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The phenols 4-methylphenol, 4-methoxyphenol, and N-acetyl-tyro-
sine form hydrogen-bonded adducts with N-methyl-4, 4′-bipyridi-
nium cation (MQ+) in aqueous solution as evidenced by the
appearance of low-energy, low-absorptivity features in UV-visible
spectra. They are assigned to the known examples of optically in-
duced, concerted electron–proton transfer, photoEPT. The results
of ultrafast transient absorption measurements on the assembly
MeOPhO-H—MQ+ are consistent with concerted EPT by the instan-
taneous appearance of spectral features for MeOPhO·—H-MQ+ in
the transient spectra at the first observation time of 0.1 ps. The
transient decays to MeOPhO-H—MQ+ in 2.5 ps, accompanied by
the appearance of oscillations in the decay traces with a period of
∼1 ps, consistent with a vibrational coherence and relaxation from a
higher υ(N-H) vibrational level or levels on the timescale for
back EPT.
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Proton-coupled electron transfer (PCET) reactions, in which
both electrons and protons are transferred, play an important

role in redox processes in chemistry and biology with examples in
water oxidation (1–4), CO2 reduction (5), mitochondrial respiration
(6), and conversion of nucleotides to 2′-deoxynucleotides (7, 8).
Mechanistically, PCET occurs by stepwise, electron transfer fol-
lowed by proton transfer(ET-PT) (9–13) or proton transfer followed
by electron transfer (PT-ET), or concerted pathways (EPT) with
concerted transfer in a single step. Although more complex mi-
croscopically, EPT can offer a significant advantage in avoiding
high-energy intermediates (14, 15).
Light driven, photochemical EPT (photoEPT) has been reported

(16–18), by Westlake et al. (18) for amine adducts with 4-nitro-4′-
biphenylphenol, Scheme 1. In these adducts, intramolecular charge
transfer (ICT) excitation is accompanied by proton transfer to an
H-bonded base, Scheme 1, as shown by ultrafast and coherent
Raman measurements.
Although seemingly a breakdown of the Franck–Condon principle,

the appearance of optically induced electron–proton transfer was
rationalized by noting that optical excitation and associated changes
in electronic structure result instantaneously in a spatially fixed
proton in the vibrational force field of the electronic excited state.
Subsequent theoretical analysis by Hammes-Schiffer and coworkers
(19, 20) supported this conclusion and the coexistence of distinct
spectroscopic states, one a conventional ICT state, with excitation
followed by proton transfer (photoET-PT), and a concerted
photoEPT state.
An important, if largely unrecognized, role for photoEPT

could exist and play a role broadly, for example, in DNA
photodamage (21, 22) or in forming reactive oxygen inter-
mediates (ROS) (23). Nonetheless, reports of photoEPT and
its role in excited state reactivity in chemistry and biology are
rare (17–20, 24, 25).
In electron transfer, a significant advance came from the ap-

pearance and analysis of low-energy intervalence transfer (IT)
(26) absorption bands in mixed-valence complexes (27), Eq. 1,
and from an analysis by Hush (28). In appropriate limits, the

Hush treatment provides quantitative relationships between ab-
sorption band energies, widths, and oscillator strengths. Analysis
of IT absorption bands provides intramolecular and medium
reorganization energies and electronic matrix elements arising
from donor–acceptor wave function mixing:

[1]

In gaining further experimental insight into photoEPT, the direct
observation of an optical transition or transitions analogous to a
mixed valence IT band would be an important step forward. It
would enable further characterization of the coupled electron/
proton transfer process by using absorption band properties to
assess barriers and the extent of electronic coupling. Given the
expected relatively weak electronic coupling between donor and
acceptor across a linking H bond as in Eq. 1, absorptivities for
these transitions are expected to be low, making direct observation
of a photoEPT transition difficult experimentally.
We report observation of photoEPT absorptions, here in

H-bonded complexes between N-methyl-4,4′-bipyridinium cation
(MQ+) and the biologically relevant donor tyrosine (TyrOH) and
the phenols 4-methylphenol (p-MePhOH) and 4-methoxyphenol
(p-MeOPhOH). Structures are shown in Chart 1.
MQ+ is transparent in the visible spectrum whereas the

spectrum of the reduced form of its dimethylated analog, methyl
viologen (MV+•), includes a characteristic intense π → π*
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absorption in the visible spectrum with e = 1.37 × 104 M−1·cm−1

