. Alternatively, tran-
scripts and proteins might persist in the cells in inactive states for
a significant period, even after dispersal into areas with low
substrate concentrations. For example, stable but silent tran-
scripts have been found in bacteria after several days of starva-
tion (49, 50). Furthermore, gene expression may not change
immediately in response to external stimulus (14). For example,
for some prokaryotic transcription cascades, the basic time unit
may be the cell doubling time (which can reach several weeks in
anoxic environments) (51) because of regulation by long-lived
transcription factors (52). Hence, the decay times estimated here
may reflect a hysteresis in gene down-regulation after nutrient
depletion, perhaps in anticipation of potential future opportu-
nities for growth (53, 54). Overall, these observations suggest
that future metatranscriptomic sequencing efforts and models
for environmental mRNA dynamics would benefit from a con-
sideration of additional control mechanisms (for example, de-
rived from cell-centric transcription models) (55, 56).

Consequences for Geobiology
Gene-centric models have the potential to integrate biogeochemical
processes with microbial population dynamics (5, 6). According
to the central dogma of molecular biology (4), gene transcription
and translation are intermediate steps that regulate metabolic
processes in individual cells, but the appropriate projection of
the central dogma to ecosystem scales remained unresolved,
because transcription and translation were not explicitly con-
sidered in previous models (5, 6). We have developed a bio-
geochemical model that explicitly incorporates multiomic
sequence information and predicts pathway expression and
growth in relation to geochemical conditions. In particular, when
mRNA and protein dynamics are omitted, the gene-centric
model only includes four calibrated parameters and yet is able to
largely reproduce geochemical profiles (Fig. 2), relative meta-
genomic profiles (Fig. 3A), and SUP05 cell abundances, in-
dicating that the good agreement between the model and the
data is unlikely caused by overfitting. In fact, as we refined and
calibrated our model to the geochemical profiles, we observed
that the metagenomic profiles were well-reproduced as soon
as the model’s geochemical predictions roughly aligned with the
data, even if the parameters being calibrated had not converged
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yet. This observation reinforces the interpretation that fluxes of
matter and energy are robust predictors of microbial productivity
and functional community structure.
Our model successfully explains a large fraction of environ-

mental mRNA and protein distributions based on DNA con-
centration profiles and biochemical reaction rates in the OMZ.
These results are consistent with the idea that DNA is a robust
descriptor of an ecosystem’s biotic component (57, 58), which in
conjunction with the geochemical background, determines path-
way expression and process rates (59). This idea implies that the
co-occurrence of a metabolic niche with cells able to exploit it is
sufficient to predict microbial activity. Under this paradigm, DNA
may be regarded as directly interacting with the geochemical
background, whereas the production of mRNA and proteins is an
inevitable consequence of the biologically catalyzed flow of matter
and energy. This interpretation is supported by the overall con-
sistency between the metatranscriptomic and metaproteomic
profiles for N and S cycling genes (Fig. 3A). Hence, mRNA and
proteins may each be adequate proxies for pathway activity in
Saanich Inlet, although as discussed above, questions regarding
the relevant time scales remain. Additional work is needed to test
this paradigm in other ecosystems, especially under non–steady-
state conditions. Nevertheless, many aquatic ecosystems are per-
manently or almost permanently anoxic (8, 40, 60), and hence, our
approach and conclusions are expected to be particularly appli-
cable to these systems.
In addition to providing a systematic calibration and validation

