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Abstract Substance P is a peptide mainly secreted by neu-

rons and is involved in many biological processes, including

nociception and inflammation. Animal models have pro-

vided insights into the biology of this peptide and offered

compelling evidence for the importance of substance P in

cell-to-cell communication by either paracrine or endocrine

signaling. Substance P mediates interactions between neu-

rons and immune cells, with nerve-derived substance P

modulating immune cell proliferation rates and cytokine

production. Intriguingly, some immune cells have also been

found to secrete substance P,which hints at an integral role of

substance P in the immune response. These communications

play important functional roles in immunity including

mobilization, proliferation and modulation of the activity of

immune cells. This review summarizes current knowledge of

substance P and its receptors, as well as its physiological and

pathological roles. We focus on recent developments in the

immunobiology of substance P and discuss the clinical

implications of its ability to modulate the immune response.

Keywords Immune regulation � Neuropeptides �
Cell-to-cell communication � Signaling � Cellular dynamics

Introduction

Substance P (SP) is a highly conserved peptide that was

originally discovered in 1931 by Von Euler and Gaddum in

the equine brain and gut extracts—distinct from acetyl-

choline—capable of inducing hypotension and muscle

contraction [1]. This substance was purified and dried in

powder form (hence the name substance P) [2]; highly

conserved homologs were later identified in mice, rabbits,

and humans (Fig. 1a). SP is encoded by the TAC1 gene

(located on chromosome 7 in humans) and is a member of

the tachykinin peptide hormone family [3] (Fig. 1b); the

family also contains three other neuropeptides, also enco-

ded by TAC1, namely neurokinin A, neuropeptide K, and

neuropeptide c [4, 5]. SP is expressed by many cell types

including neurons [6–9], astrocytes [10, 11], microglia

[12], epithelial cells [13], and endothelial cells [14].

Immune cells, such as T cells [15], macrophages [16, 17],

dendritic cells [18], or eosinophils [19] also display sig-

nificant levels of SP expression [16, 15, 20]. SP is also

expressed by some stem cells and progenitor cells [21],

including immunomodulatory mesenchymal stem cells

(MSC) [22]. Such widespread expression of SP in diverse

cell types may suggest its participation in a wide variety of

physiological and pathophysiological functions, by acti-

vating a multitude of signaling pathways.

Structure

The physicochemical properties of substance P underlie its

function. The SP peptide comprises 11 amino acids

(RPKPQQFFGLM-NH2) [23] with a net positive charge at

physiologic pH. Positively charged residues are located on

the N-terminus, while the C-terminus contains hydrophobic
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residues; this separation renders SP as an amphiphilic

peptide (Fig. 1b). The amphiphilic nature of substance P

governs its direct interaction with lipid bilayer membranes,

but the functional importance of this interaction is not

clear. Importantly, SP mediates its functions by interacting

specifically with surface receptors, i.e. members of the

neurokinin (NK) family of G-protein coupled receptors

(Fig. 1c).

Substance P is stable in plasma, but has a short half-life

in tissues. The half-life of SP is defined by the kinetics of

chemical or enzymatic degradation in the extracellular

environment, by binding to cells, and by the dynamics of

cellular internalization. Reported values for SP half-life are

in the range of seconds to tens of minutes in tissues and

blood, while in extracted blood plasma SP is stable on the

time scale of hours [24–26].

Neurokinin receptors

NK receptors are of three canonical types, namely NK1R,

NK2R, and NK3R, often co-expressed by the same cell.

Among these, NK1R, which typically localizes to lipid

rafts [27], is a G-protein coupled receptor and displays the

highest affinity for substance P. This receptor has two

isoforms with differing affinities: a high-affinity receptor,

NK1R-F (407 residue-long full-length version) and the

low-affinity NK1R-T (311 residue-long truncated version)

[28–30]. The full-length NK1R (NK1R-F) is the predom-

inant form expressed at certain sites in the human brain,

whereas the truncated NK1R (NK1R-T) is widespread

throughout the central nervous system and in peripheral

tissues [31]. The activation of NK1R by SP depends on the

microarchitecture and the composition of the plasma

membrane. For example, when cholesterol is depleted, the

NK1R-mediated signaling is abolished [27]. The NK1R

receptor isoforms are expressed by neurons [32, 33],

epithelial [34], endothelial [35], and smooth muscle cells

[36], as well as fibroblasts [37]. Intriguingly, some immune

cells including T and B lymphocytes [15], natural killer

cells [38], dendritic cells [39], monocytes/macrophages

[40, 16], microglia and astrocytes [41], eosinophils and

mast cells express NK1R [42]. It remains unclear why cells

express three different classes of NK receptor family with

varying affinities, and what benefit this complexity confers

to cells.

