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Abstract

Pathogenic microbes commonly respond to environmental cues in the host by activating 

specialized protein secretion systems. Mycobacterium tuberculosis uses the specialized Type VII 

ESX protein secretion systems to transport a subset of effector proteins. The ESX-5 secretion 

system is involved in virulence, but both the mechanism of regulation and activating signal were 

unknown. Our work, reviewed here, has established that the phosphate sensing Pst/SenX3-RegX3 

system directly activates ESX-5 secretion in response to phosphate limitation, a relevant 

environmental signal likely encountered by M. tuberculosis in the host. This review focuses on 

how elucidation of the ESX-5 regulatory network provides insight into its biological roles, which 

may include both phosphate acquisition and pathogenesis.
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Pathogenic microorganisms often activate specialized protein secretion systems in response 

to host cues to promote a productive infection. Mycobacterium tuberculosis is one of the 

oldest and most prolific bacterial pathogens in human history, causing the disease 

tuberculosis. M. tuberculosis is a facultative intracellular pathogen that persists within 

macrophage phagosomes by deploying secreted effector proteins to counteract host 

defenses, including factors that inhibit fusion with lysosomes to prevent phagosome 

acidification (Russell 2011). M. tuberculosis uses four types of secretion pathways to 

transport proteins through the complex architecture of its cell envelope: the ubiquitous Sec 

system, the Tat export system, the accessory SecA2 system and the Type VII ESX systems 

(Ligon et al. 2012; van der Woude et al. 2013). There are 5 ESX systems, designated ESX-1 

to ESX-5. Though the ESX systems each contain conserved core components of the 

secretion machinery, they appear to have evolved quite divergent functions (Stoop et al. 

2012). Identifying regulatory networks that control activity of the ESX secretion systems has 

been a critical step towards determining their functions. The regulatory mechanism and 
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precise function of ESX-5 were previously known. The recent discovery that a phosphate-

sensing regulatory system controls ESX-5 activity has provided some insight into its 

potential roles in M. tuberculosis virulence.

The connection between regulation and function is clearly illustrated by the ESX-3 secretion 

system. ESX-3 is essential for viability of M. tuberculosis in standard in vitro culture 

medium (Sassetti & Rubin 2003; Serafini et al. 2009), which frustrated efforts to determine 

its function. The regulatory mechanisms controlling ESX-3 expression were discovered first, 

and provided important clues about its function. Two transcriptional regulators, IdeR and 

Zur, repress ESX-3 when iron or zinc, respectively, is abundant (Rodriguez et al. 2002; 

Maciag et al. 2007). These observations enabled characterization of ESX-3 function in iron 

uptake and zinc homeostasis in M. tuberculosis (Siegrist et al. 2009; Serafini et al. 2009; 

Serafini et al. 2013).

ESX-1 was the first of the M. tuberculosis ESX secretion systems to be discovered and has a 

well-established role in virulence. One virulence-associated function of ESX-1 is to 

permeabilize phagosomes through the secretion of effector proteins, allowing mycobacterial 

DNA to enter the host cell cytosol (Manzanillo et al. 2012). Given its important role in M. 
tuberculosis pathogenesis, the regulation of ESX-1 has also been intensively investigated. 

Most ESX-1 regulators act the transcriptional level. EspR controls ESX-1 secretion through 

transcriptional regulation of the espACD operon, which encodes several proteins that 

promote secretion of the canonical ESX-1 substrates EsxA (ESAT-6) and EsxB (CFP-10) 

(Chen et al. 2012; Fortune et al. 2005; Millington et al. 2011; MacGurn et al. 2005; 

Raghavan et al. 2008). ESX-1 is also regulated by a pair of two-component systems; MprAB 

represses the espACD operon (Pang et al. 2013) while PhoPR positively regulates 

transcription of many genes in the esx-1 locus (Gonzalo-Asensio et al. 2008). Several factors 

activate MprAB, including cell envelope stress and nutrient starvation (Betts et al. 2002; He 

et al. 2006; Pang et al. 2007), while PhoPR is activated by acidic pH (Baker et al. 2014). The 

acidic pH signal that activates PhoPR to promote esx-1 gene expression is encountered by 

M. tuberculosis within the phagosomal environment. This provides a clear example of a 

niche-specific bacterial response, based on a relevant host signal, which enables the 

bacterium to counter host defenses.

The function of ESX-5, found only the slow-growing mycobacteria, which include most 

pathogenic species, remains poorly characterized. As for the ESX-3 system, several 

components of ESX-5 are essential for viability of M. tuberculosis in vitro (Bottai et al. 

