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Abstract

Continuous time-series data are frequently distilled into single values and analyzed using discrete 

statistical methods, underutilizing large datasets. Statistical parametric mapping (SPM) allows 

hypotheses over the entire spectrum, but consistency with discrete analyses of kinematic data is 

unclear. We applied SPM to evaluate effect of load and postural demands during reaching on 

thoracohumeral kinematics in older and young adults, and examined consistency between one-

dimensional SPM and discrete analyses of the same dataset. We hypothesized that older adults 

would choose postures that bring the humerus anterior to the frontal plane (towards flexion) even 

for low demand tasks, and that SPM would reveal differences persisting over larger temporal 

portions of the reach. Ten healthy older (72.4±3.1yrs) and 16 young (22.9±2.5yrs) adults reached 

upward and forward with high and low loads. SPM and discrete t-tests were used to analyze group 

effects for elevation plane, elevation, and axial rotation joint angles and velocity. Older adults used 

more positive (anterior) elevation plane and less elevated postures to initiate and terminate 

reaching (p<0.008), with long duration differences during termination. When reaching upward, 

differences in elevation persisted over longer temporal periods at midreach for high loads (32–58% 

of reach) compared to low load (41–45%). SPM and discrete analyses were consistent, but SPM 

permitted clear identification of temporal periods over which differences persisted, while discrete 

methods allowed analysis of extracted values, like ROM. This work highlights the utility of SPM 

to analyze kinematics time series data, and emphasizes importance of task selection when 

assessing age-related changes in movement.
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Introduction

Analysis of continuous time-series data describing movement trajectories during functional 

tasks is challenging. Frequently continuous data are distilled into single metrics (e.g. peak, 

mean values) (Ketcham et al., 2002; Hortobágyi et al., 2003; Darling et al., 1989) and 

analyzed using discrete statistical methods (e.g. t-test, ANOVA), ultimately underutilizing 

large datasets and introducing bias (Pataky et al., 2013). Statistical parametric mapping 

(SPM) (Pataky, 2010; 2012; Pataky et al., 2013) was originally developed for neuroimaging 

to study continuous and bounded data while 1) eliminating regional focus bias (i.e. due to a 
priori selection of timepoint or extracted value), allowing hypotheses to be proposed over the 

entire spectrum (Friston et al., 1991; 2007; Worsley et al. 1992; Frackowiak, 2004), and 2) 

eliminating covariance bias from multiple comparisons by using a family-wise approach for 

inference of significance. SPM permits statistical results to be presented in their original 

spatiotemporal data spectra, resulting in a more intuitive context for understanding of 

temporal or spatial regions where significant differences are detected. SPM has been applied 

to analyze ground reaction forces (Pataky, 2010), kinematics (Pataky et al., 2013), and 

muscle forces (Pataky et al., 2013). However, the extent to which one-dimensional SPM and 

traditional discrete analyses provide consistent information has not been explicitly 

examined, and SPM has not been applied to interpret upper limb movement, for which 

multiple kinematics strategies can be used to position the hand when performing tasks 

throughout the workspace (Buckley et al., 1996; Murray and Johnson, 2004).

Aging is commonly associated with altered movement patterns when performing upper limb 

tasks (Kozak et al., 2003; Morgan et al., 1994; Tsai and Lin, 2015), but specific influence of 

task selection on these observations is unclear. Most prior work in the upper limb has 

evaluated tasks that emphasize precision (e.g. finger pointing) and are unloaded. In these 

types of tasks, older adults use longer movement times with lower peak velocities and 

increased secondary (i.e. corrective) movements when reaching to a target (Ketcham et al., 

2002; Hortobágyi et al., 2003; Darling et al., 1989; Morgan et al., 1994). These movement 

strategies have been attributed to loss of certainty (e.g. movement jerk) (Morgan et al., 