Regulatory mechanisms

Interaction of substance P with its receptors leads to

internalization and recycling of the receptor, a process that

regulates the sensitivity of the cell to SP. Desensitization is

mediated by two proteins, a kinase and b-arrestin, and is

followed by rapid internalization [43]. Resensitization

involves pH-induced dephosphorylation and recycling of

NK1R (Fig. 2, right panel) [44]. Activation of NK1R

stimulates translocation of G-protein coupled-receptor

kinases (GRKs) from the cytosol to the plasma membrane

where they specifically phosphorylate SP-occupied NK1R

molecules (Fig. 2, right panel) [45]. b-Arrestins also

translocate to the plasma membrane, where they interact

with the phosphorylated NK1R [46]. The SP/NK1R–b-ar-
restin complex is rapidly internalized and subsequently

exposed to an acidic environment, which hydrolyzes

phosphate groups from NK1R. Substance P is then

detached from NK1R and degraded by proteolytic

enzymes; in turn, NK1R recycles to the cell surface,

leading to resensitization [44]. The process of de/re-sen-

sitization typically (but not always) involves internalization

and recycling and is tightly regulated. The phosphorylation

of NK1R by GRKs depends on the concentration of

available SP. NK1R undergoes extensive phosphorylation

and prolonged association with b-arrestins for hours, fol-

lowing exposure to high concentrations of SP ([10 nM). In

contrast, minimal phosphorylation is seen after exposure to

low concentrations of SP (\1 nM) [47, 48]. Transforming

growth factor b (TGF-b) delays SP-induced NK1R

a

b

cFig. 1 Molecular properties of

substance P. a The primary

sequence of substance P is

conserved across species.

b TAC1 gene encodes substance

P along with three other

neuropeptides with significant

similarities in primary

sequences. One-letter notation

is used for amino acids.

c Structure of NK1R bound to

substance P (PDB = 2KS9)
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internalization and thus enhances the activity of NK1R in T

cells [49], whereas inflammatory cytokines typically pro-

mote upregulation of NK1R [50, 51]. Resensitization is

regulated at a number of levels. An intracellular enzyme,

endothelin-converting enzyme-1, controls the translocation

of the receptors back to the surface; the enzyme is in turn

subject to post-translational regulation [52, 53]. Recycling

of NK1R depends on its ubiquitination state, which deter-

mines whether the internalized receptor is degraded or

returns to the cellular membrane. Further, re-sensitization

critically depends on Ras-related proteins (RABs),

including RAB4a, RAB5a and RAB11a [47]. RABs are

themselves subject to a number of regulatory mechanisms

[54, 55]. Previously, we mentioned that NK1R-F shows

higher affinity to SP than NK1R-T, potentially due to the

role of the C-terminal domain in NK1R folding [56].

Interestingly, the relatively lower affinity of the NK1R-T to

SP might impair its desensitization and internalization

leading to more persistent responses after receptor–ligand

interactions (reviewed in [56]). Finally, while in the

majority of cases NK1 receptors are recycled via the

mechanisms explained above, for a subpopulation of NK1

receptors, desensitization and resensitization may take

place without receptor internalization and surface return,

respectively [57].

Signaling pathways

Interaction of substance P with NK1 receptors signals to

several intracellular pathways (Fig. 2a). These pathways

involve second messengers, such as diacyl-glycerol

(DAG), inositol trisphosphate (IP3), and cyclic adenosine

monophosphate (cAMP), which control the expression of

cytokines and modulate ion channel activities. SP–NK1R

coupling activates phospholipase C and adenylate cyclase

to generate DAG/IP3 and cAMP, respectively, and even-

tually signals to mitogen-activated protein kinases (known

as MAPKK or MEKs). MEKs activate extracellular signal-

related kinases 1/2 (ERK1/2), which translocate into the

nucleus and mediate the expression of cytokines through

the serine/threonine protein kinase, mammalian target of

rapamycin (mTOR), as well as the transcription factors,

such as AP-1 and NF-jB. Figure 2a highlights the path-

ways that regulate the expression of several cytokines,

including the balance of anti-inflammatory interleukin

(IL)-10 and proinflammatory IL-12. Importantly, NK1R

regulates chemokines like CCL2, CCL4, CXCL2, and IL-8

via NF-jB, thereby recruiting immune cells to sites of

inflammation [58–68].

Pathophysiology

SP exerts a wide range of physiological as well as patho-

logical effects. The most widely known roles of SP are in

nociception and neurogenic inflammation [69–72], both

primarily mediated by the NK1R receptor. However, the

diverse expression of NK1R on various non-neuronal cell

types [16, 15] suggests other functions in addition to its

role in pain, including growth-promoting effects on smooth

muscle cells [73, 74], skin fibroblasts [73], and synovio-

cytes [75]; regulating the integrity of the extracellular

matrix by controlling the expression of matrix metallo-

proteinases and tissue inhibitors of metalloproteinase in

fibroblasts [76]; regulating angiogenesis and vasodilation

by controlling the release of nitric oxide [77–79]; and

regulating bone metabolism [80]. SP is known to be

involved in bone marrow fibrosis [25], tumor cell prolif-

eration [81, 82], and inflammatory processes [83].