of the model, we identified processes that need to be considered
when interpreting multiomic data. Conventional proxies for ac-
tivity, such as mRNA and proteins, are themselves subject to
complex population dynamics that include production and active
or passive degradation as well as physical transport processes.
Consequently, the close association between process rates and
biomolecule production suggested above does not imply that
biomolecule distributions, per se, are equivalent to local micro-
bial activity rates. In Saanich Inlet, for example, the wide dis-
tribution of DNA, mRNA, and proteins across the OMZ, in
contrast to a relatively narrow metabolic “hot zone” at the
SNTZ, is predicated on a balance between spatially confined
production and dispersal across the water column. This “mass
effect” (61) means that geochemical or biochemical information
is needed to assign actual activity to genes or pathways identified
in multiomic data, especially for components mediating energy
metabolism. This conclusion is generalizable and should be ap-
plied to other ecosystems exhibiting dispersal across strong en-
vironmental gradients, such as estuaries (62) or hydrothermal vents
(6). Moreover, in dynamic ecosystems with rapidly changing geo-
chemical conditions, past population growth rates can influence
future community structure and biomolecular patterns, and hence
cross-sectional community profiles may not reflect current dynamics
(63). In such systems, an incorporation of multiple layers of geo-
chemical and biological information into a mechanistic model—as
shown here—will be crucial for disentangling the multitude of
processes underlying experimental observations.
The gene-centric model constructed here, although evaluated

at steady state, is in fact a spatiotemporal model that could, in
principle, predict gene population dynamics and process rates
over time. A spatiotemporal analysis of the model would require
multiomic time series coverage and knowledge of nonstationary
physical processes, such as seasonal patterns in surface pro-
ductivity and hydrodynamics during deep water renewal events.
Multiomic time series would be especially useful for improv-
ing the mRNA and protein models introduced here because of
the high number of currently unknown parameters. For exam-
ple, integrating metatranscriptomic, metaproteomic, and geo-
chemical time series during rapid environmental changes into
our model would allow for a more direct determination of in situ

transcriptional and translational responses and biomolecule
decay times.
The multiomic profiles that we used to validate our model

are only given in terms of relative—rather than absolute—
biomolecule concentrations. Hence, the observed abundance of
each biomolecule may be influenced by the abundances of other
biomolecules, which could explain some of the discrepancies
between the model and the multiomic data. Unfortunately, this
limitation is currently pervasive across environmental shotgun
sequencing studies, largely because of technical challenges in
estimating in situ DNA, mRNA, and protein concentrations
(64). These challenges will likely be overcome in the future (65,
66). Given this current caveat, the general agreement of the
model with the shape of the multiomic profiles (Fig. 3A) is
remarkable and suggests that the spatial structuring of the
metabolic network is well-captured by the model. In fact, our
qPCR-based estimates for absolute SUP05 abundances are
consistent with absolute PDNO gene concentrations predicted
by the model as well as the shape of the PDNO abundance
profiles in the metagenomes (Fig. 3A). This double agreement
suggests that—at least for PDNO—both our model and our
metagenomic datasets (Datasets S1 and S2) reflect the actual
gene distributions.

Conclusions
Most major metabolic pathways driving global biogeochemical
cycles are encoded by a core set of genes, many of which are
distributed across distant microbial clades (1). These genes are
expressed and proliferate in response to specific redox conditions
and in turn, shape Earth’s surface chemistry. Here, we have shown
that the population dynamics of genes representative of specific
metabolic pathways, their expression, and their catalytic ac-
tivity at ecosystem scales can all be integrated into a mecha-
nistic framework for understanding coupled carbon, nitrogen,
and sulfur cycling in OMZs. This framework largely explained
DNA, mRNA, and protein concentration profiles and resolved
several previous uncertainties in metabolic network structure in
Saanich Inlet, including a direct coupling of sulfide-driven de-
nitrification and anammox through leaky nitrite production by
SUP05 as well as the presence of a metabolic niche for nitrous
oxide reduction contributing to nitrogen loss. Beyond OMZ-
specific predictions, model results indicate that geochemical
fluxes are robust indicators of microbial community structure
and reciprocally, that gene abundances and geochemical condi-
tions largely determine gene expression patterns. Such integrated
modeling approaches offer insight into microbial community
metabolic networks and allow prediction of elemental cycling in
a changing world.

