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Unsupervised learning in probabilistic neural
networks with multi-state metal-oxide memristive
synapses
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In an increasingly data-rich world the need for developing computing systems that cannot
only process, but ideally also interpret big data is becoming continuously more pressing.
Brain-inspired concepts have shown great promise towards addressing this need. Here we
demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide
memristive devices as multi-state synapses. Our approach can be exploited for processing
unlabelled data and can adapt to time-varying clusters that underlie incoming data by sup-
porting the capability of reversible unsupervised learning. The potential of this work is
showcased through the demonstration of successful learning in the presence of corrupted
input data and probabilistic neurons, thus paving the way towards robust big-data processors.
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lastic synaptic connections are a key computational element

of both the brain and brain-inspired neuromorphic

systems. Outnumbering neurons by approximately 1,000
to 1 in the human brain!, synapses have to perform their main
function, namely interconnecting neural cells via an often
modifiable coupling strength (a weight), within extremely tight
volume and power budgets. The desire to build and operate
large neural networks with vast amounts of synapses has rendered
the task of creating similarly efficient and yet practically
implementable artificial synapses a high priority.

A major route towards that goal has been the development of
hardware synapse analogues, which has traditionally relied on
commercially available complementary metal-oxide semiconduc-
tor technologies®>>. However, the visionary ideas of the early days
of the field of memristor research®’ have led to a different
approach: the exploitation of the intrinsic electrical properties of a
large and diverse group of emerging nanoelectronic devices
exhibiting the phenomenon of resistive switching, nowadays also
referred to as memristive devices !0, The scalability!l,
thresholded input voltage time-integration'?, multi-level
storage!®, simple two-terminal structure, potential for low
power operation!* and back-end-of-line integration!® features
demonstrated thus far in various memristive device technologies
attracted study in the field of memristive synapses.

So far, the potential of memristors to act as ersatz synapses has
been studied through simulation!®~2! and the demonstration of in-
silico learning rule implementation, most notably—but
not exclusively—that of spike timing-dependent plasticity
(STDP)?? %enerated by appropriate electrical memristor biasing
schemes?>~?7, Other advances include the emulation of basic
heterosynaptic plasticity in multi-terminal memristive devices?®, as
well as the demonstration of STDP by exploiting the internal
dynamics of memristors, albeit in volatile devices (that is, devices
that do not retain their memory state for long periods of time, for
example, 1 day)®*0 and efforts towards the integration of
memristors with neuromorphic circuits®!. More recently the first
examples of practical, small-scale artificial neural networks (ANN)
operating with memristive synapses have been demonstrated, all
using deterministic, supervised learning techniques. These include
ref. 32, where learning was implemented using a variant of the
perceptron learning rule (the Manhattan update rule), and ref. 33,
where phase-change memory (PCM) rather than metal-oxide
technology-based memristors are used to demonstrate learning in
a Hopfield network using Hebbian learning. Finally, the first large-
scale neural network using PCM technology was demonstrated by

IBM>*%, where a modified back-propagation rule was used in a
three-layer ANN.

In this work we exploit the gradual, multi-level switching
characteristics of metal-oxide-based memristors (Supplementary
Note 1, including Supplementary Table 1 and Supplementary
Fig. 1) for demonstrating unsupervised learning in a probabilistic
neural network. Our work consolidates the current state
of art in single-component synapse emulators (for example,
refs 20,23,24,26,30) and advances the field of operating
memristors as hardware synapse emulators in practical neural
networks (for example, refs 27,32). Particularly, we demonstrate
in a neural network using memristor synapses: first, pattern
classification in a probabilistic neural network; second,
unsupervised learning achieved through the implementation of
a winner-take-all (WTA) network; third, reversible learning, an
often neglected but essential aspect of truly flexible and useful
learning systems and fourth, the exploitation of the intrinsic
properties of our memristors to successfully allow the neural
network to encode conditional probabilities without any special
input signal waveform engineering.

