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Autocatalytic chemical reactions are widely studied as models of
biological processes and to better understand the origins of life on
Earth. Minimal self-reproducing amphiphiles have been developed
in this context and as an approach to de novo “bottom–up” syn-
thetic protocells. How chemicals come together to produce living
systems, however, remains poorly understood, despite much exper-
imentation and speculation. Here, we use ultrasensitive label-free
optical microscopy to visualize the spontaneous emergence of an
autocatalytic system from an aqueous mixture of two chemicals.
Quantitative, in situ nanoscale imaging reveals heterogeneous
self-reproducing aggregates and enables the real-time visualization
of the synthesis of new aggregates at the reactive interface. The
aggregates and reactivity patterns observed vary together with dif-
ferences in the respective environment. This work demonstrates
how imaging of chemistry at the nanoscale can provide direct
insight into the dynamic evolution of nonequilibrium systems
across molecular to microscopic length scales.

autocatalysis | label-free microscopy | interferometric scattering |
protocells | emergence

Autocatalysis is a fundamental class of chemical reactions that
drives many biological processes and underpins research

into the origins of life on Earth (1). Surfactant molecules can
self-reproduce through physical autocatalysis, a process in which
aggregates of these monomers, in the form of micelles or vesi-
cles, catalyze the formation of additional monomers. Several
chemical models of physical autocatalysis have been developed
that involve biphasic reaction conditions (2). In these systems,
reactants are partitioned between aqueous and organic phases
and react to give amphiphilic products, which aggregate into
micelles or vesicles. Autocatalysis occurs in these reactions because
the product aggregates take organic precursor molecules into the
aqueous phase, allowing more efficient mixing of the reaction
components and thereby increasing the rate of reaction. Under-
standing the dynamics of individual lipid aggregates during growth
and division is a long-standing problem in the field of prebiotic
chemistry (3–7) because vesicles are widely thought to have
compartmentalized and catalyzed reactions in the prebiotic world
(8–10). A full understanding of these dynamics has not yet been
achieved in large part owing to analytical limitations.
Although physical autocatalysts have been widely studied for 25

years, their behavior remains poorly understood (2). Furthermore,
direct observation of individual lipid aggregates remains elusive. At
the single-particle level, division of giant vesicles (>1 μm) has been
visualized in real time, using optical microscopy (11). However,
smaller aggregates such as micelles and submicron vesicles can only
be imaged directly with electron microscopy, which strongly per-
turbs the system and precludes real-time analysis (4, 12). Ensemble
methods such as dynamic light scattering (12) and fluorescence
resonance energy transfer (7) enable the analysis of aggregate
populations, and ensemble spectroscopic methods are frequently
used to record the concentration of individual molecular species in
reaction mixtures. The critical nanometer scale on which physico-
chemical self-replication occurs, however, has not been imaged
dynamically. As a result, we struggle to understand the dynamics of

even the simplest supramolecular aggregates such as micelles and
vesicles. As a corollary we do not fully comprehend how protocells
may evolve out of chemical mixtures and ultimately to what degree
they are relevant to primitive life. Here, we show that interfero-
metric scattering microscopy (iSCAT) (13–15) can be used to
monitor physical autocatalysis in situ because it enables the direct
observation of the generation of new lipid aggregates at the reactive
interface, without the use of labels or any other perturbations to the
system, down to single micelles.

Results
Our system consists of a biphasic reaction between aqueous and
organic components placed above a microscope cover glass (Fig.
1A). The reaction of thiol 1 with enone 2 at high pH yields a
single amphiphilic product, 3. The product 3 aggregates into mi-
celles at millimolar concentrations and enables the reagents to mix
more efficiently, thus behaving as a physical autocatalyst.
Compound 3 is an analog of a physical autocatalyst that we

previously characterized (16). At present we are unable to reliably
detect the smaller micelles of the earlier system using iSCAT, and so
compound 3, bearing a longer hydrophobic tail, was selected as it
forms larger micelles (RH ∼ 3 nm, Figs. S1–S3), which can reliably be
detected by iSCAT. Unsaturation in the alkyl chain was introduced
to keep the corresponding thiol 1 a liquid at room temperature for
experimental simplicity, allowing the thiol to be used neat rather
than as a solution in an organic solvent. The corresponding satu-
rated compound, 1-octadecanethiol, is a solid at room temperature.
To determine the sensitivity limits of iSCAT in visualizing the