1994), difficulty modulating forces (Ketcham et al., 2002), and altered muscle activation 

patterns (Hortobágyi et al., 2003; Darling et al., 1989). However, many daily tasks require 

load management while reaching, with less emphasis on precision. Tasks representing daily 

activities are critical for understanding meaningful functional declines associated with aging 

and are understudied (Landers et al., 2001; Narici and Maffulli, 2010). Evidence suggests 

that adequate upper limb strength and modulation of arm stiffness is needed to maintain 

hand stability when managing load (Trumbower et al., 2009; Perreault et al., 2001; Krutky et 

al., 2009) and that young adults choose limb postures with the humerus anterior to the thorax 

to accommodate anticipated loading (Trumbower et al., 2009; Chen et al., 2010). Whether 

older adults adopt this strategy during functional tasks requiring load management is 

unknown.
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Our goal was to apply SPM to evaluate the effect of load and postural demand on 

thoracohumeral kinematic trajectories in older adults compared to young adults, and 

examine consistency between one-dimensional SPM and discrete analyses of these upper 

limb kinematic data. We hypothesized that older adults would choose postures that bring the 

humerus anterior to the thorax (toward flexion plane) even for low demand task 

requirements, and that SPM would reveal differences persisting over larger temporal 

portions of the reach.

Methods

Participants and Procedures

Ten older adults (6 female/4 male, mean age 72.4±3.1 yrs) and sixteen young adults (9 

female/7 male, mean age 22.9±2.5 yrs) participated (Table 1). Participants met inclusion 

criteria: 1) free of medical condition exacerbated by physical testing; 2) no history of 

neuromuscular disorder or upper limb injury; and 3) able to stand without assistive devices. 

The study was approved by Wake Forest Health Sciences Institutional Review Board and all 

participants provided written informed consent. Participants performed forward and upward 

seated reaching tasks (table height=0.68 m) with their dominant arm (Figure 1). The load 

conditions were 0.63 kg (low) and 3.84 kg (high); loads were selected to replicate typical 

household items, including a canister of sugar (low load) and a 1 gallon jug (high load). The 

low target was a forward reach on the table surface. For the high target, a line from the 

shoulder to the target formed a 20° angle to the horizontal level of the shoulder. Participants 

were initially positioned with the arm adducted and elbow flexed 90° to set the hand 

position. After hand placement, movement was unconstrained. Participants reached to the 

target (defined as 50% of movement) at a distance 80% of forearm length, then returned to 

the starting hand position. Tasks were randomized to avoid possible ordering effects; all 

trials for a single task condition were completed before beginning the next condition. 

Participants were asked to complete tasks at a self-selected comfortable speed. The torso 

was firmly restrained with a chest strap to a chair reclined 10° from vertical, and wrist 

movement was restricted with a brace. Three trials were recorded for each task with 60 s of 

rest between trials and 2 min rest between tasks. The second trial of each task was chosen 

for analysis.

Instrumentation

Kinematics were recorded at 200 Hz using 7 Hawk cameras (Motion Analysis Corporation, 

Santa Rosa, CA) tracking 1 cm retroreflective markers placed on 13 anatomical landmarks 

(Table 2). Data were post-processed and smoothed with a 6 Hz filter (Cortex, Motion 

Analysis Corporation, Santa Rosa, CA). Prior to performing tasks, a static recording was 

obtained for use in marker definition and model scaling.

Joint postures were extracted from marker locations using an upper limb musculoskeletal 

model (Holzbaur et al., 2005; Saul et al., 2015a) implemented in OpenSim (Delp et al., 

2007; v3.1). Shoulder posture was defined using three degrees of freedom (DOF) (elevation 

plane, thoracohumeral elevation, axial rotation). To ensure consistency and clarity, 

thoracohumeral kinematics were calculated according to International Society of 
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Biomechanics (ISB) standards for axis definition and order of rotation (Wu et al., 2005) 

(Figure 2). Briefly, positive elevation in the +90° elevation plane corresponds with forward 

flexion, while positive elevation in the 0° elevation plane corresponds with abduction; 

positive axial rotation corresponds with internal rotation (Wu et al., 2005). Scaling was 

conducted such that distances between the model’s virtual markers matched distances 

between experimental markers for each participant (Delp et al., 2007). Inverse kinematic 

analyses were used to obtain joint angle trajectories corresponding to recorded marker 

positions. Joint angle trajectories for each task were filtered using a zero-phase digital 

moving window filter with a custom Matlab program using the filtfilt function (The 

MathWorks, Inc., Natick, MA).