Results

Weight-dependent STDP in TiO,-based memristors. STDP is
one of the most widely studied plasticity rules for spiking neural
networks. In its pure form it relies on the premise that the relative
timing between pre- and post-synaptic spike events is the major
determinant of both the direction (potentiation/depression) and
the magnitude of synaptic weight changes. Recently the hard-
ware-friendly, pulse-based biasing scheme shown in Fig. 1a-c has
been proposed as a possible method for implementing STDP in
memristor-based synapses!”"183%, The memristor’s resistive state
(conductance) is interpreted as the equivalent of a synaptic
efficacy (weight). To implement plasticity events, the scheme
exploits the inherent capability of some memristive devices to act
as thresholded voltage time-integrators, that is to change their
resistive state as a function of input voltage, so long as its
magnitude exceeds a certain threshold (the switching threshold).
When the pre-synaptic neuron spikes, a prolonged low-voltage
pulse is applied across the memristor. This pulse is by itself
unable to induce any resistive switching (Fig. 1a). Spiking of the
post-synaptic neuron, on the other hand, leads to the application
of a brief, biphasic, bipolar pulse (Fig. 1b) that causes the
memristor to undergo long-term depression (LTD). Concurrent
pre- and post-synaptic terminal spiking causes the memristor to
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Figure 1 | Weight-dependent STDP in memristors. (a-c) Memristor electrical biasing scheme used to test STDP. Vy, ., Vi, _: memristor switching
thresholds. Data for individual device thresholds in Supplementary Table 2. Voltage levels used to induce LTP and LTD in Supplementary Table 3. Red
shading: supra-threshold portions of the input affecting the memristor resistive state. (d) Typical experimental results from TiO, device. Black trace: raw
data; blue trace: 10-point moving average; red trace: exponential fitting. Red shading: LTP. Blue shading: LTD. No shading: neutral region, no plasticity
triggered. (e) Experimental data and exponential fittings describing STDP magnitude (relative change in device conductance g) as a function of initial
memristor conductance. Red line: LTP fitting. Blue line: LTD fitting. Black dashed line: zero conductance change level. Same data as in d.
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sense the superposition of the pre- and post-synaptic spike
waveforms and thereby undergo long-term potentiation
(LTP; Fig. 1c).

We fabricated TiO,-based devices (see Methods) and studied
their behaviour during exposure to trains of STDP events. Each
device under test (DUT) was exposed to four blocks of events,
each consisting of 2,400 individual events: LTD-inducing post-
only events; LTP-inducing combined pre- and post-events; LTD
events again; and finally, plasticity-neutral pre-events only.
Figure 1d shows typical measured results from our prototype
DUTs for all mentioned electrical biasing schemes. First, we
observe that the STDP rules are followed throughout the entire
test, including the plasticity-neutrality of pre-only events
(confirmed by experiments where pre-only events were applied
at the high-conductance boundary of the DUT’s operating
range—Supplementary Fig. 2). Next, we observe the marked
dependence of changes in resistive state on the running resistive
state (DUT conductance g) for both LTP and LTD (Fig. 1e). Such
dependence of conductance changes on the actual memristive
state has commonly been observed in memristors, including both
metal-oxide?®> and phase-change®® implementations. In super-
vised learning rules, such as the perceptron rule, this property is
undesirable as updates independent of memristive state are
required®?. Here we particularly leverage this property to enable
for the first-time unsupervised learning in a practical network, in
a manner similar to the work presented previously in ref. 37 that
is based on simulations of PCM models.

The experimental results in Fig. 1d,e suggest that the STDP rule
being implemented can be described for each plasticity event by

Ag =POST - (f" (g) - PRE~f" (g)) (1)

where PRE and POST are binary values indicating whether a
pre- or post-spike has occurred in the given event, respectively,
whilst f*(g) and £~ (g) are functions that capture the influence
of DUT conductance on LTP and LTD strength
(also see Supplementary Note 2 and Supplementary Fig. 3).
Normalizing to obtain relative changes in g and rearranging
we get

% = POST - [PRE -f""(g) - (1~ PRE) -f"™°(g)]  (2)

where fLTP(g) :J%@ and 1 (g) :fw both fitted by
exponentials in Fig. le.

Plotting Ag/g versus g for both LTP and LTD reveals that our
solid-state synapse features inherently self-stabilizing plasticity
(Fig. 1e): at higher conductance levels, further increases in
conductance (LTP) become progressively smaller. Similarly, at the
bottom end of the conductance scale LTD induction becomes
increasingly ineffective. The gradual and monotonic dependence
of weight changes on the running value of weight is an essential
feature for memory models of unsupervised learning. If a
stochastic data stream that triggers LTP and LTD with
probabilities p and (1 — p), respectively, is fed into the DUT, we
can expect its conductance to converge towards a unique
equilibrium point. In other words, the memristive synapse should
be able to encode and store in its resistive state the conditional
probability p(PRE|POST =1) that a given postsynaptic spike is
preceded by a presynaptic spike at the synapse within a short time
interval. For instance, consider a memrisitve synapse that is
exposed to STDP events that consist of a mixture of 90% LTP
events and 10% LTD events. We can expect the DUT
conductance to eventually stabilise close to the upper boundary
of the DUT’s resistive state operating range.

Memristor synapses can encode conditional probabilities. We
experimentally tested the theoretical prediction that conditional
probabilities can be encoded and stored in the resistive state of a
memristor. We performed four measurement runs on the same
test device. Each run consisted of 10 blocks of plasticity events
(10* events per block, that is, 10° events per run, blue dots in
Fig. 2). Individual plasticity events were randomly chosen to be
LTP events with probability p;rp and LTD events with probability
1 — prrp, where the probability of an LTP event was fixed within
each block. In runs 2 and 4, pyrp was 95%, 85%, ..., 5% for blocks
1-10, respectively, that is, the probability of LTP events was
decreased after each event block. In runs 1 and 3, the same LTP
probabilities were tested, but in random order (Supplementary
Table 4 and Supplementary Note 3). At the end of each block the
final resistive state of the memristor was measured (average of 25
read-outs after the end of each block).