Materials and Methods
Model Overview. The core model is a set of differential equations for the
concentrations of eight metabolites and six proxy genes (DNA) across depth
(100–200 m) and time. Each gene is a proxy for a particular energy-yielding
pathway, which couples the oxidation of an external electron donor to the
reduction of an external electron acceptor. Each gene is considered as a
replicating unit that is independent of other genes. This simplifying as-
sumption corresponds to the case where each cell occupies a single met-
abolic niche associated with one of the modeled pathways (14, 67). Gene-
specific reaction rates depend on the concentrations of metabolites
according to first- or second-order (Michaelis–Menten) kinetics (5, 21) (SI
Appendix, Section S2.4). In turn, the production or depletion of metabo-
lites at any depth is determined by the reaction rates at that depth,
taking into account reaction stoichiometry (SI Appendix, Section S2.3)
and diffusive transport across the water column. The production of genes
at any depth is driven by the release of energy from their catalyzed re-
actions and is proportional to the Gibbs free energy multiplied by the
reaction rate (22) (SI Appendix, Section S2.5). In addition, gene pop-
ulations are subject to exponential decay rates, diffusive transport,
and sinking.
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Mathematical Model Structure. The DNA concentration for gene r (Γr; copies
per volume) exhibits the dynamics
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whereas the concentration of the mth metabolite (Cm; mole per volume)
follows
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Both the gene concentrations Γr and metabolite concentrations Cm depend
on time t and depth z. The first term on the right-hand side of Eq. 1 cor-
responds to cell death, with qr being the exponential death rate in the
absence of any metabolic activity for pathway r. The second term corre-
sponds to gene production, with Hr being the per-gene reaction rate as a
function of metabolite concentrations (SI Appendix, Section S2.4). The bio-
mass production coefficient Zr is a linear function of the Gibbs free energy of
reaction r (SI Appendix, Section S2.5); c is the average dry cell mass, which is
used to convert biomass production into cell production. The third term
corresponds to cell sinking at speed v. The last term in Eqs. 1. and 2 corre-
sponds to diffusive transport, with K being the vertical eddy diffusion co-
efficient. In Eq. 2, Smr is the stoichiometric coefficient of metabolite m in
reaction r (SI Appendix, Section S2.3). The sum on the right-hand side of Eq.
2 iterates through all reactions and accounts for microbial metabolic fluxes.
Eqs. 1. and 2 specify the rates of change for the DNA and chemical con-
centration profiles. Steady-state profiles were obtained after long simula-
tions when all profiles had eventually stabilized.

Considered Pathways. Redox pathways occurring in a single cell require at
least two enzymes: one involved in the oxidation of the initial electron donor
and one involved in the reduction of the final electron acceptor. In themodel,
such pathways are represented by single proxy genes, chosen such that
ambiguities in their functional role are minimized. For example, nitrous oxide
reduction using nosZ coupled to sulfide oxidation is identified with nosZ,
because many sulfur oxidizing enzymes are reversible. Other pathways
considered in the model are partial denitrification of nitrate to nitrous oxide
coupled to sulfide oxidation (PDNO), aerobic ammonium oxidation using
amo, aerobic nitrite oxidation to nitrate using nxr, and anammox (i.e., the
anammox involving hzo) as well as aerobic remineralization of (dissolved)
organic matter (ROM). PDNO comprises three denitrification steps that are
thought to be predominantly performed by the same microorganisms in the
SUP05 clade (14, 17): dissimilatory nitrate reduction to nitrite by membrane-
bound respiratory nitrate reductases (narGHIJ) or periplasmic dissimilatory
nitrate reductases (napAB), nitrite reduction to nitric oxide using nitrite re-
ductases (nirKS), and nitric oxide reduction to nitrous oxide using norBC. The
first denitrification step was assumed to be leaky, so that a small fraction of
nitrite is released into the extracellular environment (20). We used norBC as
a proxy for PDNO when interpreting molecular data (Fig. 3A shows coverage
of the dissimilatory sulfide oxidation pathway, and SI Appendix, Fig. S4 D–F
shows narGHIJ, napAB, and nirKS multimolecular data). ROM is associated
with the release of ammonium and sulfate (SO2−

4 ) at ratios corresponding to
marine bacterial biomass stoichiometry (32). The choice of redox pathways
in the model follows the hypotheses put forward by Hawley et al. (14) based
on molecular depth profiles as well as reports of nitrous oxide reduction
coupled to hydrogen sulfide oxidation in Saanich Inlet (68).