reaction products directly, we monitored binding of individual
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micelles to a microscope cover glass from a solution of pure 3.
Binding of micelles to the cover glass changes the local refractive
index and thus the scattering properties of the surface, which is
detected by the iSCAT microscope. The resulting differential
images consist of diffraction-limited spots, with a contrast on the
order of 0.1% (Fig. 1B). Given an average micelle hydrodynamic
radius of 3 nm determined by dynamic light scattering (DLS)
(Fig. 1C, Inset), an iSCAT contrast of 0.18% for a single 500-kDa
unlabeled protein (13) and the unimodal distribution in the de-
tected signal for the aggregates in iSCAT and dynamic light scat-
tering (Fig. 1C) demonstrates that these signatures arise from
individual micelles. At this point a quantitative conversion from
iSCAT contrast to hydrodynamic radius is not achievable; the
contrast depends not only on the particle polarizability and hence
volume, but also on the effective refractive index, which may vary
with particle size. In addition, the detected signal depends in part on
the focal position and optical path length, requiring a constant focus
position across measurements. Nonetheless, the comparison be-
tween iSCAT contrast and the DLS size distribution demonstrates
that we can detect the smallest micelles present in samples of 3.
To monitor the synthesis of 3 in situ we take advantage of the

stochastic binding of micelles to the cover glass surface, analo-
gous to localization-based superresolution fluorescence micros-
copy (17). In contrast to fluorescence imaging, light scattering
does not saturate or bleach. Thus, a surface partially covered by
micelles acts as a new scattering background that can be sub-
tracted. Subtraction of consecutive images reveals only changes
in surface scattering (18), even though the respective raw scat-
tering images are essentially indistinguishable (Fig. 2A). This is
because the rough cover glass surface and any micelles or vesicles
already present dominate the signal (15). In our assay micelle
binding results in dark spots, whereas departing/rupturing par-
ticles generate a bright, positive contrast.
Before the onset of the autocatalytic reaction, consecutive image

subtraction (Materials and Methods, Data Processing) reveals no
binding to the surface as expected in the absence of micelles in
solution (Fig. 2A). Approximately 15 min after establishing the in-
terface, we observe binding of micelles to the surface, the rate of
which then rapidly accelerates and also involves unbinding events as
the surface saturates. We can generate a superresolution map of
binding events (Fig. 2B), because we can detect and localize each
particle arriving at or departing from the surface.
A corresponding time course of binding events allows us to de-

termine the landing rate per unit area as a function of time (Fig.
2C). We observe an exponential increase in the landing rate after an
initiation period, which tails off, resembling a Langmuir adsorption
isotherm as the available binding sites on the cover glass surface
become occupied (Fig. 2C, orange). The exact shape of the time
course and final binding is somewhat variable (Fig. S4) but the
overall trend is consistent and reproducible.

The observed variation of the saturation point between and
within experiments is likely a consequence of multiple factors.
The maximum landing rate is given by the availability of binding
sites on the substrate. The availability of binding sites itself de-
pends on several competing dynamic processes such as unbinding
events, formation of a supported lipid bilayer, deformation of
individual aggregate structures, and the size of the aggregate
products. Some of these processes have been reported to be
dependent on the local density of particles on the substrate (19).
Hence variation in the maximum landing rate is not unexpected.
Beyond characterization of the landing rate, we can monitor

the particle size distribution as it evolves in time. Under these
conditions, the average particle contrast converges around 0.26 ±
0.02% (Fig. S5). This result is consistent with positive controls
carried out in the reaction medium, giving an average particle
contrast of 0.28 ± 0.02% (Fig. S6). The absolute contrast is
sensitive to the refractive index of the solution and the focal
position, and consequently is somewhat higher in the reaction
mixture than in pure water. Positive controls carried out in the
presence of starting material 2 and Cs2CO3 reveal a sharp critical
micelle concentration between 0.5 mM and 0.75 mM (Fig. S7),
with an equilibrium binding rate, above this concentration, in
agreement with the saturation binding rate observed in reactions.
In negative control experiments where 2 is omitted, no micelles

are formed (Fig. 2C, black). By contrast, inclusion of 0.5 mM of 3
in the aqueous solution to initiate the catalyzed reaction elimi-
nates the lag period, and rapidly forms the product upon addition
of 2 (Fig. 2C, purple). The final binding rate in this case is close to
the average binding rate observed in the unseeded reactions (Fig.
S4) and quantitatively distinct from the much lower binding rate
observed in a positive control of 0.5 mM 3 in the absence of any
thiol 1 (Fig. S4).
Given that iSCAT can be used to detect and quantify the

autocatalytic synthesis of 3 at the single-particle level, we at-
tempted to directly image the reactive interface. To do so we
generated micrometer-sized thiol droplets on the glass coverslip
and surrounded them with an aqueous solution of 2 (Fig. 3A).
This allowed the direct visualization of the thiol–water interface
and the production of new aggregates (Fig. 3B).
Here, small lipid aggregates diffuse out of the thiol–water