The results of the experiment are shown in Fig. 2. After a burn-
in phase, during which the memristor gradually reaches its
normal operating range observed during the first run (10° events)
we obtained consistent convergence points for the remaining
three runs (3 - 10° events) and a clear mapping between LTP/LTD
composition and convergence conductance emerges: converged
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Figure 2 | TiO,-based memristors encode conditional probabilities. (a) Final memristor conductance after application of 104 input event blocks featuring
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conductance data from runs 2-4 (that is excluding burn-in) is
first pooled (convergence points at each LTP/LTD composition
are averaged) and then fitted to a linear function (equation and
fitting parameters in Supplementary Note 4) of converged
conductance versus LTP/LTD composition by least squares
regression. The root mean squared error of this fitting is
approximately 5.25 - 10 ~2 uS. Moreover, we notice that the runs
where the order of the LTP/LTD composition points was
scrambled (1 and 3) show less well-behaved convergence points.
Attempting to extrapolate memristor behaviour by exponential
fitting, as presented in Supplementary Fig. 4 indicates that even
10* events seem insufficient to achieve convergence given the
choice of biasing parameters (Supplementary Note 5). We believe
that this could be potentially addressed as more realistic
memristor models appear. Thus, we can conclude that TiO,
memristor-based synapses appear to be able to practically support
the encoding of conditional probabilities p(PRE|POST =1) in
their resistive states.

Probabilistic neural networks with memristor synapses. The
ability of individual memristors to encode conditional prob-
abilities can be leveraged for the implementation of self-adapting
spiking neural networks. In particular, WTA networks®® have
repeatedly been proposed for hardware implementations®*~42,
motivated in part by the fact that WTA structures play an
important role in cortical information processing®®. Recent
rigorous analyses revealed that WTA networks consisting of
stochastic spiking neurons subject to weight-dependent
STDP are capable of performing probabilistic inference that
essentially carries out clustering of input patterns. While a
number of different types of WTA networks have been
considered®>*4~47, optimal parameter adaptation is in any case
accomplished by weight-dependent STDP rules of the form
Aw x POST - (PRE —f(w)), that is, by rules similar to the
memristor-implemented plasticity rule from equation (1).

To test whether memristor-based synapses can perform
adequately as components of WTA networks, we implemented
a WTA network that consisted of two stochastic spiking neurons
with four inputs each. All four input synapses to one WTA
neuron were implemented by TiO,-based devices, while the
synapses to the other neuron were implemented in software
(Fig. 3a). This hybrid network allowed us to directly compare

software-simulated synaptic connections with memristive
synapses in the same set-up and with exactly the same inputs.
It also allowed us to directly manipulate the software synapses
and study the influence on memristive plasticity.

The 2-neuron probabilistic WTA network was implemented on
an in-house developed instrumentation board for memristor
device characterization®8. The two artificial neurons, WTA lateral
inhibition and synapses feeding one of the neurons were all
implemented in software on the board’s microcontroller unit.
During each experiment run 1,200 four-bit patterns were
presented to the network at the inputs y = (y,,¥,%,,¥5)-
Determining the values of y begins by randomly and
equiprobably drawing a pattern to be presented from a set of
prototype test patterns (in our case 0110 and 1001). Next, each bit
in the selected pattern is flipped with a probability of 10% so that
the network is presented with noisy instantiations of the
prototype patterns. The resulting generated input vector is then
multiplied by the weight vectors of both neurons and translated
into membrane potential values, one for each neuron, as per
equation (3):

Uiy, £) = 6i(t) +wi(t) - y(1) (3)

where Uj(y,t) denotes the membrane potential for neuron i during
event t, 0,(f) an adaptive excitability term that homoeostatically
regulates neuron activity and w; the weight vector from inputs y
to neuron i. The symbol - represents the dot product operator.
Importantly, whilst U; represents the membrane potential of
neuron i for the purposes of driving its firing behaviour, it does
not directly translate to a physical voltage value to be applied to
all synapse terminals (pre or post) it is connected to. Neuron
firing events are instead translated into appropriate pre- or post-
type voltage waveforms that are used to bias the affected
memristor synapses. The homoeostatic term 0,(f) has been used
before for memristor learning!” and has been theoretically
justified in ref. 44 for unsupervised learning in probabilistic
WTA networks. By reducing the propensity to fire for neurons
that show high average response, homoeostasis ensures that both
neurons participate in the WTA competition over the long run
(details in Methods section).
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Figure 3 | Learning in a WTA network with a mixture of software and memristor synapses. (a) Diagram of the 2-neuron, WTA network used in this
work. (b) Evolution of neuron specializations S; to patterns 0110 and 1001 as weights change over successive events, illustrating the interplay between the
two neurons. Inset: close-up of first 60 trials. (¢) Computed membrane potentials of each neuron to both prototype patterns according to their weights at
every trial illustrating the intrinsic pattern preferences of each neuron, that is independent of their interaction in the WTA network. (d) Evolution of