at 590 nm (16,950 cm−1) in acetonitrile (29, 30). In the optical
experiments, MQ+ was used as the proton acceptor with simul-
taneous electron/proton transfer signaled by the appearance of
an intense absorption for MQH+• analogous to MV+•. In MQ+,
the uncoordinated pyridine is both electron and proton acceptor
with pKa ∼ 3.5 for MQH2+ and pKa ∼ 8.6 for the singly reduced
cation, MQH+• (31, 32). Phenols were used as EPT donors in
these experiments because of their enhanced acidities upon
oxidation. For tyrosine, pKa decreases from 10 to −2 in the
radical cation (33).
H-bonded adducts form between MQ+ and the phenols in

solution as shown by the appearance of low-absorptivity, low-
energy bands in low-energy UV-visible spectra. Fig. 1 shows the
spectral changes that occur in aqueous solutions containing
equimolar concentrations of MQ+ and p-MePhOH. The formation
of the adduct is accompanied by the appearance of a low-energy
shoulder at ∼375 nm (26,660 cm−1) that appears on the low-energy
side of a π → π* transition of the phenol.
From these data, and the linear region of absorbance increase

in Fig. 1, essentially complete complex formation begins at
∼30 mM N-methyl-4,4′-bipyridinium with 30 mM added phenol.
Spectrophotometric analyses of complex formation, with the
evaluation of equilibrium constants for association, KA, were
carried out under conditions with less than 100% complex for-
mation by the method of Curtis and Meyer (34). Based on the KA
values, free energies of formation for the series of H-bonded
adducts were ∼2 kcal/mol (700 cm−1) (Table 1), within the range
expected for hydrogen bond interactions 1–5 kcal/mol (300–
1,500 cm−1) (Supporting Information) (16, 35).
Absorption spectral profiles were analyzed by a Gaussian

deconvolution procedure that provided absorption band maxima
(Eop), band widths at half height (Δ�υ1/2), and integrated in-
tensities (Fig. S1). Results for the three complexes are shown in
Table 1 and spectral fits in Supporting Information. Oscillator
strengths (fosc), calculated from Eq. 2, and transition moments
from Eq. 3 are also listed in Table 1. Mulliken–Hush theory and

Eqs. 4 and 5 were used to obtain a classical reorganizational
energy (λ) and free energy of the excited state above the ground
state (ΔG°ES):

fosc =
�
4.61× 10-9

�
× emax ×Δυ1=2 [2]

jμj2 = fosc
��

1.08× 10−5 × υmax
�

[3]

�
Δυ1=2

�2 = 16ðλÞkBT  ln2 [4]

λ=
�
Eop −ΔG°

�
. [5]

Table 1. Results of band shape analysis by Gaussian
deconvolution and parameters calculated by Eqs. 2–6

Property MeOPhOH MePhOH N-Ace-TyrOH

Eop, cm
−1 28,600 30,700 31,700

KA, M
−1* 32 23 17

Δ�υ1/2, cm−1 7,150 7,000 7,300
ΔGo†, cm−1 6,500 9,500 8,600
λ†, cm−1 22,100 21,200 23,100
fosc 1.50 × 10−3 1.45 × 10−3 9.90 × 10−4

μ, eÅ 0.14 0.14 0.11
HDA

‡, cm−1 280 290 230

*In 50 mM Tris buffer, pH 8.5.
†Calculated from Eq. 5 by using Eop and Δ�υ1/2 and Eq. 4.
‡Assuming d = 7 Å.
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Scheme 1. Illustration of photoEPT excitation in the hydrogen-bonded
adduct between p-nitrophenylphenol and t-butylamine (18). The green and
pink arrows illustrate electron and proton transfer motion, respectively.

Chart 1. Structural formulas of (A) N-methyl-4,4′-bipyridinium, MQ+, (B) N,
N′-dimethyl-4,4′-bipyridinium, MV2+, and (C) phenols used in this study ty-
rosine, p-methylphenol, and 4-methoxyphenol, MeOPhOH.

Fig. 1. UV-Vis spectra of N-methyl-4,4′-bipyridinium (MQ+) + p-meth-
ylphenol (p-MePhOH) where each spectrum was obtained with equi-
molar MQ+ and p-MePhOH in the concentration range of 5–50 mM, in
50 mM Tris buffer, pH 8.5, ionic strength maintained at I = 0.8 M with
NaCl at 23 ± 2 °C. Inset shows plot of absorbance at 360 nm as a function
of the extent of adduct formation. The titration data are summarized in
Table S1.
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The electronic coupling matrix element (HDA) was calculated by
using Eq. 6 with d = 7 Å, the average of limiting values for d as
described by the procedure in Curtis and Meyer (34):

HDA =
��
4.2× 10-4

�
× emax ×Δυ1=2 ×Eop

�1=2.
d. [6]