Joint velocity was computed from joint angle trajectories using a three-point finite difference 

method. Minimum and maximum values for posture and velocity were identified for each 

DOF. Range of motion (ROM) for each DOF was calculated by subtracting minimum joint 

angle from maximum joint angle. To account for potential differences in self-selected speed 

across participants, joint angle trajectories were normalized by total movement time for 

SPM analysis and are represented as percentage of total time to task completion; 50% 

represents hand at the target.

Statistical Methods

A custom Matlab program was used to conduct one-dimensional SPM analyses 

incorporating SPM1D functions described by Pataky (2014). To conduct SPM t-tests on 

continuous joint angle trajectories, the experimental outcomes matrix Y in the general linear 

model formulation (i.e. Y = Xβ + ε) was defined as an N × K matrix where N and K are the 

number of subjects and number of time points per subject, respectively. Since we normalized 

the temporal axis to percentage of movement, 100 temporal data points were extracted for 

each subject, resulting in a 26 × 100 matrix. With 16 young (n1=16) and 10 older subjects 

(n2=10), the design matrix X was composed of 1 elements and 0 elements with the number 

of entries of each corresponding to the number of subjects per group: 

.β are parameters corresponding to each of the terms in X. 

The error term (ε) was N × 1 in dimension, representing precision of floating point numbers. 

To solve the general linear model equations, a set of estimated parameters β̂ that best fit the 

data were used; this was required because the number of experimental outcomes is typically 

higher than the number of parameters, resulting in a set of unsolvable simultaneous 

equations (Kiebel and Holmes, 2004). The least square method was used to estimate β̂. To 

calculate the least square estimates β̂, SPM1D used Matlab’s Moore-Penrose pseudo-inverse 

function. For formulation of the two-sample t-test, we tested the null hypothesis cT β = 0 

where c =[1, −1]T, β = [μ1, μ2]T represented equal means between groups. The t-statistic was 

calculated by the student’s t-distribution  where σ̂2 is calculated from the 
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residual sum-of-squares divided by the degrees of freedom (DOF) (Kiebel and Holmes, 

2004). With the null hypothesis cT β = 0, the t-statistic can be further simplified to 

. SPM1D employs the single inference procedure to evaluate significance of 

temporal clusters, or regions of contiguous values for which the test statistic exceeds the 

significance threshold. In this method, as smoothness of a random field increases, so does 

the breadth of temporal clusters, and very broad/high clusters are less expected to emerge. A 

single p-value is reported for each observed cluster above the threshold, interpreted as 

probability that the observed cluster resulted from a smooth random process (Pataky, 2012). 

The critical threshold for significance was computed using the Bonferroni correction (1), 

with family-wise significance level of PFWE=0.05:

(1)

Since wrist motion was restrained, the number of correlated DOF available for limb 

movement, γ, equaled 5 (elevation plane, elevation, axial rotation, elbow flexion, forearm 

rotation), resulting in a critical threshold of p≤0.0102.

Discrete t-tests with unequal variances were conducted between groups for minimum, 

maximum, and ROM of thoracohumeral joint angles during each task by load combination 

to compare against analogous SPM t-test analyses. To evaluate whether each group modified 

joint postures when load demand was increased, t-tests with equal variances were conducted 

for minimum, maximum, and ROM of thoracohumeral joint angles, comparing load 

conditions for each group by task combination.

Results

Effects of Age

Older adults performed tasks with more positive elevation plane (e.g. toward flexion) and 

less elevated posture (humerus closer to thorax) than young adults briefly at the beginning 

and more extensively at the end of reaching. For forward reach with low load, older adults 

had significantly more positive elevation plane during 0–4% (p=0.008) and 76%–100% 

(p=0.0001) of movement (Figure 3D), and lower elevation during 0–4% (p=0.006) and 

