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Abstract

Purpose—Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for 

measuring material composition based on energy dependent x-ray attenuation. Spectral CT is 

especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast 

in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables both 

4 energy bins acquisition, as well as full-spectrum mode in which the energy thresholds of the 

PCXD are swept to sample the full energy spectrum for each detector element and projection 

angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical 

effects in the detector and can be very noisy due to photon starvation in narrow energy bins. To 

address spectral distortions, we propose and demonstrate a novel artificial neural network (ANN)-

based spectral distortion correction mechanism, which learns to undo the distortion in spectral CT, 

resulting in improved material decomposition accuracy. To address noise, post-reconstruction 

denoising based on bilateral filtration, which jointly enforces intensity gradient sparsity between 

spectral samples, is used to further improve the robustness of ANN training and material 

decomposition accuracy.

Methods—Our ANN-based distortion correction method is calibrated using 3D-printed 

phantoms and a model of our spectral CT system. To enable realistic simulations and validation of 

our method, we first modeled the spectral distortions using experimental data acquired from 109Cd 

and 133Ba radioactive sources measured with our PCXD. Next, we trained an ANN to learn the 

relationship between the distorted spectral CT projections and the ideal, distortion-free projections 

in a calibration step. This required knowledge of the ground truth, distortion-free spectral CT 

projections, which were obtained by simulating a spectral CT scan of the digital version of a 3D-

printed phantom. Once the training was completed, the trained ANN was used to perform 

distortion correction on any subsequent scans of the same system with the same parameters. We 

used joint bilateral filtration (BF) to perform noise reduction by jointly enforcing intensity 

gradient sparsity between the reconstructed images for each energy bin. Following reconstruction 

and denoising, the CT data was spectrally decomposed using the photoelectric effect, Compton 

scattering, and a K-edge material (i.e. iodine). The ANN-based distortion correction approach was 

tested using both simulations and experimental data acquired in phantoms and a mouse with our 
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PCXD-based micro-CT system for 4 bins and full-spectrum acquisition modes. The iodine 

detectability and decomposition accuracy were assessed using the contrast-to-noise ratio and 

relative error in iodine concentration estimation metrics in images with and without distortion 

correction.

Results—In simulation, the material decomposition accuracy in the reconstructed data was vastly 

improved following distortion correction and denoising, with 50% and 20% reductions in material 

concentration measurement error in full-spectrum and 4 energy bins cases, respectively. Overall, 

experimental data confirms that full-spectrum mode provides superior results to 4-energy mode 

when the distortion corrections are applied. The material decomposition accuracy in the 

reconstructed data was vastly improved following distortion correction and denoising, with as 

much as a 41% reduction in material concentration measurement error for full-spectrum mode, 

while also bringing the iodine detectability to 4–6 mg/ml. Distortion correction also improved the 

4 bins mode data, but to a lesser extent.

Conclusions—The results demonstrate the experimental feasibility and potential advantages of 

ANN-based distortion correction and joint bilateral filtration-based denoising for accurate K-edge 

imaging with a PCXD. Given the computational efficiency with which the ANN can be applied to 

projection data, the proposed scheme can be readily integrated into existing CT reconstruction 

pipelines.
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1. INTRODUCTION

Computed tomography (CT) has been the dominant modality for imaging in both clinical 

and pre-clinical applications due to its very high spatial and temporal resolution. 

Conventional CT utilizes an energy integrating detector (EID), which measures the 

integrated signal produced by a polychromatic x-ray spectrum. Reconstruction yields an 

energy- weighted image of linear attenuation coefficients. This loss of energy information 

results in some major limitations to current CT technologies, including poor soft tissue 

contrast and reduced accuracy of mass attenuation measurements [2, 3].