hardware (synapses 0-3, enclosed in thick, black frame) and software (synapses 4-7) weights. (e f) Responses of the WTA network to the initial (e) and
final (f) 41 input samples. The fire count of both the hardware synapse neuron (orange) and the software synapse neuron (turquoise) is shown for patterns
010 and 1001, and patterns that differ from these prototypes in one position (01105 and 10015). The different pattern groups are perfectly segregated by

the end of the run.

| 7:12611| DOI: 10.1038/ncomms12611 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

ARTICLE

The probability pi(y,f) with which neuron i wins the WTA
competition and therefore spikes at event t is given by

eUx'(Y~t)

pily;t) = 5,000 (4)

Using computed p; values for each pattern at each time step we
can define a specialization metric S that directly quantifies how
attuned each neuron is to the two prototype input patterns:

S(t) = pi(1001,£) = p;(0110, 1) (5)

where S;(t) is the specialization of neuron i at time ¢ and takes
values between 1 (perfectly specialized on 1001) and — 1 (perfect
specialization on 0110).

By definition, at every event exactly one of the neurons wins
and fires, thus triggering plasticity at its synapses. In the case of
software synapses, weights are updated through a simple STDP
rule that aims to approximately mirror memristor plasticity. The
variability in resulting STDP-driven weight changes Aw and
measurement noise observed in memristor synapses have both
been included in the software synapse plasticity mechanism
(see Methods). In the case of the hardware synapses the STDP
conditions that determine whether LTP or LTD is required are
the same as for their software counterparts, but the LTP and LTD
events are translated into pulse voltage stimulation and therefore
the magnitude of weight change is inherently set by each
memristor. For the purposes of this experiment and since the
non-invasiveness of the pre-only event has already been
confirmed (Fig. 1), the pulsing scheme for LTP and LTD is
reduced to only the above-threshold portions of the original
waveforms, that is, both LTP and LTD are represented by simple
square-waves of appropriate amplitude. To map device resistive
states onto weights all memristive synapses were first subjected to
the protocol described in Fig. 1. Estimated maximum and
minimum operational conductance values (extracted from the
constant term of exponential fittings to traces in Fig. 1d—also see
Supplementary Fig. 5) were mapped linearly to a weight range of
[—2.2, +2.2]. The conductance-weight mappings are summar-
ized in Supplementary Table 3.

Results from a WTA network experiment (run no. 1) are
shown in Fig. 3. Both hardware and software synaptic weights w;;
were initialized close to 0 (see Methods section) and subsequently
the network was allowed to react to the incoming patterns freely.
According to theoretical WTA models, unsupervised synaptic
adaptations through STDP should lead to a clustering of inputs
such that each neuron is preferentially activated by one of the
prototype patterns and noisy variations of it. Figure 3 demon-
strates this behaviour in our set-up with memristive synapses.
The specialization evolution in Fig. 3b shows how after a brief
initial phase of uncertainty where the neurons are approximately
equally attuned to both patterns and none can claim dominance
over either pattern (approximately first 20-30 samples), the
hardware synapse neuron develops a clear preference for pattern
0110 (specialization S approaches — 1). Similarly, we can use the
weights of software and hardware synapses at each trial to plot
computed membrane potentials for each neuron in response to
each pattern. This is shown in Fig. 3c where we observe how at
the beginning of the run neither neuron has any intrinsic
preference for any pattern (that is independent of the neuron-
neuron interaction through the WTA); this only starts developing
afterwards. The robustness of these experiments was confirmed
by repeating the experiment three times in total. Results from all
three runs are summarized in Supplementary Fig. 6 and
Supplementary Note 6.

Examining the evolution of weight values throughout the run
(Fig. 3d) we observe that the hardware synapse weights

experience noisy and slow drift from their initial values. To
quantify this the evolution of each weight over trials was fitted to
an exponential function and the s.d. of the residual was then
computed. This yielded estimates of both the noise levels and the
overall weight change for each synapse over the trial (for full
results see Supplementary Note 7 and Supplementary Fig. 7). The
software synapses concurrently experience similarly imperfect
drift towards their final state. For comparison, see Supplementary
Figs 8 and 9 in the case where software synapses are noise-free.
These results are confirmed by Fig. 3ef where we see a
substantially clearer classification of pattern 0110 and related
patterns different from 0110 in only one position (01105) on the
one hand (purple shading) and 1001 with 10015 (patterns
different from 1001 in only one position) on the other hand
(green shading) towards the end of the experiment versus the
beginning. Specifically, at the beginning of the run patterns 1001
and 1001; cause the neuron that ultimately assigns itself to them
(software synapse) to fire only approximately 56% of the time
whilst similarly the hardware synapse neuron responds to its
corresponding patterns (0110 and 0110;) approximately 77% of
the time. In contrast, at the end of the run classification accuracy
increases to 100% for both neurons. Thus, the WTA network
successfully segregates the prototype patterns despite the presence
of noise. This result was achieved in a fully unsupervised manner.
An example case of how the same test evolves when software
synapse imperfections are suppressed is shown in Supplementary
Note 8 and Supplementary Figs 8 and 9.