87%–100% (p=0.001) of movement (Figure 3E). During forward reach with high load, SPM 

did not detect any significant differences (Figure 4). During upward reaches, SPM analyses 

showed older adults used more positive elevation plane at the beginning and, more 

extensively, at the end of the movement, but were less elevated when the hand was near the 

target (~50%) (Figure 4E, 5E). Specifically, for upward reach with low load, older adults had 

more positive elevation plane during 0–4% (p=0.006) and 78%–100% (p<0.0001) of 

movement (Figure 5D) and lower elevation at 41%–45% (p=0.008) and 94%–100% 

(p=0.007) of movement (Figure 5E). The marked difference in elevation was more 

temporally pronounced for upward reach with high load, where older adults were less 

elevated during 32%–58% of movement as the load approached the target (p<0.0001) 
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(Figure 6E). Under this reach condition, they also exhibited more positive elevation plane 

during 0–6% (p=0.003) and 85%–100% (p=0.0005) of movement (Figure 6D).

SPM analyses demonstrated lower joint velocities for older adults compared to young adults 

during the periods of peak velocity (Figure 7). For forward reaches with low load, angular 

velocity was significantly lower for older adults with regard to elevation plane during 6%–

9% (p=0.0002) and 99%–100% (p=0.001) of movement compared to young adults (Figure 

7F). Similarly, during forward reaches with high load, angular velocity for elevation plane 

was lower for older adults during 6%–7% of movement (p=0.005) (Figure 7G).

For upward reaches with low load, older adults used lower angular velocity for elevation 

plane during 3%–10% (p<0.0001) and 74% –81% (p<0.0001) of movement (Figure 7H). For 

upward reaches with high load, older adults used lower angular velocity for elevation plane 

during 2%–5% (p=0.0001) and 89% (p=0.005) of movement (Figure 7I), lower axial 

rotation angular velocity during 31%–35% (p<0.0001) and 56% –58% (p=0.004) of the 

movement, and higher axial rotation angular velocity at 96%–97% (p<0.0001) of the 

movement (Figure 7J).

Effects of Load

Older adults did not significantly alter their posture when load was increased for either 

forward or upward reaches. However, young adults modified their postures to a more 

positive (i.e. toward flexion) elevation plane when load demand was increased. Specifically, 

for young adults during forward reaches, high load resulted in reduced elevation plane ROM 

(p=0.0006) with greater positive minimum (p<0.0001) and maximum (p=0.004) angles 

which position the humerus in front of the thorax. However, young adults had increased 

elevation ROM (p<0.0001) during high load demand tasks, exhibiting more positive 

maximum elevation angle (p<0.0001) and less positive minimum elevation angle with high 

load (p=0.001). Similarly, for upward reaches with high load, young adults adopted a 

posture with the humerus more anterior to the thorax, including more positive minimum 

elevation plane (p<0.0001) and smaller elevation plane ROM (p=0.0005), and a more 

positive maximum elevation (p<0.0001) with larger elevation ROM (p=0.0006) (Table 3).

SPM and Discrete Analyses

Overall SPM and discrete analyses (Table 4) revealed consistent results, although discrete 

analyses provided information about ROM. SPM is unable to explicitly test for extracted 

values like ROM. Specifically, discrete analyses found older adults had more positive 

minimum elevation plane (p=0.004), smaller ROM for elevation plane (p=0.010) (Figure 

3G), more positive minimum elevation angle (p<0.0001), and larger elevation ROM 

(p=0.003) (Figure 3H) during forward reach with low load. SPM revealed movement 

intervals near movement initiation and termination where significant age effects were 

observed for both DOFs. Notably, these movement intervals captured minimum shoulder 

angles, consistent with discrete analyses. During forward reach with high load, neither test 

detected any significant age effect (Figure 4G,H,I).

During upward reach with low load, discrete analyses detected that older adults used more 

positive minimum elevation plane (p<0.0001), smaller elevation plane ROM (p<0.0001) 
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(Figure 5G), and a more positive maximum elevation angle (p=0.002) (Figure 4H). SPM 

analyses detected significant age effects for elevation plane during movement intervals near 

initiation and termination of reaching, which also included the smaller minimum angle as 

detected with discrete analyses. During upward reach with high load, discrete analyses 

indicated that older adults used greater positive minimum elevation plane (p<0.0001), 

smaller elevation plane ROM (p<0.0001) (Figure 5G), greater maximum elevation angle 

(p=0.0004), smaller elevation ROM (p=0.002) (Figure 5H), and smaller axial rotation ROM 

(p=0.002) (Figure 5I).