interface (Fig. 3C). Remarkably, there is a clear spatial associ-
ation of reactivity with the thiol–water interface: Near the in-
terface there are high levels of activity and many lipid aggregates
form, whereas far from the interface the rate of binding is lower
(Movie S1). These observations can be quantified, demonstrat-
ing that the binding rate is negatively correlated to the distance
away from the interface (Fig. 3D). This observation agrees with
the proposed biphasic reaction mechanism: If the reaction is
indeed occurring at the thiol–water interface, the binding rate
should decrease with distance from the interface. Conversely, if
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the binding arises from reactivity at a distant interface, or from a
homogeneous reaction in the aqueous phase, the rate of binding
should be independent of the distance from the observed inter-
face. As such, the quantification of this correlation supports the
proposed mode of reactivity, providing spatial information that
would be difficult to obtain by other methods (16).
One hour after the addition of 2, the interface around these

droplets breaks down almost entirely, and complex extended lipid
structures emerge (Movies S2–S4). These lipid structures proliferate
rapidly and lead to events consistent with the growth and division of
individual nanometer-scale vesicles: New material is seen to rapidly
grow and separate from existing vesicles, although it is difficult to
isolate individual events owing to the large number of vesicles.
We are also able to generate macroscopic water–thiol interfaces

where the interfacial curvature is negligible on the nanometer scale
(Fig. 4). Here, the reactive behavior is rather different. Whereas we
previously found proliferation of aggregates around the interface,
here we observe the steady retreat of the organic phase and corre-
sponding movement of the aqueous phase across the coverslip. In-
terestingly, the retreat of the thiol phase was not a continuous
process as might be expected. Instead, we could discern the forma-
tion of individual aggregates at the interface and merging with an
intermediate phase, which pushes the thiol phase back in a series of
discrete events. Consecutive image subtractions of these data clearly

reveal discrete events (Fig. 4B). Overlaying the differential series on
the flat-field images reveals colocalization of these events with the
retreating interface (Fig. 4C and Movie S5). It is likely that these
discrete events correspond to the formation of individual vesicles at
the interface.

Discussion
We have demonstrated the spontaneous formation of complex
aggregates from simple precursors by directly visualizing an au-
tocatalytic reaction on the nanometer scale. Through label-free,
superresolution imaging of individual micelles and thus direct
probing of the supramolecular product/catalysts, we can obtain
quantitative kinetic data that allow the study of a physical au-
tocatalytic reaction. Further, we are able to directly image the
reactive interface and distinguish between processes occurring
at different regions of the multiphasic system, thereby revealing
the complexity and diversity of the dynamics of physical auto-
catalysts on the nanometer scale.
The capability to observe the products of a chemical reaction, label-

free and in real time, provides us with the opportunity to study
complex nonequilibrium systems at the single-particle level, so that we
may better understand the collective behavior of autocatalytic ag-
gregates. Understanding how complex supramolecular dynamics give
rise to the formation of extended membranes, and the production,
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growth, and division of vesicles, is a fundamental problem relevant
to the origins of life (1, 2, 20). Here we examine a model bond-
forming autocatalytic system, which rapidly generates molecular
and supramolecular complexity to demonstrate a general method
by which we can directly image and study nanoscopic dynamics with
high spatiotemporal resolution.

Materials and Methods
iSCAT Setup. The iSCAT experimental setup is not described in complete detail
here, but is similar to that discussed by Ortega-Arroyo et al. (13) A 445-nm
diode laser was used as the incident light source with an approximate inci-
dent power of 10 kW/cm2 on the sample. Frames were recorded at 1 kHz
with an exposure time of 0.56 ms, using a CMOS camera (Photonfocus MV-
D1024-160-CL-8). Unless noted otherwise, images were recorded at 333×
magnification (31.8 nm per pixel), corresponding to an 8.1 × 8.1-μm2 window.

Focus in the z axis is maintained using an autofocus system relying on the
total internal reflection (TIRF) of a 638-nm beam (21). Movement in the z axis
results in a corresponding movement in the xy plane of a totally internally
reflected beam, which is detected and used as the basis for automated correc-
tion of the z position. This system can maintain the z position to within 5 nm.

Sample Preparation and Coverslips. All samples were purified before use,
prepared using ultrapure Milli-Q water, and filtered through 0.2-μm
polytetrafluoroethylene (PTFE) filters before analysis by iSCAT.

Borosilicate glass coverslips (no. 1.5, 24 × 50 mm; VWR) were cleaned by
sequential rinsing with distilled water, ethanol, and distilled water and then
sonicated for 10min while standing in fresh HCl (approx. 0.4 M). The cover slips
were washed with Milli-Q water and dried under a stream of dry nitrogen.