Finally, to demonstrate that the WTA network is capable of not
only learning a pattern but also if demanded forgetting and
relearning it, a further set of experiments was conducted. This
consisted of two further, consecutive WTA learning runs (runs
no. 2 and 3) immediately following the main run from Fig. 3
(by the end of which we recall the memristor synapses had
specialized their neuron to pattern 0110). At the beginning of
each of these additional runs the software synapses were
initialized such that the network specialization acquired during
the immediately preceding learning run was reversed (hardware
synapses were left unchanged). Under these circumstances the
memristor-based synapses are expected to respond by flipping
their intrinsic preference to the opposite pattern. Results are
shown in Fig. 4.

In the case of the first additional run, the software synapses
were initialized in such way as to instantly reverse the preferred
pattern-to-neuron mapping outcome of the previous learning
session and start the learning run with the software synapse,
rather than the memristor synapse neuron more responsive to
pattern 0110. Such initialization should induce the memristor
synapses to attempt specializing on pattern 1001 instead. The
top half of Fig. 4 shows that this is indeed the case: at the end of
the run the hardware synapse neuron has lost its intrinsic
preference to pattern 0110 and began switching to 1001 as
evidenced by the membrane potential plot (Fig. 4b), which
allowed the software neuron to consolidate its dominance of
0110 (Fig. 4a). Simultaneously, the software synapse weights
remain relatively static around their extreme values, as
initialized. The second additional run similarly initializes the
software synapses appropriately to guide the memristor
synapses to re-specialize on pattern 0110. This successfully
occurs as evidenced by Fig. 4f-j and confirmed by additional
runs shown in Supplementary Fig. 10 and Supplementary Note
9. In both cases, the fire count histograms (Fig. 4d,e,i,j) show
how the initial classification preferences of each neuron become
entrenched during each run as a result of the combined
changes in both software and hardware synapse weights with
hardware synapses mainly driving the process (Fig. 4b,g and
Supplementary Table 5).
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Figure 4 | Reversible learning is supported in WTA networks using TiO, memristor-based synapses. (a-e) First run attempting to unteach the pattern
recognition abilities gained in Fig. 3. (@) Evolution of neuron specializations S; to patterns 0110 and 1001 as weights change over successive events,
illustrating the interplay between the two neurons. (b) Computed membrane potentials of each neuron to both prototype patterns according to their
weights at every trial illustrating the intrinsic pattern preferences of each neuron, that is independent of their interaction in the WTA network. (¢) Evolution
of hardware (synapses 0-3, enclosed in thick, black frame) and software (synapses 4-7) weights. (d,e) Responses of the WTA network to the initial (d)
and final (e) 41 input samples. The fire count of both the hardware synapse neuron (orange) and the software synapse neuron (turquoise) is shown for
patterns 0110, 1001 and patterns that differ from these prototypes in one position (01105 and 1001;). (f-j) Corresponding data as in a-e for second run
attempting to reteach the memristor synapses to prefer pattern 0110. The abrupt changes between final and initial responses over consecutive experiments
mainly arise from the different initializations of the software synapses in each case.

Discussion

In this work we demonstrated that metal-oxide-based synapses
with inherent, gradual, self-limiting switching properties are
capable of learning and re-learning of input patterns in an
unsupervised manner within a probabilistic WTA network. Key
to the learning process is the memristors’ capability of encoding
conditional probabilities of the expected input signal within their
resistive states. As a notable consequence of the probabilistic
learning scheme, ubiquitous (and unavoidable) noisy changes in
the resistive states are continuously counterbalanced by the
ongoing alignment of present weights with future presented
inputs.

This study was performed on TiO,-based devices, which has
historically been one of the significant metal-oxide systems used
in memristive devices?®. In previous work, we have identified that
these devices support multi-level switching>’, the emulation of
short- and long-term plasticity>®?, and bidirectionally gradual
switching®!, which we can reliably detect using our tailor-made
instruments*® even at low OFF/ON resistive state ratios. A brief
discussion on the electrochemistry behind our devices is included
in Supplementary Note 10. Endurance and retention data on our
devices are shown in Supplementary Figs 11 and 12. Here we
build on our previous results for demonstrating a memristor-
based, system-level application. The presented concept may
extend to other memristor technologies based on different metal-
oxides such as HfO, and Ta,Os that have shown great promise
towards memory applications.