2012; Di Luca et al. 2012). However, disrupting secretion of ESX-5 substrates results in 

attenuation in vivo, suggesting a significant role for ESX-5 in M. tuberculosis pathogenesis 

mediated by secretion of its effector proteins (Bottai et al. 2012). In the closely related 

pathogenic species M. marinum, most PE and PPE proteins are transported through ESX-5 

(Abdallah et al. 2009), and there is evidence that the M. tuberculosis ESX-5 also secretes 

many of these proteins (Sayes et al. 2012). PE and PPE are classes of proteins unique to 

mycobacteria, and are so named for the characteristic N-terminal proline-glutamic acid (PE) 

or proline-proline-glutamic acid (PPE) domains (Cole et al. 1998). PE and PPE proteins, 

which can be either cell-associated or freely secreted, play a diverse array of roles, some of 

which have been linked to M. tuberculosis virulence (Sampson 2011; Fishbein et al. 2015). 
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Deletion of a subset of pe and ppe genes encoded within the M. tuberculosis esx-5 locus 

causes attenuation in both macrophages and mice (Sayes et al. 2012; Bottai et al. 2012). 

Other PE and PPE proteins have been implicated in counteracting host defenses or 

modulating immune responses. PPE2 is thought to inhibit nitric oxide production in 

activated macrophages (Bhat et al. 2013). PPE18 binds TLR-2 on macrophages, leading to 

downregulation of protective Th1 proinflammatory cytokines and skewing the host towards 

the less effective Th2 response (Bhat et al. 2012; Nair et al. 2011; Nair et al. 2009). Finally, 

PE and PPE proteins are highly antigenic, inducing T-cell immunogenicity in vivo (Sayes et 

al. 2012). Though the precise repertoire of ESX-5-secreted PE and PPE proteins remains to 

be determined, given their immunogenic nature and external localization, ESX-5 substrates 

seem well positioned to have substantial interaction with the host during infection. 

Knowledge of ESX-5 regulation may lead to further discoveries concerning its precise 

function in M tuberculosis physiology and pathogenesis.

In a recent publication, we not only uncovered a mechanism of ESX-5 regulation, but also 

identified a relevant environmental signal, phosphate limitation, that triggers ESX-5 activity 

(Elliott & Tischler 2016). Our lab previously demonstrated that phosphate-responsive gene 

regulation was mediated by the Pst/SenX3-RegX3 system in M. tuberculosis (Tischler et al. 

2013). The Pst (phosphate specific transport) system transports inorganic phosphate across 

the inner membrane, and is induced when extracellular phosphate is scarce (Vanzembergh et 

al. 2010). The Pst system also plays a role in gene regulation through interaction with a two-

component signal transduction system (Lamarche et al. 2008). The relevant system in M. 
tuberculosis is SenX3-RegX3, a membrane bound sensor kinase and a DNA-binding 

response regulator, respectively (Tischler et al. 2013). SenX3-RegX3 is activated by 

phosphate limitation, and is inhibited by the Pst system when phosphate is abundant. Our 

work has established that deletion of pstA1, a transmembrane component of the Pst system, 

results in constitutive activation of RegX3, regardless of phosphate abundance (Tischler et 

al. 2013). Disruption of regulation mediated by Pst/SenX3-RegX3 at any level causes 

attenuation of M. tuberculosis in vivo, highlighting the importance of phosphate sensing for 

the survival of the bacterium (Parish et al. 2003; Tischler et al. 2013).

In our most recent work, we provide evidence that the phosphate responsive Pst/SenX3-

RegX3 system directly regulates ESX-5 at the transcriptional level. We found that disruption 

of the Pst system, through deletion of pstA1, resulted in significant upregulation of esx-5 
transcripts, along with increased production of ESX-5 core components and hypersecretion 

of known ESX-5 substrates (Elliott & Tischler 2016). We established that the changes in 

esx-5 gene expression and secretion system activity seen in the ΔpstA1 mutant required 

RegX3. We further demonstrated that ESX-5 secretion is induced by phosphate limitation. 

We observed overexpression of esx-5 transcripts and overproduction and hypersecretion of 

ESX-5 substrates when M. tuberculosis was grown in medium with limiting phosphate. The 

induction of ESX-5 activity during phosphate limitation also required RegX3 (Elliott & 

Tischler 2016). Using electrophoretic mobility shift assays (EMSA), we demonstrated that 

RegX3 binds to a segment of DNA within the esx-5 locus, suggesting that RegX3 directly 

activates ESX-5 secretion at the transcriptional level in response to phosphate starvation 

(Elliott & Tischler 2016). Our work is the first to show a direct link between the Pst/SenX3-
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RegX3 and ESX-5 systems. Further work will more fully define the RegX3 binding site and 

characterize the importance of ESX-5 regulation during infection.

Throughout our experiments investigating ESX-5 regulation, we also monitored secretion of 

the ESX-1 substrate EsxB as a control to assess the effect of our experimental conditions on 

other secretion systems. To our surprise, EsxB was also hypersecreted in response to 

phosphate limitation through a RegX3-independent mechanism (Elliott & Tischler 2016). 