Silicone wells (4.5-mm diameter, 1.7-mm depth; Grace BioLabs) were
prepared by washing sequentially with Milli-Q water and EtOH and then
drying under a stream of dry nitrogen.

All coverslips and wells were prepared on the same day as analysis using
fresh reaction components.

Experiment. A typical reaction was performed as follows. Milli-Q water (15 μL)
was deposited into a silicone well and the glass surface inspected to ensure

satisfactory cleanliness. Thiol 1 (2 μL, 0.3 eq relative to 2) was gently
deposited atop the aqueous layer and the system was allowed to equilibrate
for several minutes. A solution (15 μL) of MPC 2 (1.2 M) and Cs2CO3 (400 mM)
was injected into the aqueous layer and mixed gently using a micropipette.
One second of data, equivalent to 1,000 frames, was then recorded every 6 s.

Negative controls were performed by omitting MPC 2 from the second
aqueous solution. Seeded experiments were performed by supplementing
the initial aqueous solution with a 0.5 mM solution of 3. Positive controls
were performed by measuring the binding rate of preequilibrated solutions
of 3 in MPC 2 (600 mM) and Cs2CO3 (200 mM) in the absence of thiol 1.

Direct examination of the thiol–water interface was achieved by first
depositing thiol 1 (2 μL) on the glass surface and then displacing it by in-
jection of Milli-Q water (4 μL). The reaction site of interest was located and
then a solution of MPC 2 (1.2 M) and Cs2CO3 (400 mM) was injected into the
aqueous layer. Data were recorded manually, typically capturing 5,000–
10,000 frames (5–10 s) at a time.

Data Processing. Data were processed and analyzed using National Instru-
ments LabVIEW 2011 and the FIJI distribution of ImageJ. To correct for il-
lumination inhomogeneity and fixed pattern noise, a flat-field image was
taken by running a temporal median filter over a sequence of images ac-
quired when the sample was displaced (22). Differential imaging was
achieved by subtracting sets of images temporally offset by a time Δt. The
signal-to-noise ratio was then improved by spatially (2 × 2 binning) and
temporally averaging the differential images (100 images).

For the generation of superresolution images and quantification of reaction
kinetics, a running temporal average was applied to the differential images. By
subtracting a running temporal average from the differential images we re-
duced the rate of false positives and increased the recovery rate of true posi-
tives, given that single (un)binding events would be counted multiple times, in
contrast to a signal attributed to spurious noise. To avoid repeated counts, single
(un)binding events were identified only on the basis of having a trajectory length
with at least four localizations and at most twice the size of the temporal average.

Particle detectionwas performed as described by Spillane et al. (23) Briefly,
diffraction-limited spots were identified by a combination of the nonmaximum
suppression algorithm and selecting pixels that exceeded at least two times
the SD of the image, estimated by the median absolute deviation. Candidate
particles were then segmented into regions of interest corresponding
to ∼1 μm2 and fitted to a 2D Gaussian function. Particle tracks, used for the
quantification of the kinetics, were generated by a modified cost matrix
method described by Jaqaman et al. (24). Here assignments within the cost
matrix were determined by a greedy approach, namely by minimizing the
distance between features in consecutive frames found within a search ra-
dius of 40 nm, rather than solving the linear assignment problem. Features
with the minimum distance exceeding the search radius were classified as
having no connectivity.
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The possibility of each diffraction-limited spot being attributed to more
than onemicelle is excluded by consideration of the binding rate. Namely, if
the landing rate of the micelles is high, corresponding to a high particle
density, so too is the likelihood of having more than one particle land
within a diffraction-limited area simultaneously (i.e., within a single ex-
posure time or effective exposure time given by averaging multiple frames
together to enhance the signal-to-noise ratio). To estimate how likely this
would be, we refer to the observed maximal rates of particle landing (i.e.,
the saturation points) in the assay, which are ∼4 particles·s−1·μm−2 (Fig. 2).
Assuming a diffraction limit area = π(0.125 μm)2 ∼ 0.05 μm2, we have a
landing rate of less than 1 particle·s−1 per diffraction limited spot. Now,
considering an effective temporal window (t) of 0.1 s (equivalent to aver-
aging 100 frames taken at 1,000 fps), we now have a landing rate per

diffraction-limited spot of 0.025 particle·t−1. Assuming a Poisson-distributed
process, the probability that more than one particle lands under such a sce-
nario can be estimated to be <0.1%. Under these circumstances this effect can
be neglected; for higher densities, however, one can minimize this issue by
increasing the temporal resolution of the detection.
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