Hydrogen sulfide is assumed to originate via diffusion from the sediments,
where intense sulfate reduction occurs (15) (SI Appendix, Section S3.1).
Sulfate reduction was omitted from our model, because both our molecular
as well as chemical data suggest that sulfate reduction in the water column
is negligible compared with the oxidation of sulfur compounds (a detailed
discussion is in SI Appendix, Section S3.1). In fact, when we included sulfate
reduction in preliminary tests of our model, the agreement between the
model and the H2S profiles decreased dramatically, providing additional
evidence that H2S is largely supplied from the bottom rather than produced
in the water column.

Aerobic H2S oxidation was omitted from the model based on extensive
previous work that points toward NO−

3 and other nitrogen compounds as
dominant electron acceptors for H2S oxidation during periods of strong
stratification (18, 16, 12–14). For example, as shown in Fig. 2B, the upper
boundary of H2S concentrations closely follows the lower boundary of
NO−

3—rather than O2—over time, especially during the period considered
here (early 2010). We mention that, during renewal events in the fall, O2 can
become an important electron acceptor for H2S oxidation (12); however, this

possibility does not affect this study, which focuses on a period of intense
stratification near steady-state conditions. A more detailed discussion on the
role of aerobic sulfide oxidation is provided in SI Appendix, Section S3.3.

Pathways for hydrogen (H2) and methane (CH4) metabolism are not in-
cluded on grounds of parsimony, because these pathways are not directly
linked to the other considered pathways (12) and because low hydrogen and
methane fluxes into the OMZ suggest that hydrogen and methane pathways
are of secondary importance (12, 69).

Model Calibration and Data. Unknown parameters of the basic gene-centric
model (Eqs. 1. and 2) (ignoring mRNA and protein dynamics) were calibrated
by comparing steady-state predictions with measured depth profiles of oxygen,
ammonium, nitrate, nitrite, hydrogen sulfide, and nitrous oxide. Chemical cali-
bration data were acquired on January 13, February 10, and March 10, 2010 (or
February 10 and April 7 for oxygen) from a single location in Saanich Inlet
(123°  30.30′ W, 48°  35.50′ N) (SI Appendix, Section S1.2). The calibrated param-
eters were the maximum cell-specific reaction rate VPDNO and the first-order rate
constants AROM and AnosZ as well as the PDNO leakage fraction LPDNO (SI
Appendix, Table S3). Calibration was performed by maximizing the likelihood of
a statistical model, in which the deterministic part (i.e., expectation) is given by
the predictions of the gene-centric model and the stochastic part (i.e., error) is
normally distributed (SI Appendix, Section S2.8). This calibration method is
known as maximum likelihood estimation and is widespread in statistical re-
gression and physics (70). Maximization of the likelihood was performed using
the MATLAB function fmincon, which uses repeated simulations and gradual
exploration of parameter space (71). The sensitivity of the model to parameter
variation was assessed via local sensitivity analysis (72) as described in SI Appen-
dix, Section S2.12. An overview of our workflow is shown in SI Appendix, Fig. S2.