We observed no significant increase in esxB transcript abundance under phosphate 

starvation, suggesting induction of EsxB secretion occurs post-transcriptionally (Elliott & 

Tischler 2016). Hypersecretion of EsxB during phosphate scarcity may occur at the level of 

secretion or release of the protein. In M. marinum, and possibly M. tuberculosis, EsxB is 

found at the cell surface, and can mediate its virulence functions from this location 

(Kennedy et al. 2014). EsxB is also readily detected in the culture filtrate in vitro, though it 

is unclear whether release of the protein from the cell surface is passive or active. Perhaps 

phosphate limitation is one signal that actively triggers release of EsxB from the cell 

membrane. Nevertheless, our results suggest an additional unknown phosphate sensing 

mechanism, independent of RegX3, that activates EsxB secretion or release when phosphate 

is limited, which adds another layer of complexity to the regulation of ESX-1 secretion.

Phosphate limitation is a relevant environmental signal likely encountered by many 

microbial pathogens during infection (Lamarche et al. 2008; Yadav et al. 2015). For M. 
tuberculosis, the ability to sense and respond to starvation for this nutrient is critical to the 

success of the organism (Parish et al. 2003; Tischler et al. 2013;). There is evidence that M. 
tuberculosis is faced with phosphate limitation in vivo. Deletion of the gene encoding the 

phosphate binding component of the Pst system, which is predicted to impair phosphate 

uptake, results in a severe replication defect in vivo (Peirs et al. 2005). Moreover, the entire 

operon encoding the Pst system is required for survival in macrophages (Rengarajan et al. 

2005). Future work in our lab will seek to pinpoint when and where M. tuberculosis 
encounters phosphate starvation using macrophage and murine infection models.

Regulation of ESX-5 secretion in response to phosphate limitation may be a critical function 

of the Pst/SenX3-RegX3 system for M. tuberculosis virulence. Both ΔregX3 and ΔpstA1 
mutants are attenuated in vivo (Parish et al. 2003; Tischler et al. 2013). Deletion of regX3 
may cause attenuation due to an inability to up-regulate ESX-5 secretion when the bacteria 

encounter phosphate-limiting conditions. Conversely, the ΔpstA1 mutant, in which RegX3 is 

constitutively activated, could be attenuated due to inappropriate constitutive hyper-secretion 

of ESX-5 substrates, some of which are highly antigenic (Sayes et al. 2012). Precise 

regulation of ESX-5 secretion in response to environmental signals, including phosphate, 

may be essential for M. tuberculosis to evade the host adaptive immune response to these 

antigens.

As previously discussed, several components of the ESX-5 core complex are essential for 

viability of M. tuberculosis in vitro. However, the essentiality of ESX-5 can be reversed by 

increasing the permeability of the outer membrane, by either introducing a porin or altering 

the lipid profile (Ates et al. 2015). This suggests that ESX-5 is essential for the secretion of 

proteins involved in nutrient uptake. This is an intriguing possibility, given that the ESX-3 
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system also functions in nutrient acquisition. Since ESX-5 secretion is induced in response 

to phosphate limitation, ESX-5-secreted proteins may mediate uptake of nutrients containing 

phosphate. The ESX-1 secreted substrate EspB adopts a fold that is similar to a previously 

characterized PE and PPE protein pair, which leads to oligomerization and formation of a 

heptameric complex with a pore at the center (Solomonson et al. 2015). Perhaps some 

ESX-5 associated PE and PPE proteins form similar oligomeric complexes that enable 

nutrient acquisition during phosphate limitation by forming pores in the outer membrane.

In addition to its role in nutrient uptake, ESX-5 may also play a more direct role in M. 
tuberculosis pathogenesis. There is precedence for multiple independent functions mediated 

by one ESX system. The ESX-3 system secretes substrates that have separable functions in 

iron acquisition and virulence independent of iron (Tufariello et al. 2016). We speculate that 

some ESX-5 substrates are also involved in the virulence of M. tuberculosis by modulating 

the host response. An as yet unknown ESX-5 secreted substrate(s) manipulates infected 

macrophages to undergo necrotic cell death, a function that seems unlikely to be related to 

nutrient uptake (Abdallah et al. 2011). Perhaps phosphate limitation is a signal that M. 
tuberculosis encounters in a particular host environment, like a phagosome, and ESX-5 

effector proteins are deployed to promote survival in that niche. Current evidence certainly 

leaves open the possibility that ESX-5 substrates have multiple independent functions.

Our work has identified phosphate starvation as a novel environmental signal that activates 

ESX-5 secretion, demonstrated that this signal is communicated by the Pst/SenX3-RegX3 

system, and revealed that this signal also leads to hyper-secretion of the ESX-1 substrate 

EsxB. These discoveries have provided hints toward a potential function of ESX-5 in 

phosphate acquisition and suggest that phosphate starvation is a nutritional cue that M. 
tuberculosis encounters in the host. Further work will be required to tease apart the potential 

nutrient uptake and virulence functions of ESX-5 by identifying ESX-5 effector proteins 

involved in these processes and to establish when and where M. tuberculosis encounters 

environments with limited phosphate during infection. Additional studies will also be 

necessary to determine the mechanism regulating secretion or release of the ESX-1 substrate 

EsxB in response to phosphate availability. We expect that further investigation of ESX 

effector proteins and the regulation of their secretion will greatly enhance our understanding 

of the interplay between the host and pathogen, and perhaps reveal new therapeutic targets.
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