Neurogenic inflammation plays a major role in rheumatoid

arthritis (RA). SP is significantly increased in synovial fluid

in RA patients [84]. Elevated levels of SP and upregulated

NK1R expression are seen in the rectum and colon of

patients with inflammatory bowel disease (IBD) and cor-

relate well with disease activity [83]. SP is a part of an

immune-regulatory mechanism that amplifies inflammation

at intestinal mucosal surfaces in the acute phase of IBD

Fig. 2 NK1R signaling and regulation. Left NK1R-associated sig-

naling pathways control the expression of cytokines and transcription

factors with critical involvement in immune regulation. Right high

concentration of SP (blackoval) initiates a desensitization process

involving phosphorylation of NK1R and its prolonged binding to ß-

arrestin. The phosphorylated NK1R can be recycled via endocytosis

and acidification within endosomes
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[85]. In particular, the ability of human mesenteric pre-

adipocytes from IBD patients to release IL-17A increases

in response to SP. In psoriasis, a disease that is charac-

terized by hyperproliferation of keratinocyte, elevated

amounts of SP are seen in the skin. Importantly, SP stim-

ulates mast cells to generate IL-1 family cytokines, which

in turn stimulate keratinocyte proliferation [86]. Finally,

current models suggest that SP generated by immune cells

stimulates Th1 and Th17 autoreactive cells that migrate to

the CNS where they target the nerves [87]. These and other

evidences together indicate that SP is a significant player in

autoimmunity.

Finally, the expression of SP receptors is markedly

increased during infection, especially on lymphocytes and

macrophages. In human immunodeficiency virus (HIV)

infection, and activation of NK1R by SP contributes to

increased HIV-1 infection in macrophages [56]. In the

following sections, we elaborate on the immunobiology of

SP and provide insights into the immunomodulatory roles

of SP in disease processes.

Immunobiology of substance P

The immune system provides protection from a wide range

of pathogens. One component of immunity, the phyloge-

netically ancient innate immune response, fights infections

from the moment of first contact and is the fundamental and

generic defensive weapon of both uni- and multicellular

organisms [88]. An essential element of an immune response

is the communication between cells. For example, after

injury or infection, tissue resident cells such as nerves, vas-

cular cells and immune cells actively interact in a paracrine

or contact-dependent manner. These communications pre-

cede recruitment of non-resident immune cells and may lead

to the development of adaptive immune responses [89, 90].

Adaptive immunity provides specific defense tools in ver-

tebrates that are critical for elimination of alloantigens. Cells

of both the innate and adaptive immune system contribute to

the generation of substance P and are also targets to this

neuropeptide [16, 15]. In the following sections, we discuss

how substance P controls the immune responses at multiple

levels ranging from recruitment and proliferation to modu-

lation of immune cell activation (Table 1).

Immune cell migration

Substance P is a key player in cellular migration and exerts

this function either directly or via induction of a number of

chemokines, their receptors, and adhesion molecules.

Substance P participates in migration of several innate

immune cells, such as neutrophils. For example, neu-

trophils show an attenuated chemotactic response to

exogenous IL-1b in NK1R-deficient mice [134]. SP can

also augment leukocyte recruitment indirectly via inducing

the expression of chemokines, such as macrophage

inflammatory proteins (MIP-1b or CCL4 [71], MIP-2 or

CXCL2 [49]), monocyte chemoattractant protein-1 (MCP-

1 or CCL2) [135, 67], CCL5 [136], and IL-8 [137]. SP

stimulates human corneal [137] and epithelial cells [64, 68]

as well as neutrophils [138], mast cells [139], and fibrob-

lasts to produce IL-8 (Fig. 2a) [140], a powerful neutrophil

chemotactic protein. In activated human T lymphocytes,

SP significantly upregulates the expression of MIP-1b, a b-
chemokine that mediates the migration of lymphocytes and

monocytes to the site of inflammation. This process is

mediated by NF-kB and is abrogated by the specific NK1R

antagonist CP-96,345 [62]. SP can also regulate the

movement of dendritic cells toward lymph nodes via

modulating the expression of chemokine receptors and

adhesion molecules. For example, SP upregulates the

expression of chemokine receptor CCR7 [141, 96] as well

as the adhesion molecule, macrophage-1 antigen (Mac-1,

CD11b/CD18) and its ligand, ICAM-1 (CD54) on NK1R?

dendritic cells, all facilitating the direction of these cells

toward lymph nodes [95, 142, 96]. Substance P acts as a

Table 1 Immunomodulatory effects of SP as compared to a few other neuropeptides

Neuropeptide Dendritic cell/macrophage Lymphocyte

Th1 Th2 Treg Th17

Substance P ?(1) ?(2) ?(3)

NKA ?(4) ?(5)