Discussion

The current study explicitly compares one-dimensional SPM results to discrete analyses of 

upper limb reaching under different load and postural demands. The SPM results indicate 

that older adults use arm postures with more positive elevation plane and less elevation when 

performing reaches under both low and high postural and load demands. These differences 

were particularly prevalent during the return portion of reaching for most tasks and when the 

hand was at the target during upward reaches. During high load conditions, young adults 

employed a similar strategy to older adults, adopting postures with greater positive elevation 

plane. During upward reaching, the temporal portion over which kinematic differences 

between ages were observed was increased. This work highlights importance of task 

selection when assessing age-related changes in movement, emphasizing that both postural 

and load demand can amplify movement changes. Notably, this research leverages temporal 

and spatial information of the full movement recording to elucidate portions of a reaching 

movement during which kinematic differences may exist by using SPM analysis.

Overall, analyses using discrete t-tests of minimum and maximum angles were consistent 

with the SPM analysis for regions of movement containing kinematic extrema. However, 

discrete analysis only addressed differences in peak values, while SPM identified timing and 

duration of temporal regions where differences occurred. For example, during upward 

reaches, discrete analyses simply detected lower elevation for older adults for both load 

conditions, while SPM identified markedly different temporal scopes, indicating that higher 

load induced a larger temporal change in thoracohumeral elevation. Kinematic differences in 

small windows may play a less important role in movement than differences over larger 

windows. However, discrete tests will only identify differences in minimum or maximum 

extracted values, regardless of the time span over which differences exist. The temporal 

regions identified by SPM where differences persist represent new targets for future 

analyses.

SPM has some limitations as a method for kinematic analysis. Extracted ROM values were 

not possible to test using SPM, although ROM differences were sometimes detected by 

discrete analyses. ROM is obtained by subtraction of two scalars extracted from the original 

dataset without regard to time of occurrence. If ROM is a measure of interest, as in clinical 

evaluation, separate discrete analyses should be performed. Other demonstrations of SPM 

have revealed inconsistent results between discrete and SPM methods (Pataky et al., 2013), 

attributed to post-hoc regional focus bias and inter-component covariance bias present in 

discrete methods. Additionally, data sets with temporal shifts in kinematics between groups 
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may confound interpretation of SPM and could lead to additional differences between SPM 

and discrete analyses, which deserves additional exploration in future work. In the current 

study, both groups performed tasks with similar timing of minimum/maximum joint angles 

during the task.

The more positive (anterior) elevation plane used by older adults is consistent with previous 

findings that anterior humerus postures provided participants with increased dexterity and 

greater limb stiffness during unloaded tasks in young adults (Trumbower et al., 2009; 

Perreault et al., 2001; Chen et al., 2010). Although limb stiffness and stability were not 

directly measured here, the choice of anterior postures, even under low loads, may reflect 

older adults’ desire to position the limb beneath the load to provide support and stability 

regardless of load demand. While declined force production ability and altered muscle 

activation patterns may contribute to this strategy, it is also possible that older adults 

preserve the ability to respond to load requirement by increasing co-contraction and limb 

stiffness without the need to alter posture (Hogan, 1985; Perreault et al., 2001; Krutky et al., 

2009). In contrast, young adults were able to compensate for increased task demand as 

needed, and did not use a posture with greater elevation plane at lower loads, but did adopt 

this stabilizing posture when load was increased. This is consistent with reports that young 

adults exhibit better postural control by integrating somatosensory, vestibular, and visual 

information (Johansson and Magusson; 1991; Rankin, 2000). Although outside the scope of 

the current study, interactions between the three independent variables (group, task, load) 

should be explored in future studies.

The altered kinematics we observed may be a result of shoulder weakness often reported in 

older adults. Numerous studies provide evidence of reduced shoulder strength (e.g. Hughes 

et al., 1999b) and muscle volume (e.g. Holzbaur et al., 2007a,b; Saul et al., 2015b; Vidt et al. 