To improve material discrimination, extra information on tissue composition can be provided 

via spectral CT by measuring the material-dependent attenuation of x-ray photons at 

different energies. The current clinical implementation of spectral CT, dual-energy (DE) CT, 

scans the same subject with two different x-ray spectra, allowing separation of two 

materials. We have demonstrated preclinical, functional imaging applications of EID-based 

DE micro-CT involving the separation of iodine and calcium or iodine and gold, including 

classification of atherosclerotic plaque composition [4], non-invasive measurement of lung 

[5] and myocardial perfusion [6], and the classification of tumor aggressiveness and therapy 

response in the lungs [7] and in primary sarcoma tumors [8, 9]. Several factors limit further 

development and adoption of DE-CT imaging protocols. Chief among these is the relative 

insensitivity of polychromatic x-ray spectra to energy-localized, material-specific changes in 
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x-ray attenuation (e.g. K-edges). This spectral insensitivity is caused by the lack of energy-

resolving power associated with EIDs.

Advancements in detector technology, specifically in photon counting x-ray detectors 

(PCXD) [10], can mitigate the above-mentioned limitations. PCXD have already shown 

great promise for increasing performance in quantitative material decomposition of spectral 

CT data [2]. These detectors bin incoming photons based on their energy, acquiring detailed 

spectral information and potentially enabling the decomposition of several K-edge materials 

from a single scan. We have developed a micro-CT system based on a PCXD and have used 

it to acquire data either with the 4 hardware-based energy bins or using a larger number of 

bins by sweeping the energy thresholds over the full-spectrum for each detector element, so 

called full-spectrum mode [2, 11]. As a technique, full-spectrum CT overcomes the 

hardware limitations of a fixed number of energy bins and allows for post-reconstruction 

rebinning of detected counts, at the expense of increased dose and projection acquisition 

time. Thus, full-spectrum CT enables the highest spectral sampling and, potentially, the 

discrimination of one or more K-edge material-based imaging probes.

The spectral measurements are typically used for decomposition into physical or material 

basis functions, as described in [12], but show limited accuracy due to two majors issues: (i) 

the projection data is typically affected by spectral distortions due to physical effects in the 

detector such as charge sharing, K-escape energy loss, and pulse pileup [2]; and (ii) the 

projection data is generally very noisy due to low photon counts at high and low energies 

relative to the source spectrum. Consequently, the primary objectives of this work are to 

develop and demonstrate a novel correction for distortions and to reduce noise in photon-

starved, PCXD data to improve material decomposition performance.

Various empirical methods have been proposed to compensate for PCXD spectral distortions 

[13, 14]. Corrections undo the distortion process, while compensation is used to offset the 

effect. The correction approach is ill-posed, because the number of energy bins for available 

PCXDs is typically between two and eight, which is much smaller than the number of 

parameters required to fully describe the spectrum [2]. To work well, some assumptions 

about the material composition are used as constraints, e.g., the object consists only of water 

[15, 16]. The compensation approach of PCXD degradation factors can be achieved by 

incorporating a PCXD model as part of the forward imaging process, and iteratively 

estimating either the imaged object or the line integrals using a maximum likelihood 

approach [17]. However, these techniques generally require a very accurate spectral 

distortion model of the PCXD, usually derived from monochromatic synchrotron 

measurements [17] or radioisotope measurements [13]. Other compensation methods to 

account for PCXD distortion include a lookup table approach [18] and approaches using 

ANN [14, 19] to estimate material composition directly from distorted spectra. These 

approaches do not directly correct for the spectral distortion but they act as multi-

dimensional estimators to map the distorted spectrum from a set number of energy bins to a 

set of known material basis functions. Notably, K-edge material was not included or 

discussed in these previous studies. Also, although software correction techniques can be 

powerful in dealing with distortions, they cannot fully compensate for reduction in detector 

quantum efficiency (DQE) due to photon count losses caused by charge sharing effects and 
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characteristic x-rays, which could otherwise be addressed using hardware strategies. Some 

progress has been made through hardware solutions in directly addressing spectral distortion 

due to charge sharing between adjacent pixels. Specifically, the Medipix 3 detector uses a 

photon-processing chip with special circuitry to allow charge deposition in adjacent pixels to 

be summed and analyzed with two simultaneous energy thresholds [20, 21].