Samples for molecular sequencing were collected on February 10, 2010
from the same geographical location as the geochemical data (SI Appendix,
Sections S1.3 and S1.4). Because metaproteomes were missing at depth
100 m (the upper bound of our simulation domain) and to increase statistical
power when evaluating our protein models, we used linear interpolation
between depths 97 and 120 m (where metaproteomes were available) to
estimate protein normalized spectral abundance factor (NSAF) values at
100-m depth (“unit imputation”). Metagenomic profiles (a priori in relative
units) were rescaled to match the model scales using maximum likelihood
estimated factors (SI Appendix, Section S2.9). SUP05 abundances for Febru-
ary 10, 2010 were estimated via qPCR using SUP05-specific primers targeting
the 519–1,048 region of the SUP05 16S rRNA gene following the protocol in
ref. 73; 16S gene counts were corrected for the number of 16S rRNA gene
copies per cell estimated using the Tax4Fun pipeline (74) (SI Appendix,
Section S1.6). Denitrification and anammox rates were measured on cruises
47 (SI047_07/07/10) and 48 (SI048_08/11/10) via ex situ incubation experi-
ments and subsequently corrected for differences between in situ and in-
cubated substrate concentrations (SI Appendix, Section S1.5).

mRNA and Protein Models. As mentioned previously, following calibration of
the gene-centric model to the geochemical profiles, we extended the model
to describe mRNA (and similarly, protein) dynamics in the water column.
Specifically, the production rate of an mRNA (transcripts produced per time
and volume of seawater) at a particular depthwas assumed to be proportional to
the total reaction rate (moles per time and volume of seawater) at that depth. A
linear relation, although only an approximation, can be justified by the fact that
increasedenzymedilution rates at elevated cell division ratesmust bebalanced (at
the population level) by correspondingly increased translation—and hence,
transcription—rates (55). We also assumed that mRNA molecules disperse via
diffusion and sinking similar to genes (because they are hosted by the same cells)
and decay exponentially with time. Thus, environmental mRNA concentrations
satisfy the partial differential equation

∂Tr
∂t

=−
Tr
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Rr

αr
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∂Tr
∂z

+
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∂z

�
K
∂Tr
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�
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where Tr is the mRNA concentration corresponding to the rth reaction, τr is
the decay time of the mRNA molecule, Rr =HrΓr is the total reaction rate,
and αr is an unknown proportionality constant. We considered Tr in the
same units as the multiomic data, i.e., reads per kilobase per million mapped
reads (RPKM) for metatranscriptomes and NSAF for metaproteomes. Con-
sequently, αr is the ratio between the rth reaction rate (moles ·day−1 · liter−1)
and the corresponding RPKM (or NSAF) “production rate” (RPKM ·day−1),
and thus it depends on not only the particular reaction but also on our
sampling protocol and sequencing pipeline. The above model was evaluated
at steady state, when mRNA production, dispersal, and decay are balanced
at each depth (∂Tr=∂t = 0). The parameters of the mRNA and protein models
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(proportionality factors and decay times) were calibrated by fitting to the
metatranscriptomic and metaproteomic data, respectively (SI Appendix,
Section S2.10). Calibration to metatranscriptomic data failed for amo mRNA.
Metagenomic and metaproteomic data were not available for nxr and nosZ,
respectively (SI Appendix, Section S1.3). For all other mRNAs and proteins,
the iterative calibration converged rapidly to an optimum, and this optimum
was robust against various starting values for the parameters.

ILTM. In addition to the model predictions and rate measurements, de-
nitrification and anammox rates were also estimated directly from chemical
concentration profiles via ILTM (SI Appendix, Section S5). ILTM provides an es-
timate for the metabolic fluxes in the OMZ based on the observed chemical
concentration profiles. The exact shape of estimated rate profiles depends
sensitively on measurement errors and the noise reduction method applied to
the concentration profiles. Hence, ILTM only serves as a rough verification of
the order of magnitude of rates predicted by the model or measured experi-
mentally. ILTM fitting was applied separately to concentration profiles from
cruises 47 and 48 as well as the chemical profiles used for model calibration
(cruises 41–44) (Fig. 2) after averaging across replicates at each depth.
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