2012) with age. Age-related losses at the shoulder are more profound than at other upper 

limb joints (Vidt et al. 2012), and shoulder muscle volume and strength are better predictors 

of functional arm strength than that of other upper limb joints (Daly et al., 2013). Hughes et 

al. (1999a) found declines in isometric strength ratio (agonist/antagonist) for flexion and 

abduction at 90° elevation with increasing decade of age beginning at age 20. They 

concluded that aging has a profound effect on the shoulder when subjects are in an elevated 

posture. This is consistent with our findings that older adults were more challenged at higher 

postural demands during the time period that the arm was maximally elevated (~50%). In 

this study older adults also exhibited lower magnitude joint velocities at movement intervals 

near peak velocities, suggesting older adults’ inability to propel their limbs as quickly as 

young adults under the same absolute task demands.

SPM analyses revealed kinematic differences near the termination of the movement (~80–

100% of the task) which may indicate an age-associated change in movement control 

strategy. Ketcham et al. (2002) and Morgan et al. (1994) observed that older adults’ 

movement patterns are characterized by shortened acceleration phase and prolonged 

deceleration phase moving to the target for precision tasks, suggesting that terminating some 

tasks may be challenging. Reaching is a shoulder-centered movement (Dutta et al., 2013), 

whereby the muscle torque generated by the shoulder is primarily responsible for execution 

of the movement while the elbow and wrist torques are secondarily responsible for hand 
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placement (Dounskaia, 2005; Galloway and Koshland, 2002). However, age has been shown 

to alter the shoulder-centered strategy, leading to Dutta et al.’s (2013) observation of 

increased variability in hand placement at the initiation and termination of a reaching task. 

In the current study, differences were marked during the termination of the task as the load 

was lowered; distinguishing the strategies employed during lowering of a load from height 

deserves attention in future work.

There are limitations to this study. Small groups were evaluated, limiting generalization to a 

larger group or other ages. Muscle activation patterns were not evaluated. Alterations to 

activation have been associated with force production variability, movement slowing, and 

stability changes (Hortobágyi et al., 2003; Darling et al., 1989; Hogan, 1985; Perreault et al., 

2001; Krutky et al., 2009). Future work to evaluate muscle coordination would illuminate 

whether co-contraction or other altered activation is observed under these conditions. Tasks 

studied here do not span the upper limb workspace and represented a subset of functional 

tasks. Future studies are warranted on multi-plane movements under various postural and 

load conditions. Older adults may be able to accomplish tasks under loads greater than those 

examined here. For example, older adults in one study completed one repetition maximum 

exercises with load up to 60.4 kg during a compound row prior to resistance training (Daly 

et al., 2013). Using maximum loads during reaching tasks may provide insight into older 

adults’ movement strategies for very high loads. In this work, we used Bonferroni correction 

to control family-wise error rate. However, Bonferroni correction is the most conservative 

method for determining a significance threshold, which may increase likelihood of type II 

error. One-dimensional SPM is susceptible to underestimation of temporal correlation 

(Pataky et al., 2013). A multivariate SPM analysis method that retains correlations among 

DOFs would analyze joint angle values simultaneously in the form of vectors, but would 

require post-hoc analysis analogous to the one-dimensional analyses performed here to 

interpret the source of differences (e.g. which joint angle). Hotelling’s T2 test is the 

multivariate analog of the t-test in univariate statistics and is useful for comparing 

multivariate means of two groups (Hotelling, 1931; Pataky et al., 2013). Other methods exist 

for analysis of continuous data, including functional data analyses (FDA) (Ramsay and 

Silverman, 2002; 2005), and these methods should also be explored for application to 

biomechanical data.