CGRP -(6) -(7) ?(8) ?(9) ?(10)

a-MSH -(11) -(12) ?(13) ?(14)

VIP -(15) -(16) ?(17) ?(18) ?(19)

? Indicates activation; - denotes inhibition

(1) [91–93], (2) [94, 95, 96], (3) [97, 98], (4) [99], (5) [100], (6) [101, 102, 103, 104, 105, 106, 107, 93], (7) [108, 109, 105, 110], (8)

[111, 105, 96], (9) [96], (10) [112], (11)[113–115], (12) [116], (13) [96], (14) [117, 96, 118, 119, 116], (15) [120, 121, 122, 93], (16)

[120, 123, 124], (17) [125, 126, 127, 96, 128], (18) [129, 130, 131, 96], (19) [132, 133]
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potential determinant of endothelial–leukocyte interactions

by inducing the expression of an endothelial–leukocyte

adhesion molecule (ELAM-1) by the microvascular

endothelium [143]. Immune cell recruitment by SP is

fundamental to neurogenic inflammation, which is a criti-

cal component of a number of pathologies. For example,

substance P recruits leukocytes to the peripheral terminals

of nociceptors, where they release neuroactive mediators

that contribute to neuropathic pain [144]. In summary, SP

appears to play a key role in regulating immune cell

migration typically via regulating the expression of

chemokines and adhesion molecules.

Immune cell proliferation

Cells proliferate by division into daughter cells, a process

that lies at the heart of immunology [145, 146]. Substance P

regulates the proliferation of lymphocytes, bone marrow

cells, and vascular endothelial cells. Studies show that sub-

stance P stimulates human T cell proliferation in vitro,

probably through upregulation of IL-2 expression

[147–151]. NK1R-/- mice have reduced the proliferative

response of T cells, suggesting that SP modulates the pro-

liferation of T cells [18]. Human bone marrow mononuclear

cells and fibroblasts also proliferate in response to substance

P [152]. Furthermore, it has been shown that SP could

enhance the proliferation of bone marrow stem cells [153].

The role of nerve-derived SP in hematopoiesis has been

supported through its local and systemic effects on NK1R

expressing bone marrow stem cells (BMSCs). Substance P

exerts a hematopoietic effect through induction of IL-1 and

stem cell factor (SCF) in bone marrow stroma [154]. This

effect arises from direct contact of SP-generating nerve

endings with the bone marrow stroma. Systemically

delivered SP may also affect hematopoietic stem cells

(HSCs), such as promoting the generation of colony-

forming units in the peripheral blood [155].

Substance P targets immune cells to promote angiogen-

esis [79]. Substance P may regulate angiogenesis directly by

inducing endothelial cells to produce nitric oxide [78], or

indirectly via its interactions with mast cells and granulo-

cytes. Substance P enhances the expression of vascular

endothelial growth factor (VEGF) in mast cells, an action

augmented by IL-33 [156], but VEGF blockade does not

abolish the proangiogenic property of SP [157]. SP may also

modulate angiogenesis by enhancing migration, adhesion,

and expression of angiogenic genes by granulocytes. This

property of substance P has been exploited to induce

angiogenesis at the site of implants [158]. Finally, we note

that angiogenesis induced by factors like SP can in turn

promote immune response by facilitating trafficking of

immune cells to tissues. For instance, in healthy cornea,

angiogenesis is actively suppressed which leads to corneal

immune privilege. Breakdown of angiogenic privilege is a

major risk factor for corneal transplant rejection. Interest-

ingly, inhibition of NK1R by Lanepitant (an NK1R

antagonist) significantly reduces corneal angiogenesis [159].

Immune cell activation

Substance P modulates the activity of innate and adaptive

immune cells via a number of intracellular pathways (exam-

ples are shown in Fig. 2a). A critical role of substance P lies in

its ability tomodulate the production of various cytokines by a

wide range of immune cells (Table 1). These include

cytokines with proinflammatory (e.g., IL-1), immunomodu-

latory (e.g., IL-10), and chemotactic properties (e.g., IL-8).

Cytokines in turn maymodulate the effect of substance P; IL-

12, IL-18, and TNFa induce NK1R expression in T cells

[50, 51], whereas IL-10 and TGF-b prevent NK1R expression

[49, 160]. Moreover, IL-1, IL-4, and IFN-c induce NK1R

expression in macrophages [17, 161].