The ANN-based method we proposed here can be categorized as a correction technique, 

which does not require explicit knowledge of the distortion model. Due to the highly noisy 

nature of full-spectrum PCXD data, the ability to reduce noise is of exceptional importance 

for improving material detectability. In the case of K-edge material imaging [22], special 

attention is required when performing noise reduction in order to preserve K-edge contrast. 

In ref. [11], a penalized weighted least squares approach was used to reduce noise and to 

produce reconstruction results consistent with the expected attenuation curves of the present 

materials (iodine, PLA, water, and gold). Here, we use a general post-reconstruction 

denoising scheme for spectral CT data that can be applied regardless of material 

composition, spectral distortions, and differences in noise level between energy bins, making 

it largely system and application independent. This approach is an extension of our 

previously published denoising scheme based on joint bilateral filtration [1, 23].

2. METHODS

In this work, we propose combining ANN-based distortion correction and joint bilateral 

filtration-based denoising to mitigate both spectral distortion and noise issues in PCXD-

based spectral CT. In Section 2.A, we first describe our full spectral micro-CT system and 

illustrate the noise and spectral distortions. To enable realistic simulations, in Section 2.B. 

we determine the parameters of a distortion model that match our PCXD. Next, in section 

2.C. we describe the ANN-based distortion correction approach. We use 3D printing 

technology to create phantoms that facilitate ANN training and testing. Sections 2.D. and 

2.E. are focused on describing joint bilateral filtration denoising and our material 

decomposition approach. The methods are tested using both simulations (Section 2.F.) and 

experimental spectral CT projection data acquired in phantoms containing iodine solutions 

and in mice (Section 2.G).

2.A. Spectral micro-CT

We have developed a micro-CT system consisting of a CdTe-based PCXD (DxRay Inc., 

Northridge, CA), with 4 rows of 64 detector elements, each 1.0 mm × 1.4 mm in size and 

1.0-mm thick. The PCXD can be operated in 4-energy-threshold mode or energy sweeping 

scan mode (also known as full-spectrum mode). Full-spectrum mode densely samples the 

entire energy spectrum. The system uses a polychromatic x-ray tube (Varian G297) with a 

tungsten anode, which produces an incoming beam that is attenuated with 5.6 cm of PMMA, 

0.1 cm of Al, and 0.1 cm of Cu. We used this system for acquisitions at 75kVp with 0.6mA 

and 1.92-second exposures at each projection angle. Each exposure was used to sample all 

energies. 90 projections over a 180° arc were acquired in full-spectrum mode. In full-

spectrum mode, the energy threshold of the PCXD was swept in 1-keV increments, 

providing projection data in 24 energy bins from 27 keV to 50 keV. For an objective 
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comparison at the equal dose, we have used the same acquired data for full-spectrum and 4 

energy bins CT reconstruction. We have synthesized the 4 energy bins projections by adding 

counts to 4 bins, i.e. 27–33 keV, 33–39 keV, 39–45 keV, and 45–51 keV. This corresponds to 

a spectral CT acquisition with energy thresholds placed at 27, 33, 39 and 45 keV. In 

particular, the second threshold has been selected at 33 keV to correspond to the Kedge of 

iodine. The other thresholds ensure sufficient counts in each bin. The source-to-detector 

distance is about 80 cm (mag.: ~1.1x), which allows us to use a parallel beam approximation 

for image reconstruction. We have imaged phantoms containing iodine solutions of different 

concentrations and water. The tomographic image sets were reconstructed using filtered 

back projection (FBP) with a Ram-Lak frequency filter for each energy bin. Two of the 

major limitations for spectral CT are the spectral distortions and the highly noisy nature of 

projections especially for acquisition with limited photon counts in each bin such as in full-

spectrum CT. For 4 energy bins, noise may be less of an issue (Fig. 1).