We conclude that application of one-dimensional SPM to upper limb reaching tasks revealed 

results consistent with discrete analyses while minimizing the required number of statistical 

tests. Further, we demonstrate that SPM holds the advantage of presenting results in the 

original time spectrum, allowing for more intuitive interpretation of movement kinematics to 

efficiently distinguish between groups and tasks. We conclude that kinematic differences 

between young and older adults are influenced by loading conditions and target positions; 

the return portion of reaching is affected for a substantial temporal period, even under low 

load and target, while mid-reach is affected when reaching upward. Older adults consistently 

maintained more positive elevation plane and lower thoracohumeral elevation, placing their 

arms underneath the load to obtain more support, suggesting muscle strength may be a 

factor. Older adults used similar postural choices regardless of load, while increased postural 

demand led to more marked differences between age groups, especially with the hand at the 
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target. This work highlights the utility of SPM and suggests that experimental designs 

should carefully consider influence of load or postural demand when choosing tasks.
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Figure 1. 
Experimental setup for forward (A, B) and upward (C, D) reach tasks.

Forward reach (low load (0.63kg) shown) began with the arm adducted and elbow flexed 90° 

(0% of movement) (A), reached forward to 80% forearm length (50% of movement) (B), 

then returned to the starting position (100% of movement). Upward reach (high load 

(3.84kg) shown) began in the same starting posture (0% movement) (C), reached to a target 

20° above the shoulder (50% movement) (D), then returned to the starting posture (100% 

movement).
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Figure 2. 
Degrees of freedom and rotation axes are defined according to the ISB standards (Wu et al., 

2005). Shoulder degrees of freedom are for thoracohumeral motion, including 

thoracohumeral elevation (A), elevation plane (B), and axial rotation (A). 0° of 

thoracohumeral elevation is defined when the long axis of the humerus is aligned with Y 

axis (A), and 90° is when long axis of the humerus is aligned with Z axis (shown)., 0° 

elevation plane is defined when the humerus is aligned with frontal plane (B). Positive 

thoracohumeral elevation moves the humerus away from the thorax, positive elevation plane 

moves the humerus anterior (towards flexion (saggital) plane at 90°), and positive axial 

rotation is internal rotation. Because of the kinematic redundancy of the upper limb, it is 

possible to place the hand at a reach target using multiple kinematic strategies, including 
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using an anterior strategy bringing the humerus towards the flexion plane (C) or with the 

humerus elevated more laterally (D).
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Figure 3. 
Kinematic trajectories of forward reach with low load. Mean (solid line) ± SD (shaded band) 

for elevation plane (A), elevation (B), and axial rotation (C), with young adults in black and 

older adults in blue. SPM calculated t-value trajectories for elevation plane (D), elevation 

(E), and axial rotation (F) comparing age groups. Shaded grey areas indicate significant 

differences, with dotted line indicating the significance threshold (pFWE =0.05). SPM two 

sample t-tests indicate that older adults used significantly greater positive (more anterior) 

elevation plane and less elevated postures during the initiation and completion of the 

movements. Discrete two sample t-tests (G, H, I) showed consistent results. Older adults had 

smaller elevation plane ROM (G) and higher elevation ROM (H).
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Figure 4. 
Kinematic trajectories of forward reach with high load. Mean (solid line) ± SD (shaded 

band) for elevation plane (A), elevation (B), and axial rotation (C) with young adults in 

black and older adults in blue. SPM calculated t-value trajectories for elevation plane (D), 

elevation (E), and axial rotation (F) comparing age groups. Shaded grey areas indicate 

significant differences, with dotted line indicating the significance threshold (pFWE =0.05). 

No significant kinematic differences were identified between young and older adults in 

either SPM or discrete two sample t-tests (G,H,I).
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Figure 5. 
Kinematic trajectories of upward reach with low load. Mean (solid line) ± SD (shaded band) 

for elevation plane (A), elevation (B), and axial rotation (C) with young adults in black and 

older adults in blue. SPM calculated t-value trajectories for elevation plane (D), elevation 

(E), and axial rotation (F) comparing age groups. Shaded grey areas indicate significant 

differences, with dotted line indicating the significance threshold (pFWE =0.05). SPM two 

sample t-tests indicated older adults used significantly more anterior elevation plane (A) and 

less elevated (B) postures during movement initiation and completion, and reduced elevation 

during 41%–45% of the movement. Discrete two sample t-tests showed consistent results 

(G, H, I). Older adults used smaller elevation plane ROM (G).
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Figure 6. 
Kinematic trajectories of upward reach with high load. Mean (solid line) ± SD (shaded 

band) for elevation plane (A), elevation (B), and axial rotation (C) with young adults in 

black and older adults in blue. SPM calculated t-value trajectories for elevation plane (D), 

elevation (E), and axial rotation (F) comparing age groups. Shaded grey areas indicated 

significant differences, with dotted line indicating the significance threshold (pFWE =0.05). 