Substance P modulates the activation of various innate

immune cells (e.g., phagocytosis and secretion of cytoki-

nes) and promotes the survival of innate immune cells such

as natural killer cells, macrophages, dendritic cells, neu-

trophils, mast cells, and eosinophils. Substance P enhances

the cytotoxicity of human natural killer cells by upregu-

lating their production of cytotoxic-associated molecules

(perforin, granzyme) and natural cytotoxicity receptors

(NCR) [162]. SP enhances phagocytosis in both neutrophils

and macrophages. In human neutrophils, SP potentiates

phagocytosis via stimulating respiratory burst and the

production of reactive oxygen intermediates (ROIs)

[163, 164]. These processes are fundamental to many

pathologies, such as migraine where substance P degran-

ulates dural mast cells [165]. Substance P also enhances

phagocytosis in murine peritoneal macrophages via its N-

terminus [166], induces oxidative burst, and stimulates

synthesis and release of arachidonic acid metabolites (e.g.,

PGE2, TXB2) and toxic oxygen radicals [167, 168]. In

addition, substance P enhances the survival of dendritic

cells by promoting Bcl-2 expression and subsequent

decrease in caspase 3 [94]. In human and murine mast

cells, SP induces degranulation and subsequent release of

histamine and serotonin [6] and upregulates Toll-like

receptor (TLR)-2, thereby promoting its activation [169].

Moreover, SP increases the expression of corticotropin-

releasing hormone receptor-1 (CRHR-1) by human mast

cells and the activation of this receptor leads to secretion of

IL-8, TNF-a, and VEGF, while CRH itself induces the

expression of the truncated NK1R (NK1R-T) [170].

Finally, SP stimulates activation, degranulation, and

release of O�
2 and TXB2 from eosinophils [171].

Substance P also plays a critical role in the activation of

adaptive immune cells. SP enhances immunoglobulin

Neuropeptide substance P and the immune response 4253
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secretion in murine Peyer’s patches, splenic lymphocytes

and mesenteric lymph nodes in an isotype-specific manner

(particularly, IgA). In certain B cell lymphoma clones,

substance P directly stimulates the secretion of IgA, but not

of IgM. However, in the presence of lipopolysaccharide

(LPS), substance P stimulates a threefold increase in IgM

secretion [172], indicating a cross talk between NK1R and

TLR4. Depletion of substance P in rodents by capsaicin

administration or treatment with a substance P antagonist

decreases the number of antibody-secreting cells [173].

The role of substance P in T cell activation and differ-

entiation of helper T cell subsets has been investigated in

several studies, although few of them achieved remarkable

results. For example, during the inflammatory response

caused by murine schistosomiasis, SP binds to NK1R on T

cells and induces the production of IFN-c, a Th1 signature

cytokine, while it has no effect on the secretion of Th2

cytokines, such as IL-4 and IL-5 [36]. In a murine colitis

model, it was shown that expression of NK1R in mucosal T

cells in IL-10-deficient mice was associated with Th1-

mediated intestinal inflammation [160]. In addition, via

binding to NK1R on DCs, SP can induce a Th1 and T

cytotoxic (CTL)-1 bias of effector T cells in mice [79]. In

another murine study, NK1R signaling in DCs caused an

inhibition of IL-10 synthesis and secretion without affect-

ing IL-12 production. However, after cutaneous

administration of these NK1R-signaled DCs, IL-12 was

upregulated in host DCs resulting in a remarkable Th1

immune response [78]. Regarding Th17 immunity, one

study showed that SP promoted the generation of human

memory Th17 cells from non-Th17-committed CD4?

memory T cells, but not from naı̈ve CD4? T cells. They

also showed that the other members of the tachykinin

family, neurokinins A and B, had no effect on the differ-

entiation of naive and memory T cells [98]. Finally,

administration of substance P during the primary immune

response amplifies the secondary immune response by

activating CD8? T lymphocytes [174].

Substance P affects the immunomodulatory capacity of

mesenchymal stem cells (MSC). Evidence suggests that SP

treatment may recover the immunosuppressive function of

late passage MSCs by potentiating their ability to secrete

TGF-b1, which can enhance the therapeutic activity of

ex vivo expanded MSCs in long-term culture. Using an

NK1R antagonist, the restoration of the weakened activity

of MSCs could be abolished [175].

It is important to note that the two NK1 receptor isoforms

mediate different immunological effects when activated by

SP [56]. For example, SP upregulates NF-jB and IL-8, and

stimulates PKCd via NK1R-F, but not NK1R-T in certain

human cells. There are also differences in the timing of SP-

induced ERK activation in cells expressing the two different

forms of the receptor. ERK activation via NK1R-F is more

rapid than via NK1R-T. These data suggest the role of the

carboxyl terminus of NK1R in the activation of downstream

signaling pathways [30]. On the other hand, Chernova et al.

reported that human peripheral blood monocytes express

NK1R-T, but not NK1R-F; however, SP interactions with

NK1R-T do not lead to calcium (Ca2?) mobilization. When

NK1R-F is transfected into monocytes, SP can mobilize

Ca2?. Furthermore, via NK1R-T, SP can enhance the CCR5

ligand CCL5-elicited Ca2? mobilization leading to chemo-

taxis, indicating that even the NK1R-T can be functional in

monocytes. From these results, we can conclude that in

human monocytes, NK1R-T activates selected signaling

pathways and mediates chemotaxis [136]. Concurrently, Lai

et al. showed that a human monocyte/macrophage cell line

expresses only NK1R-T, which cannot trigger a Ca2?

response upon addition of SP, although SP increases the

CCR5-preferring ligand RANTES (CCL5)-mediated Ca2?

increase in these cells. When these cells differentiate to a

macrophage-like phenotype, they express NK1R-F, which

lead to an SP (10-6 M)-induced Ca2? response [29]. Taken

together, both truncated and full-length NK1R are func-

tionally active in innate immune cells and their functional

roles seemingly depend on the cell type and may differ

between primary cells and cell lines.