2.B. Detector distortion modeling

One of the major limitations of PCXD-based imaging using CdTe can be the degradation of 

the energy response due to physical effects like charge sharing between detector elements, 

pulse pileup, and energy loss due to K-escape [2]. Such energy response degradation causes 

a distortion in the measured energy spectrum that deviates from the incoming x-ray 

spectrum. To fully understand and accurately simulate this distortion, a detector response 

function (DRF) was experimentally determined following the model first described by 

Schlomka et al. in [17]. The DRF model includes two Gaussian peaks: one at the incident 

photon’s energy and one at the K-escape energy of CdTe. An additional background term 

models a lower-energy tail. Hence, the DRF, R(U,E), at energy U resulting from incident 

photons of energy E interacting with the detector can be modeled as:

(1)

where σ1 and σ2 represent the energy spread of the incident photon peak and the K-escape 

peak, respectively. Ee is the average escape photon energy of the detector material (~25 keV 

for CdTe). The background term, B(U,E), depends on both the measured and incident 

photon energy. B(U,E) is modeled as the product of the measured energy, U, and a constant 

c3(E) for U<E-3σ1 and linearly decreases to zero over the range U=E-3σ1 to U=E+3σ1. The 

constant c1(E) is a scaling factor such that the number of incoming photons in conserved. 

The width of the photo peak and K-escape peak are assumed to be the same (i.e. σ = σ1 = 

σ2). The constant terms c2(E), c3(E), and σ(E) are further parameterized as follows:
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(2)

The parameters in Equation 1 were derived based on the values given in [17] and based on 

experimental data acquired from 109Cd and 133Ba radioactive sources measured by our 

PCXD. The acquired spectra were compared with the expected spectra for these isotopes 

given 1-keV sampling. The sources were placed ~5 cm in front of the PCXD during 

sampling. A full-spectrum acquisition with an integration time of 5 seconds for each energy 

was performed for each of the two sources. The counts measured by each detector pixel 

were summed to provide a one-dimensional signal of number of counts over the energy 

spectrum. The spectral data was next read into MATLAB (MathWorks Inc., Natick, MA) 

and used for fitting the DRF model. The term c2(E), containing parameters a1 and a2, was 

chosen to be the same as the value given in [17]. The rest of a parameters were derived by 

fitting the DRF model to the measurements by selecting values that minimized the root mean 

square error (RMSE) of the fit. For the 109Cd source spectrum, a photo peak at 22 keV was 

modeled. For the 133Ba source, three peaks at 31 keV, 35 keV, and 81 keV were modeled and 

scaled by their respective branching ratios (LBNL Isotopes Project, http://ie.lbl.gov/toi/; 

LNHB Table of Radionuclides, http://www.nucleide.org/DDEP_WG/DDEPdata.htm).

To validate our model, a 75-kVp polychromatic x-ray spectrum produced by our Varian x-

ray tube with a tungsten rotating anode and 0.7 mm of effective Al filtration was recorded in 

air. This recorded spectrum was compared with a degraded version of the expected 

spectrum. In simulations (Section 2.F), the DRF was incorporated into a forward model of 

the PCXD-based imaging chain in the form of a bin sensitivity function, Si(E):

(3)

where nbin is the total number of bins. [ ] is the energy threshold (T) range for the 

ith bin.

2.C. Distortion correction based on Artificial Neural Networks

Although the PCXD provides spectral x-ray projections, the energy distortion associated 

with the physical system heavily diminishes the signal from K-edge materials, and hence 

reduces the sensitivity of K-edge material decomposition. An artificial neural network was 

used to reverse the distortion in the PCXD caused by the undesirable physical effects in the 

detector (detailed in section 2.B). The motivation for using a neural network to perform the 

distortion correction is to exploit its ability to learn and model the relationship between the 

expected and recorded spectral measurements, transforming the distorted projection data 

(input) to its corresponding, expected (target) projection data. The ANN-based approach we 

use for distortion correction is illustrated by the flowchart in Fig. 2 and contains both 
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training and testing. We trained the ANN to learn the relationship between the distorted 

spectra (i.e. each projection pixel intensity across all energies at the same angle) and the 

expected, distortion-free spectra in a calibration step (Fig. 2a) for both full-spectrum and 4 

energy bins modes. Once the training was completed, the trained ANN can be used to 

perform distortion correction on any subsequent projection data acquired with the same CT 

system, acquisition parameters, and basis materials (Fig. 2b).