For the purposes of this work, our prototypes were operated
under low voltage conditions, that is close to their threshold

6

voltages (Supplementary Tables 2, 3). Importantly, the devices’
threshold voltages are not rigidly fixed, but rather depend on
stimulus waveform shape, as well as the initial memory state of
the devices. For example, the threshold voltage dependence on
square-wave pulse duration is shown in the Supplementary Fig.
13. As a result, the voltage amplitude of the pre-waveform, as
shown in Fig. la-c, is important as it determines the voltage
contrast between: First, the super-threshold peak in the pre + post
waveform and the sub-threshold peak in the post-only waveform
and second the pre-only waveform and the post-only peak. Larger
contrasts mean that spurious drift effects induced by threshold
voltage variability can be mitigated more effectively. This reduces
the risks arising from unwanted plasticity caused by repeated pre-
pulsing without any post-response, as well as unwanted,
concurrent DUT resistive state disturbance by both the peak
and the trough of the post-waveform.

Considering future implementations of practical memristor-
based systems we note the following: First, the downscaling of the
memristor component itself as a memory storage element is
already comparing favourably to mainstream technologies
(for example, static random access memory—SRAM), as
memristors in the 10 nm x 10 nm = 100 nm? range have already
been demonstrated!!. SRAM scaling is projected to become
difficult at below 50,000nm? even under favourable process
variability conditions®? (but note 1T-SRAM technology®?). Even
though the performance of memristor devices is also known to be
impacted by downscaling, through, for example, increased access
wire resistance, the advantage over SRAM is expected to
dominate. Furthermore, we note that memristors can pack
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more than 1 bit/storage element in a non-volatile manner whilst
SRAM is purely digital and volatile. Second, at the array level, the
packing density of memristors can be in-principle increased by
the development of high density three-dimensional crossbar
arrays>, where back-end integrable selector elements® could
mitigate the well-known sneak path problem®. Third, at the
peripheral circuit level the trade-off between memristor
functionality and circuit complexity needs to be studied more
in-depth. Standard square pulse generators (for write) and sense
amplifiers (for read), also used in conventional memory systems,
might suffice if memristors are to be treated as binary data storage
elements. More complicated circuits capable of generating
multiple voltage levels (write) and reading absolute resistance
values will be, however, needed for multi-state operation; a
compromise between higher bit resolution operation and
required silicon real estate for peripheral circuits. Finally, the
challenges of interfacing with analogue hardware-based artificial
neurons have to be considered. Optimized operation will be
achieved if the artificial neurons output spikes of the forms
exhibited in Fig. la—c and all the voltages involved are within the
headroom required by the artificial neuron circuitry. If the former
condition is not met, then each neuron will need to be equipped
with a suitable output waveform-shaping circuit at the moderate
cost of 1 per neuron. This can be expected to be a relatively minor
inconvenience if the waveforms involved are simply variable
duration square waves; easily obtainable via digital clock signals.
If the latter condition is not met, then additional supply rails will
have to be introduced on-chip and the output waveform-shaping
circuits will require level shifters of voltage difference-related
levels of complexity; yet the cost will remain at the 1 per neuron
level. Notably, in this work biasing conditions were individually
tailored for each memristive synapse, a result of device-to-device
variability that is expected to become increasingly challenging
with downscaling. Improvements in control over fabrication and
electroforming conditions are needed to counterbalance that
effect and deliver memristors that operate under sufficiently
uniform biasing conditions to use a single, non-programmable
waveform-shaping circuit for all devices in practical systems.

The WTA architecture used in this study can be seen as a
simplified version of cortical layers 2/3 where parvalbumin-
positive interneurons provide feedback inhibition to pyramidal
cells (see, for example, refs 44,46,47,57,58 for similar models).
Recent experimental data on the connectivity dynamics in cortical
circuits suggest that synaptic modifications in the cortex are
stochastic (for example, refs 59-61). This is of particular
relevance to our study as our results demonstrate WTA
architectures are particularly robust against the noisy synaptic
plasticity exhibited by our memristive prototypes, also noted
through simulations in ref. 17. In addition, the theoretical
framework introduced in refs 62,63 indicates that stochastic
plasticity may even have advantageous computational properties,
in that it performs Bayesian inference on optimal circuit
parameters, suggesting that the inherent stochastic properties of
memristors could even be beneficial to learning.