Immunopharmacology of substance P

The list of NK1R antagonists (NKAs) is growing. NKAs

are of two types: peptide antagonists and non-peptide

antagonists. An example of the former group is spantide, a

therapeutic peptide which can treat corneal infection [176].

The most well-known non-peptide antagonist is aprepitant,

a morpholine derivative used as an antiemetic, antide-

pressant, anxiolytic, and antitumor drug [177–180]. Several

studies have reported the effect of NKAs on innate and

adaptive immune responses, including the modulation of

cytokine production, immune cell proliferation, and

immune cell migration. Spantide I, for example, enhances

proinflammatory (e.g., IL-1b and TNF-a) and anti-inflam-

matory cytokines (e.g., IL-10) and suppresses Th1-

associated cytokines (e.g., IL-18, IL-12 and INFc) [176].
Spantide suppresses IL-2 production by human and murine

T cells and thus may suppress T cell proliferation [150].

Spantide antagonizes the role of SP in immune cell

recruitment; for example, it decreases the influx of neu-

trophils and CD4? T cells in the corneal lesions. When

treated with spantide I, corneal IL-6 and CCL3 production

was reduced in animal models [181]. Similar functions

have been reported for other NK1R antagonists as well.

Lanepitant suppresses leukocyte infiltration, and lymph-

and hemangiogenesis in the cornea [159]. Spantide also

suppresses secretion of immunoglobulins from B cells in

rats [173]. Finally, NKAs can suppress hemangiogenesis
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by decreasing stem cell factor (SCF), IL-1, IL-3, and GM-

CSF [182, 154]. Taken together, these results indicate that

major advances in our understanding of the mechanism of

action of SP have emerged in the past decade via phar-

macologic blockade of SP in animal models.

There are few clinical trials using the SP antagonist,

aprepitant, inHIV-infectedpatients. In a clinical trial conducted

by Pablo Tebas, Steven D. Douglas and colleagues in HIV-

infected patients, aprepitant did not show significant antiviral

activity, although aprepitant-treated patients showed decreased

numbers of CD4? PD1? T cells, so-called exhausted T cells,

and decreased plasma levels of substance P and solubleCD163,

suggesting that blockade of the NK1R pathway plays a role in

regulating monocyte activation in HIV infection [183].

Immunomodulatory role of the substance P
in disease

In this section, we briefly discuss the clinical implications

of SP immunobiology for neurology and ophthalmology,

with particular focus on SP and ocular surface diseases,

where neuropeptide research is on the rise (see Table 2).

Neurologic diseases

The immunomodulatory role of SP in neurologic condi-

tions has been widely recognized. Substance P exerts its

immunomodulatory role within the central nervous system

(CNS) through its ability to bias the inflammatory response

toward Th17 immunity, as well as to regulate Th1/Th2

balance toward either Th1 or Th2 response depending on

the nature of antigens [98, 206]. In addition to regulating

Th1 and Th2 cells, SP can bias the inflammatory response

toward Th17 immunity [98], which is implicated in the

pathogenesis of multiple sclerosis/experimental autoim-

mune encephalomyelitis (EAE). In this way, SP may

contribute to the maintenance of CNS inflammation during

the chronic phase of EAE [201]. NK1R antagonists, such as

CP-96,345, stabilize the blood–brain barrier and down-

regulate Th1-type cytokines [200].

SP has a well-recognized role in nociceptive neuro-

transmission [70]. SP may recruit CNS glial cells under

pathological pain conditions [207]. For example, bone

fracture pain is associated with increased expression of

glial activation markers, which can be attenuated with an

NK1R antagonist [208]. It is not yet clear whether these

Table 2 Immunomodulatory role of the substance P: lessens from disease models

Disease model Administration of SP Blockage of NK1R/SP/NEP system: knockout

(KO) or pharmacological blockade (PB)

References

Arthritis Proinflammatory Anti-inflammatory (KO) [184, 185]

Type 1 diabetes Reversal of diabetes

(Intrapancreatic in NOD

mice)

[186]

Inflammatory bowel disease Anti-inflammatory (KN, PB) [187–190]

Colitis Anti-inflammatory (PB) [191, 160]

Psoriasis Anti-inflammatory (PB) [192]

Contact dermatitis Anti-inflammatory (PB, KO) [193, 194]

Asthma Proinflammatory (Intranasal) Anti-inflammatory (PB) [195–197]