Similar to Zimmerman et al. [14], we used an ANN architecture composed of one input 

layer, two hidden layers, and one output layer. The input and output layers contained 24 

nodes each, which correspond to 24 desired input and output energy bins (from 27 to 50 

keV), respectively. Each hidden layer contains 5 neurons, each of which represents a 

sigmoid activation function. Each node in the output layer is modeled by a linear 

approximation function. In both our simulation and experimental study, the ANN was 

trained using the Neural Network toolbox in MATLAB. The ANN learning algorithm 

minimizes the mean square error between the estimated distortion corrected spectra and the 

true target spectra using the Levenberg-Marquardt backpropagation technique [24] 

implemented in MATLAB. During training, the weights of the neural network are calculated 

iteratively by optimizing the matching between the neural network output and the target 

spectrum via a minimization of the mean square errors. This requires knowledge of the 

ground-truth, distortion-free projections which can be obtained by simulating the scan of 

digital versions of 3D printed phantoms (Fig. 3) using ideal X-ray spectra for the x-ray tube 

and CdTe-based detector absorption generated with Spektr [25]. To ensure the input and 

target set match as closely as possible, we designed digital phantoms using Autodesk 3D 

modeling software. From the digital phantoms, two physical phantoms were then 3D printed 

using polylactic acid (PLA) plastic material and a Makerbot Replicator 2 3D printer. The 

phantoms were 3D printed at 0.2 mm resolution which is sufficient to ensure a negligible 

difference between the digital version of the phantom and its 3D printed replica, given our 

PCXD pixel size of 1mm × 1.4mm.

2.D. Denoising via Joint Bilateral Filtration

To address the issue of noisy full-spectrum CT data (see Fig. 1), we use joint bilateral 

filtration (BF) to enforce regularity within and between the reconstructed images for each 

energy bin [1, 23]. The objective of the denoising algorithm is summarized by the following 

optimization problem:

(4)

Given the input, reconstructed spectral CT data, X, the aim is to find a denoised version of 

the data, μ, which best minimizes the cost specified by Γ(μ) for the CT data while preserving 

data fidelity. The data is organized in columns, with each column representing the 

reconstruction of a single energy bin. To compensate for the large differential in noise 

between energy bins, the data fidelity is weighted by one over the normalized variance of the 

noise measured in each bin, allowing proportionally stronger regularization for nosier energy 

bins. A common choice for Γ when working with piecewise constant signals is intensity 
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gradient sparsity: Γ(μ) = ||Wμ||1, where W is a finite difference operator. Often, Γ(μ) is 

chosen to be total variation. Here, we instead use bilateral total variation (BTV), which is 

reduced by applying bilateral filtration (BF) [26, 27]. The algorithm solves the original cost 

function (Equation 4) using the split Bregman framework and the add-residual-back strategy 

[28, 29]. The algorithm was described in detail in [1].

2.E. Material Decomposition

One of the promises of spectral CT is improved performance in material separation via 

material decomposition. To decompose spectral CT data containing a mixture of different 

materials into quantitative, 3D maps of the concentrations of each element, we focus on a 

post-reconstruction decomposition method. Extending the approach of Alvarez and 

Macovski [12], we perform a basis material decomposition [30]:

(5)

For our implementation, the first two terms in Equation (5) describe the energy-dependent 

attenuation, μ(E), in terms of the photoelectric effect (PE) and Compton scattering (CS). 

These PE and CS components are scaled to sum to the attenuation of water when αPE =αCS 

=1. The 3rd term is the attenuation of the K-edge material, iodine (Fig. 4). The material 

decomposition is performed with the system calibrated material sensitivity matrix M 
consisting of μPE,μCS and μI. Our post-reconstruction material decomposition enforces a 

non-negativity constraint on the material concentrations, C.