In our experiments, the prototype patterns 1001 and 0110 were
presented as noisy versions where each component was
independently inverted with a probability of 10%. Hence, the
presented patterns for prototype 1001 included patterns 0001,
1000, 1101 and 1011. These patterns were denoted by 1001,
(analogous noisy versions of 0110 were denoted by 0110s). In
particular the noisy versions 1101 and 1011 show significant
overlap with the other prototype 0110 since they include one of
their two non-zero bits. Our results (see, for example, Fig. 3e,f)
show that the system is very robust to such pattern overlap since
those neurons that specialized on the prototype also responded to
the corresponding 6 patterns after learning. For the current

set-up, we did not use pattern overlap in the prototype patterns
because of their very low dimensionality. The theory for WTA
networks and experience from computer simulations (see, for
example, ref. 47) show that such overlap poses no difficulties for
the circuit for high-dimensional inputs. Hence, we do not expect
any additional hardware cost to account for pattern overlap due
to the inherent robustness of WTA circuits to such pattern sets.

In the WTA experiments, the Hebbian-type synaptic plasticity
rule was complemented with a homoeostatic plasticity rule, which
regulates the intrinsic excitability of the neurons. Notably,
homoeostatic intrinsic plasticity only adds a bias to the neuronal
membrane potential and, thus, does not affect a neuron’s relative
firing preference to different input patterns. It also influences the
emerging synaptic weight configuration only indirectly by
ensuring that all WTA neurons maintain a long-term average
firing rate and thereby modulates the succession of LTP/LTD
plasticity signals, which the memristor synapses observe. While
homoeostatic intrinsic plasticity has been proven mathematically
to harden robustness of unsupervised learning in stochastic WTA
circuits, its implementation in neuromorphic designs is possible,
for example, via a local accumulator circuit per neuron. Notably,
homoeostatic contributions to the overall membrane potential
during learning (Fig. 3) were significantly smaller than synaptic
contributions as depicted in Supplementary Fig. 14.

In conclusion, in this work we have demonstrated for the first
time that individual, solid-state memristors can emulate
complex, weight-dependent plasticity, including unsupervised
classification, forgetting and relearning, within an experi-
mental WTA network setting. This paves the way towards
real-time on-node processing of big, unstructured data; an
enabling technology for addressing the challenges arising
from the volume of data generated by the internet-of-things
revolution.

Methods

Device fabrication and preparation. For all experiments, TiO,-based micro-
metre-scale devices are used using a metal-insulator-metal structure. The
process flow started by thermally oxidising a 6 inch Silicon wafer to create a layer
that serves as an insulator medium. Then, three major steps were realized to
obtain the bottom electrode, active layer and top electrode consecutively. Each
step consisted of optical lithography, material deposition and liftoff process. The
10 nm platinum layers were deposited for top electrode and bottom electrode by
electron beam evaporation, whilst 25 nm TiO, was deposited by reactive mag-
netron sputtering. These fabrication steps resulted in a metal-insulator-metal
stack of Pt(10 nm)/TiO,(25 nm)/Pt(10 nm); devices used with slight variations
for many other purposes in our group?”>!. Before use, all devices were
electroformed using positive polarity (top electrode at higher potential than
bottom electrode) pulsed voltage ramps. A series resistor was used as a current-
limiting mechanism in all cases. Typical electroforming voltages were in the
range of 7-8 V.

WTA network set-up. In the WTA network, neurons fire with probability p; as
determined by the abstract membrane potentials Uy(y,t) according to equations (3)
and (4). The network response in turn triggers plasticity of the hardware and
software synapses, as well as of the excitabilities 0;. For the WTA network set-up,
we hence have to define three quantities: the plasticity rule of software synapses; a
function that maps the memristor conductance values g to abstract weights w in
equation (3) (conductance to weight map function); and the plasticity rule of the
excitability 0;. The plasticity rule of hardware synapses is inherently controlled by
the memristors.
For software synapses w;; we fundamentally use a plasticity rule of the form

Aw; = - POST - (PRE—f (w;)) ©

where the learning rate 7 = 0.03. The weight-dependent function f{w;;) will be
determined such that it approximately mirrors the plasticity of memristor synapses.
The structure of f(w;;) can be estimated from the measured memristor plasticity in
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Fig. le. Using equations (1) and (2) we find

Ag o POST - <PRE7f7 (g))

g
@
=POST~<PRE— i >;: g))+f?(g>= (7)
_ @)
=poST (BRE~ B ®

Supplementary Fig. 3 shows the fraction on the right-hand side of equation (8)
based on the fitted functions f“TP(g) and f-TP(g) from Fig. le. As can be seen in the
figure, the measured plasticity curves of the memristor suggest a sigmoidal shape
for the function f{w;) in equation (6). This observation can be substantiated
analytically: by inserting the exponential fits '™ (g) = exp(— o, - (g — fip)) and
'™ (g) = exp(ap - (§— Pp)) into equation (8), a few lines of algebra yield

Ag o POST - (PRE70<O(P ZmD- [gf aPﬂPMDﬁDD) 9)

ap + dp

where we define g(x) = (1 + exp(—x)) ~ 1 Such sigmoidal shape was qualitatively
observed for all memristor synapses (as seen in Supplementary Fig. 5), which
served as a reference for the shape of software plasticity. On the basis of the
comparison of equations (6) and equation (9), we map memristor conductances g
to abstract weights w via a linear function

w=0o (g—p)

and set flw;;) = a(wy) in equation (6), thereby tackling the software synapse
plasticity rule and the conductance to weight function.