Immune mediated liver disease Anti-inflammatory (PB) [198]

Lung injury in sepsis Anti-inflammatory (PB) [199]

Experimental Autoimmune Encephalitis

(EAE)

Anti-inflammatory (PB, KO) [200, 201]

Enterocolitis Anti-inflammatory (KO) [202]

Salmonella enterica infection Protective through promoting IgA generation

(KO)

Increased susceptibility through suppression of

IL-12 and IFN-c (PB)

[203–204]

Pseudomonas aeruginosa corneal infection Proinflammatory

(Intraperitoneal)

Increased resistance in susceptible mice (PB)

Increased susceptibility in resistant mice (PB)

[205]

HSV-1 corneal infection Anti-inflammatory (PB) [181]

Corneal Neovascularization-suture model Anti-inflammatory (PB) [159]

Corneal Neovascularization-alkali burn

model

Anti-inflammatory (PB) [159]
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effects are direct, as inhibition of nitric oxide can attenuate

the proinflammatory effects of SP [209]. Given the ability

of microglia and astrocytes to oppose opioid analgesia

[210], it is notable that co-administration of an NKR1

antagonist with morphine for 6 days attenuates hyperal-

gesia and expression of glial activation markers [211].

In Parkinson’s disease, CNS immune cells such as

microglia and astrocytes are activated and release proin-

flammatory cytokines [212–215]. Substance P has been

found to mediate this inflammatory response, which can be

suppressed using NK1R antagonists. These observations

suggest the possible use of NK1R antagonists for neuro-

protection in Parkinson’s disease [215]. Finally, SP can

enhance the blood–brain barrier permeability by disrupting

the tight junction proteins [216], which facilitates edema

(leading to increased pressure in the cranium or spinal

canal) following traumatic brain injury, spinal cord injury,

and stroke [217]. Accordingly, NK1Rs are therapeutic

targets for these conditions [218].

Ocular diseases

Neuropeptides are generated by a number of cells in the

eye. For example, sensory nerves of the eye generate

substance P, while vasoactive intestinal polypeptide and

neuropeptide Y are secreted by parasympathetic and

sympathetic innervations of the eye, respectively

[219, 220]. In the retina, the principal SP localizations are

amacrine cells in the proximal inner nuclear layer and

displaced amacrine cells in the ganglion cell layer

[221–223]. Involvement of SP has been described in a few

inflammatory and pathological conditions of the retina.

Amacrine-derived SP has been reported to be involved in

the loss of immune privilege post-retinal laser burn

through its potential to promote an inflammatory envi-

ronment that in turn activates resident macrophages and

microglia. NK1R antagonists could prevent or curb

inflammation post-ocular trauma [224]. On the other

hand, there are reports on anti-inflammatory effects of SP

in the retina. SP can reportedly prevent laser-induced

retinal degeneration in vivo, by suppressing inflammation

and reducing neovascularization. Its anti-inflammatory

effects are exerted via reduction of TNF-a and increase of

IL-10; the anti-angiogenic effects are achieved via

downregulation of CD31? retinal vessels [225].