(6)

The optimization in Equation (6) reflects the physical reality that concentrations cannot be 

negative and is enforced by subspace projection of the least squares material decomposition. 

In general, negative concentrations in contrast enhanced regions result from noise and 

distortion present in the source data.

2.F. Simulations

We performed a realistic simulation using Spektr [25] to generate ideal projection spectra of 

a phantom containing vials with 0 to 14 mg/ml of iodine in water, the typical concentrations 

that we encounter using an iodinated blood pool contrast agent in mouse studies [31]. The 

distortion, derived for our system using the spectral model (see Section 2.B.), was 

introduced into the ideal sinograms to simulate a set of spectrally distorted projections as 

closely matched to our PCXD measurements as possible. Poisson noise was added to match 

the level of noise and the number of photon counts in the real sinograms for each energy bin. 

The distorted and ideal spectral projections were then fed into our ANN training as input and 

target, respectively to provide training. The training was done using 180 projections of a 

simulated tomographic calibration scan (90 raw, noisy projections and 90 re-projections of 

BF filtered reconstructions). The mixed use of noisy and denoised projections was preferred 
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for training such that ANN could learn some denoising capabilities. Once the ANN training 

was completed, a different test phantom containing square vials with 0 to 14 mg/ml of iodine 

in water was simulated in a similar manner (see Fig. 3). The trained ANN was then applied 

to the distorted projections of the test phantom to obtain distortion corrected projections. 

Spectrally corrected images were then reconstructed from the corrected projections for both 

full-spectrum and 4 energy bins using FBP and denoising with joint BF. We performed basis 

material decomposition into CS, PE, and I maps. Additionally, we computed the contrast-to-

noise ratio (CNR):

where m refers to mean values and σ to standard deviations computed in two regions of 

interest. In the resulting images CNR was computed for the iodine relative to water. CNR 

was used to estimate the iodine detectability levels (Rose’s criterion: CNR ≥5 [32]) and 

percent relative errors for iodine concentration were evaluated and compared with and 

without distortion correction.

2.G. Experimental data

Similar to the simulation study, our experiments were performed in two steps: (a) a training/

calibration step using the training phantom and (b) the application of the ANN on a test 

phantom, as shown in the flow chart in Fig. 2. The ANN training processes for the full-

spectrum and 4 energy bins cases, used sets of raw, distorted projections acquired with our 

PCXD and corresponding sets of ideal projections without distortion obtained using the 3D 

digital phantom as a training target. As input to our ANN training, a set of 90 distorted 

projections over 180 degrees were acquired by scanning our physical phantom with vials 

containing water and 1, 3, 5, 7, 9, or 11 mg/ml of iodine solution (Fig. 3). From the acquired 

projections, we reconstructed images using FBP at each energy and averaged them to form a 

less noisy energy averaged image. We then performed an image registration between the 

digital phantom and the energy averaged image using MATLAB’s phase correlation-based 

image registration algorithm. The corresponding target set for the training was synthesized 

from the registered digital phantom using the ideal x-ray spectrum and material attenuation 

generated by Spektr and the NIST XCOM database [33]. The training set was appended with 

another set of 90 distorted projections reprojected from the denoised version of the raw 

images using joint BF and was matched to the same target to provide a less noisy estimate of 

the input data. After the ANN was trained, it was applied to a different test phantom 

fabricated with the same material but with different geometry (Fig. 3).

To further illustrate the use of the ANN distortion correction, a C57BL/6 mouse was 

scanned using our custom PCXD-based micro-CT system. The mouse was injected via tail 

vein with 0.3 ml of a liposomal iodinated contrast agent [31]. Next, the animal was 

euthanized and scanned using full-spectrum acquisition at the same parameters as in the 

experimental phantoms. The full-spectrum and the 4 energy bins projections of the mouse 

were then fed into the corresponding ANN trained using the phantom described above to 
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perform spectral distortion correction. The distortion corrected projections were then 

reconstructed using FBP and denoised via joint BF. Material decomposition was performed 

using both the full-spectrum and 4 energy bins data in the same manner detailed in Section 

2.E. using a material sensitivity matrix measured from the training/calibration phantom data 

for the corresponding with and without distortion correction cases.