Values for the three adducts are listed in Table 1. Detailed in-
terpretation of band properties by the classical Hush treatment
may be inappropriate given the probable contribution to the ab-
sorption manifolds from the high-frequency υ(O-H)/υ(N-H) trans-
fer mode as evidenced by the large bandwidths and calculated
reorganization energies (λ ∼ 22,000 ± 1,000 cm−1) (Table 1).
The reorganization energies are of similar magnitude (λ ∼
9,000–21,000 cm−1) to a related series of intramolecular amino-
derivatized, 2,4-di-tert-phenyl analogs that undergo intramolecular
thermally activated EPT (36). The ΔG°′ value for the tyrosine
adduct from spectral fitting of ∼1.1 eV (8,900 cm−1) is comparable
to ∼1.4 eV (9,200 cm−1) estimated from E°′ values for the TyrOH+/0

and MVH2+/+ couples and known pKa values (37, 38).
The nature of the lower-energy absorption feature for the

H-bonded adducts was investigated further by ultrafast transient
absorption measurements by an apparatus and data analysis
described earlier (39–41) and in Supporting Information, Ex-
perimental, Ultrafast Transient Absorption Experiments. Excitation
(388 nm, 250 fs FWHM) into the low-energy absorption band for
the p-MeOPhO-H—MQ+ adduct, at pH 8.5 in the aqueous Tris
buffer, resulted in the time-resolved transient absorption differ-
ence spectra shown in Fig. 2A. At the observation time of 250 fs,
positive absorption features appear at λmax ∼360 nm, 440 nm,
and 560 nm. The feature at 360 nm (27,800 cm−1) is consistent
with the simultaneous appearance of the phenoxyl radical

(42, 43) and HMQ+• (44), the feature at 440 nm (22,700 cm−1)
to the phenoxyl radical, and the broad feature at 560 nm
(17,860 cm−1) to the low-lying π → π* absorption in HMQ•

analogous to the absorption at 590 nm (16,950 cm−1) MV+• in
MeCN (44).
The transient absorption features are consistent with exci-

tation into the weak, low-energy absorption feature in the
p-MeOPhO-H—MQ+ adduct resulting in the appearance of
MeOPhO·—H-MQ+. The transient features appear within
0.1 ps and decay within 2.5 ps without significant change in
band position or shape. They are consistent with Scheme 2 and
photoEPT excitation leading to concerted electron–proton
transfer within the H-bonded complex.
In support of this assignment, careful examination of the

transient absorption decay traces in H2O in Fig. 2B provides
clear evidence for a vibrational coherence (45–47). The oscillatory
part of the decay from 2.5 ps to 7.5 ps is compared in H2O and
D2O in Fig. 2B. The oscillations in H2O appear with a period
of ∼1 ps consistent with a vibrational coherence that is sustained
for picoseconds and vibrational relaxation from a higher υ(N-H)
vibrational level or levels on the timescale for back electron
transfer (48).
From the time-resolved, single exponential decay traces at pH =

pD = 8.5, kD2O = 1.5 × 1012 s−1 for back EPT with deuteron transfer
and kH2O = 2.4 × 1012 s−1 for proton transfer, a kinetic isotope effect
of kH2O/kD2O = 1.6. The results from these studies are important
because they demonstrate an optical process that is analogous to IT
in mixed-valence molecules. From the transient experiments, exci-
tation into the underlying transition initiates photoEPT (Scheme 2).
Although related transitions may exist, they are, no doubt, typically
masked by higher absorptivity transitions and appear here as low-
energy absorption features in H-bonded, donor–acceptor complexes.
Assignment of the optical transition is consistent with the results of
ultrafast transient absorption measurements. There is evidence for
vibrational coupling following photoEPT excitation.
As expected, the underlying absorptions are of relatively low

absorptivity consistent with weak electronic coupling between
donor and acceptor in the H-bonded adducts. Nonetheless, the
existence of the transitions, and the appearance of the high-
energy, radical intermediates that they produce, could play a
hidden role in low-efficiency, photochemical pathways both in
biology and in photochemical energy conversion processes.

Methods
Detailed spectral data and analysis are included in Supporting Information.
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Fig. 2. (A) Transient absorption difference spectra at different delay times from 0.10 ps to 2.5 ps following ultrafast excitation (at 388 nm, and the pump
pulse energy was 25 nJ per pulse) of a 25-mM solution of p-MeOPhOH with 25 mM added MQ+ in a 50-mM Tris buffer, pH = pD = 8.5, I = 0.8 M NaCl at T =
25 °C. (B) Absorption-time decay traces at λmax ∼ 560 nm corresponding to the decay of HMQ• by back electron transfer following pulsed excitation at 388 nm
with 25 mM p-MeOPhOH and 25 mM MQ+ (blue) in H2O and D2O (black). Inset shows the traces magnified from ∼2.5–7.5 ps.
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Scheme 2. Illustration of phenol-MQ+ photoEPT and the following back
reaction.
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