(10)

Adding realistic imperfections in software synapse function. On top of this
ideal, theoretical framework we have added two mechanisms of software synaptic
weight corruption to better match the memristors” own noisy and variable beha-
viour. Under this more realistic framework we make a distinction between the true,
underlying weight w;; and the as measured weight, including measurement noise v;;.
The first weight corruption mechanism reflects the memristors’ cycle-to-cycle var-
iation, which in our case manifests itself as variable conductance jumps given
identical stimulus and initial conductance conditions. This is modelled by adding a
switching variability term wy,, drawn from a Gaussian distribution with o, =0.04
(units of abstract weight) limited to * 5¢. The weight update equation thus becomes

Aw;; =1 -POST - [(PRE 7f(w,])) + anr} (11)

where oy, was chosen to qualitatively force the software synapses to show slightly
worse cycle-to-cycle variation than what was being observed in the hardware. This is
evidenced in the Supplementary Fig. 7, where the evolution of individual synaptic
weights during an ANN learning trial is plotted.

The second weight corruption mechanism introduces a degree of measurement
noise in the software synapses, that is, allows the system to use a slightly distorted
weight value without causing any change in the underlying value of w;;. As such, at
every time step, the weight values used to compute neuron membrane potentials
and by extension contribute to deciding, which neuron fires to each presented
input are calculated by the following formula:

(12)

Vij = Wij + Wmn

where wp,, is an added measurement noise term drawn from a Gaussian
distribution with ¢ e, =0.4 (abstract weight), limited to * 50. 0 peqs Was
determined by estimating/quantifying the measurement noise in our devices and
adjusting the software so as to behave slightly more stochastically than the
memristors (Supplementary Table 6).

Homoeostatic plasticity. Furthermore, to facilitate robust learning we use a
homoeostatic plasticity mechanism for the excitabilities 6;. At the beginning of each
learning experiment (initial learning only, this does not apply to reversibility learning
experiments where continuity of 0; is maintained), the 0; are initialized at 0. Then,
before each time step ¢ the excitability is updated according to

0,(t) = {(),v(tf 1) —ny/2 if neuron iwins event t —1

0:(t—1)+ny/2 otherwise (13)

with learning rate 7y =0.03. The homoeostatic plasticity rule (13) makes sure that
both neurons will participate in the competition and fire, on average, equally often: if
a neuron fires on average during one half of the time steps, the value of its 6; will
remain approximately stable. Otherwise, its 6; will slowly increase (if the neuron fires
rarely) or decrease (if the neuron fires frequently). The rule (13) defines the plasticity
rule of the excitability. Notably this homoeostasis rule is very similar to the one used
in ref. 17 where although specific details are not given, the spiking frequency of all
neurons is periodically assessed and an equivalent to the 0; term is adjusted
accordingly. In this work this procedure takes place at every trial, which may allow
finer and more responsive homoeostatic control. The behaviour of this plasticity rule
is described in ref. 44.

Table 1 | Key ANN operating parameters.

Symbol Value Units Parameter

n 0.03 — Synaptic weight learning rate

N 0.03 — Homoeostatic plasticity learning rate

Osw 0.04 Abstract Switching noise (software synapse)
weight

O meas 0.4 Abstract Measurement noise (software
weight synapse)

Memristor parameter extraction. For the WTA experiment, the parameters in
equation (10) must be individually determined for each memristor. To this end, the
conductance operating range of each device was extracted in the set-up of Fig. 1d
before the WTA experiment. The parameters o and f§ were then implicitly defined
by directly mapping two conductance points grow and gigy to abstract weight
values — 2.2 and + 2.2, respectively. The values for g; ow and guigu for each device
are shown in Supplementary Table 3. The numerical values for all initial and final
weights during the WTA experiments are provided in Supplementary Table 5 for
both software and memristive synapses.

Network initialization procedures. The experimental run corresponding to Fig. 3
(and similar, confirmation runs included in the Supplementary Material) required all
weights to be initialized as close to 0 as possible. For the hardware synapses this was done
through the memristor-handling instrument (Supplementary Fig. 15) by manually
applying a suitable number of square wave pulses on each device. We did not seek to
automate this process at this stage. For the software synapses, the initial underlying
weights w;; were set to 0, but then corrupted by measurement noise before use as
described above. A summary of the key network operating parameters is given in Table 1.

Instrumentation. All experiments were carried out using an upgraded version of
the in-house instrumentation described in ref. 48. More details provided in
Supplementary Note 11.

Data availability. All data supporting this study and its findings are available
within the article, its Supplementary Information and associated files. This includes
relevant software code. Any source data deemed relevant is available from the
corresponding author on request.
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