To provide better anatomical reference for comparison, the same mouse was scanned at 

higher resolution using another PCXD detector (Pilatus 300K CdTe detector from 

DECTRIS; Baden, Switzerland) with a single threshold set at 20keV. This detector has a 

pixel size of 172 μm × 172 μm. We note that we used this PCXD only to provide an image 

for anatomical reference and that its spectral capabilities were not relevant for this study. 

The x-ray source for this high resolution scan was a Thermo Scientific™ PXS10 MicroFocus 

x-ray tube used at 80kVp, 251μA and with an integration time of 10ms per exposure.

3. RESULTS

3.A. PCXD Spectral Distortion Modeling

The results of spectral distortion modeling are presented in Fig. 5 and Table 1. Figs. 5A and 

B compare the model fitted and experimentally measured spectra for 109Cd and 133Ba, 

respectively. The measured spectral peaks appear to be accurately positioned using our 

CdTe-based PCXD. The full width at half maximum (FWHM) for the most significant peaks 

were 2.9 keV for 109Cd (at 22 keV) and 3.2 keV for 133Ba (at 31 keV). Fig. 5C shows the 

undistorted, 75 kVp, polychromatic tungsten spectrum (0.7 mm Al filtration, provided by 

Spektr [25]) and the corresponding modeled distorted x-ray spectrum along with the 

measured x-ray spectrum in air (no object between the x-ray source and the detector) using 

our PCXD. The distortion model applied to the simulated 75-kVp x-ray spectrum closely 

matched the measured spectrum. For a quantitative comparison, we also computed the root 

mean square error (RMSE) between the measured and modeled spectra from 10 to 75 keV to 

quantify the accuracy of the model. The resulting RMSE values for the normalized spectra 

were 0.0111, 0.0069 and 0.0016, respectively, for 109Cd, 133Ba, and the 75 kVp 

polychromatic spectrum. Finally, Fig. 5D displays the DRF as a matrix in which we note the 

low-energy tailing effect and the K escape peak from CdTe for incident photons with an 

energy higher than 25 keV.

3.B. Simulation Results

Our simulation results show that the distortion correction with an ANN performed notably 

well in correcting the distortion in our test phantom and effectively recovered the K-edge of 

iodine at ~34 keV (Fig. 6) in both full-spectrum and 4 energy bins case. Due to lack of 

space, we only show the full-spectrum CT images between 31 and 35 keV, which includes 

the iodine K-edge for the full-spectrum CT. Joint BF was applied to the images before 

decomposition to further reduce noise. It is evident that without distortion correction the 

spectral decomposition provides inaccurate results with tremendous iodine contamination in 

the CS image (Fig. 7). Once distortion correction was applied, the material decomposition 

was greatly improved. All vials containing iodine were clearly separated from water and the 

PLA container, and the mean relative error in measured iodine concentration was reduced by 
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50% for full-spectrum mode and 20% for 4 bins mode compared with the uncorrected result 

(Table 2). The detectability (Rose’s criterion CNR ≥5) computed in the iodine map was also 

improved in the full-spectrum mode to <2mg/ml with distortion correction from more than 

4mg/ml without distortion correction.

3.C. Experimental results

Fig. 8 illustrates the efficacy of the joint BF operation in removing noise from heavily 

photon-starved CT data acquired with our PCXD in full-spectrum mode. It is evident that 

the very high noise level severely limits the utility of the raw full-spectrum images. After 

performing joint bilateral filtration on all the spectral images (in the energy range of interest 

from 27 to 50 keV), the reconstructed image noise (standard deviation in water vial) is 

reduced by up to 98% relative to the original noise level in the raw images. Upon inspection, 

there is no visible structure in the residual image, which indicates that the filtration operation 

performed well in removing only noise while preserving the edges and structures from the 

raw images. In 4 bins mode, the improvement is less striking but result in up to an 86% 

reduction in image noise.