Substance P plays significant roles in corneal biology and

diseases.A number of sources have been identified for corneal

SP, namely trigeminal sensory neurons, corneal epithelial

cells, stromal keratocytes, and immune cells [15, 13]. Several

reports have explored the role of SP in maintaining corneal

epithelial integrity and regulating regeneration of the corneal

epithelium. The corneal epithelium is the first barrier against

bacteria and other foreign antigens, and actively interacts with

other corneal cells, such as resident immune cells and corneal

nerves [226, 15]. Substance P targets corneal epithelial cells

via binding to the NK1R receptor. Substance P contributes to

themaintenance of tight junctions in human corneal epithelial

cells by upregulating the tight junction proteins, E-cadherin

[227] and zonula occludens (ZO-1) [228]. Corneal epithelial

cells also respond to SP by increased synthesis of IL-8 and

MIP-2, which in turn lead to the recruitment of neutrophils

[137]. Substance P functions as an important modulator of

corneal (epithelial) wound healing by affecting the process of

corneal epithelial migration via enhancing the effect of

migrating–promoting agents and modulating epithelial cell

attachment to the extracellular matrix. The synergistic effect

of SP and insulin-like growth factor (IGF)-1 has recently been

reported, yet studies are needed to elucidate the exact under-

lying mechanism. Substance P likely promotes corneal

epithelial cell migration by IGF-1, fibronectin, and IL-6. This

sensitization is likely mediated by a signaling pathway trig-

gered by NK1R, one that leads to the activation of

phospholipase C, the IP3-mediated release of Ca2? from the

endoplasmic reticulum (ER), and the activation of calmod-

ulin-dependent protein kinase II (CaM-PK II). In turn, the

target proteins of CaM-PK II may stimulate signaling path-

ways activated by IGF-1 (or its C domain), fibronectin, or IL-6

[229]. Additionally, SP and IGF-1 stimulate the attachment of

corneal epithelial cells to various extracellular matrix proteins

by upregulating a5b1 integrin (fibronectin receptor/integrins

function as cell surface receptors for fibronectin, an adhesion

glycoproteinwhich provides a temporarymatrix for epithelial

migration) and inducing tyrosine phosphorylation of focal

adhesion kinase and paxillin in corneal epithelial cells

[230, 231]. This synergistic effect of SP and IGF-1 improves

healing of corneal epithelialwounds and defects in individuals

with neurotrophic and anhidrotic keratopathy, Riley–Day

syndrome, herpetic keratitis, and in rats with diabetic ker-

atopathy [232–235]. Even though the importance of SP in

corneal wound healing has been suggested, it was mainly

explored in the context of the local effect of SP on accelerated

wound healing. SP may also act systemically, recruiting

CD29? stromal-like cells from the periphery to the site of

injury, resulting in accelerated wound healing [155].

By modulating the balance between pro- and anti-in-

flammatory cytokines, SP may affect susceptibility to

corneal infections. Substance P has been shown to down-

regulate the mTOR pathway, leading to decreased

expression of the anti-inflammatory cytokine IL-10 and

upregulation of the proinflammatory cytokines IL-12p40

and IL-23 (Fig. 2). In animal models, this change results in

increased susceptibility to corneal infection [61, 236]. In

contrast, SP regulates the IFN-c production of natural killer
cells and thus protects against bacterial infection. Treat-

ment with SP antagonist spantide I significantly decreases

corneal IFN-c and IL-18 protein levels, which leads to
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corneal infection and perforation. IL-18 upregulates IFN-c
production by natural killer cells through IL-12 indepen-

dent mechanisms and exerts a protective role in the cornea

of infected mice, such as after Pseudomonas aeruginosa

infection [237].

Substance P directly stimulates corneal neovasculariza-

tion, an effect which can be blocked by NK1R antagonists

[159]. Normal cornea is known to have angiogenic and

immune privilege. Breaking angiogenic privilege can lead

to disruption of immune privilege as well [238]. An

increased SP level, which is seen in inflammation

[239, 83], could challenge the privilege by stimulating

endothelial cell proliferation. Loss of angiogenic privilege

has clinical significance in corneal graft rejection [240].

The cornea constitutes one of the most densely innervated

tissues in the humanbody [241, 242] and corneal nerve density

and function are affected in a number of corneal pathologies

such as dry eye disease [243–249]. In healthy cornea, SP is

generated by corneal nerves and epithelium and serves to

protect epithelial integrity [220, 250, 251, 229]. In dry eye

disease, desiccating stress disrupts the epithelial integrity and

induces nerve loss [252]. One expects that substance P pro-

duction increases initially by the stressedepitheliumandnerve

fibers as a defensive mechanism to protect the epithelial

integrity. SP then recruits immune cells via enhancing the

production of chemokines, such as IL-8. As the disease pro-

gresses, nerve and epithelial loss expectedly lead to reduced

production of SP, while inflammation results in higher pro-

duction of SP by the residents and recruited immune cells. In

other words, a reduction in nerve density, such as in the

chronic phase of dry eye disease, would expectedly lead to a

reduction in SP level. In contrast, inflamed nerve cells, like

those seen in early dry eye disease,would expectedly generate

higher levels of SP. Corneal transplantation could be another

interesting condition: Here, we expect a sudden release of

copious amounts of SP in the graft bed along with an imme-

diate reduction in the production of nerve-derived SP in the

grafted cornea. Other sources, such as macrophages, might

produce more SP at the later stages. In high-risk setting (HR),

where inflammation exists prior to transplantation [253], SP

level is likely higher than normal even before transplantation.

SP generation likely increases with the progression of

alloimmune response and leads to increased angiogenesis and

graft rejection. These hypotheses, however, remain to be

tested in specific disease contexts.

Concluding remarks

Substance P represents an important component of the

immune response. Despite the insight that has been gained

from in vitro and in vivo studies, the several unresolved

questions related to the role of SP in immunobiology

remain to be elucidated. For example, the relationship

between SP receptor levels of expression in different cell

types and diseases is still unknown. This presents a chal-

lenge when interpreting clinical studies, where NK1R

antagonists may need to be stratified to appropriate patient

subsets. We need model systems that are simple enough to

allow elucidation of the roles and responses of different

cell types and their environment that will help elucidate the

role of SP in interactions between nerve, immune, vascular

cells, as well as connective tissue cells. The cornea is

potentially an excellent model system for such studies, as it

carries the highest density of nerve cells and has proven to

be an invaluable model system for immunology and

angiogenesis. The clinical implications of such studies are

potentially significant. Cornea transplants, for instance, are

the most common human tissue transplants in the USA. It

is likely that several studies related to substance P

immunobiology using ocular surface disease models will

emerge in the years to come.
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