Older adults used significantly more anterior elevation plane postures during movement 

initiation and completion (A), and significantly less elevated postures during 32%–58% of 

the movement (B). Discrete two sample t-tests showed consistent results (G, H, I). Older 

adults used smaller elevation plane ROM (G), smaller elevation ROM (H), and smaller axial 

rotation ROM (I).
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Figure 7. 
Elevation plane and axial rotation angular velocity. Mean (solid line) ± SD (shaded band) of 

elevation plane angular velocity during forward/low load (A), forward/high load (B), 

upward/low load (C), upward/high load (D) and axial rotation upward/high load (E) reaches. 

SPM calculated t-value trajectories of elevation plane angular velocity during forward/low 

load (F), forward/high load (G), upward/low load (H), upward/high load (I) reaches, and 

axial rotation angular velocity during upward/high load (J) reach after SPM1D two sample t-

tests. Shaded grey areas indicate significant differences, with dotted line indicating the 

significance threshold (pFWE =0.05). Older adults had more flattened velocity profiles, lower 
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peak angular velocities, and less smooth movements as task demands increased compared to 

young adults across all task combinations (A–E).
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Table 2

Locations of retroreflective markers.

Marker Location

1 7th cervical vertebra

2 Suprasternal notch

3 Xiphoid process

4 Acromion

5 Mid upper arm

6 Medial humeral epicondyle

7 Lateral humeral epicondyle

8 Mid forearm

9 Radial styloid

10 Ulnar styloid

11 2nd metacarpal phalangeal joint

12 5th metacarpal phalangeal joint

13 Load held in the hand

J Biomech. Author manuscript; available in PMC 2017 September 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 24

Table 3

Discrete analysis of effect of load for young adult group. Values included for those parameters that reached 

statistical significance.

Parameter (°) Forward reach low load Forward reach high load p-value

Min Elevation Plane −57.1±10.6 −15.5±20.4 <0.0001

Max Elevation Plane 60.4±13.9 74.0±10.2 0.004

ROM Elevation Pane 117.5±21.2 89.6±19.9 0.0006

Min Shoulder Elevation 21.3±5.6 12.4±8.1 0.001

Max Shoulder Elevation 38.1±4.2 48.0±7.3 <0.0001

ROM Shoulder Elevation 16.8±6.3 35.6±11.0 <0.0001

Parameter (°) Upward reach low load Upward reach high load p-value

Min Elevation Plane −59.0±13.0 −32.7±14.9 <0.0001

ROM Elevation Plane 131.3±15.7 109.1±16.8 0.0005

Max Shoulder Elevation 87.5±6.7 98.7±4.6 <0.0001

ROM Shoulder Elevation 68.0±13.6 83.6±9.1 0.0006
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Table 4

Discrete analysis of effect of age for young and older adult groups. Values included for those parameters that 

reached statistical significance.

Task Parameter (°) Young adults Old adults p-value

Forward Reach with Low Load

Min elevation plane −57.06±10.63 15.91±34.45 0.004

ROM elevation plane 117.50±21.15 82.69±32.70 0.010

Min elevation 21.30±5.55 9.97±4.84 <0.0001

ROM elevation 16.78±6.33 27.93±8.45 0.003

Upward Reach with High Load

Min elevation plane 58.96±13.00 1.36±22.97 <0.0001

ROM elevation plane 131.3±15.72 77.15±21.62 <0.0001

Max elevation 87.47±6.65 78.64±5.95 0.002

Upward Reach with Low Load

Min elevation angle 32.73±14.93 11.54±19.09 <0.0001

ROM elevation angle 109.1±16.81 66.66±15.89 <0.0001

Max shoulder elevation 98.65±4.62 86.97±7.17 0.0004

ROM shoulder elevation 83.62±9.07 70.68±9.21 0.002

ROM shoulder rotation 58.12±16.23 39.92±11.02 0.002
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