The experimental results further validated the ability of the ANN to perform distortion 

correction after training with 180 projections (90 raw noisy projections and 90 re-projections 

of BF filtered images) of a tomographic calibration scan. The test phantom results are shown 

in Fig. 9. The iodine K-edge recovery at ~34 keV and noise reduction can be noted in the 

distortion corrected and denoised results. As shown in both Figs. 9 and 10, the iodine K-

edge was smeared out along the energy dimension in images reconstructed from spectrally 

distorted projections, but it was clearly recovered by distortion correction at the correct 

energy around the K-edge (i.e. ~34 keV). The ANN distortion correction also provides some 

denoising. In full-spectrum mode where noise issue is very severe, the noise was reduced by 

up to 86% following ANN distortion correction. Fig. 10 presents the line attenuation plots 

measured for a vial containing 8 mg/ml of iodine concentration, and a water vial with and 

without distortion corrections. While the distortion correction brings back the K-edge of 

iodine, some bias for water are also noted especially in the full-spectrum mode.

As Fig. 11 shows, the performance of material decomposition was serverely limited by the 

spectral distortion, resulting in misclassification of iodine into PE and CS and in 

underestimation of the iodine concentrations. Consistent with our simulation results, the 

improvement in material decomposition with our ANN distortion correction is evident. In 

full-spectrum mode, the mean relative error in iodine concentration estimation was reduced 

to 10% with the distortion correction from 51% without correction, a 41% improvement in 

material decomposition accuracy. In 4 bins mode, as shown in Fig. 11, the material 

decomposition could not yield meaningful results without the distortion correction. 

However, the corrected material decomposition improves, but shows a 33% mean relative 

error in iodine concentration estimation (Table 3). In the full-spectrum mode, the iodine 

detectability was improved from 8–10 mg/ml to 6–8 mg/ml following distortion correction. 

In 4 bins mode, although the mean iodine concentration estimation is not as accurate, the 

detectability is at 4–6 mg/ml. These results are confirmed by Fig. 12 where we plot the mean 

concentrations and standard deviations for each iodine vials.
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Finally, Figs. 13 and 14 show our murine experimental results. A high-resolution scan is 

shown in Fig. 13(c) to provide anatomical reference to the lower resolution spectral CT scan. 

An axial slice across the heart of the mouse was reconstructed in both full-spectrum and 4 

bins mode. The reconstructed images were denoised using our joint BF, providing high 

fidelity images even in the extremely photon-starved energy bins in the full-spectrum case. 

The iodine in the blood pool can be clearly seen as enhancement in the heart. However, the 

K-edge contrast was smeared out along the energy dimension if the distortion is left 

uncorrected. A comparison between the spectral distortion corrected and uncorrected images 

validates the iodine K-edge recovery with distortion correction at ~34keV. Fig. 14 highlights 

the material decomposition improvement with our ANN-based spectral distortion correction. 

Corrected full-spectrum CT provides superior results compared to 4 bins mode. With ANN 

distortion correction, the CS and PE physical basis images are relatively homogeneous 

throughout the mouse body, with attenuation values near the expected values for water. 

Without distortion correction in the 4 bins case, the CS component was heavily 

underestimated, causing overestimations in the PE and iodine basis images.

4. DISCUSSION AND CONCLUSIONS

The objectives of this work were to develop and demonstrate a novel ANN-based technique 

to correct for distortion in PCXD-based spectral CT data to improve material decomposition 

performance. Both full-spectrum and 4 energy bins modes were investigated. The proposed 

technique trained a neural network to learn the non-linear relationship between the distorted 

spectra recorded by the PCXD and their corresponding ideal, distortion-free spectra without 

requiring a specific model of the detector distortion. Using 3D modeling and 3D printing 

technology, the ANN training was performed as a calibration step after which the trained 

ANN can be used to correct for distortion in any subsequent scans on the same system and 

the same scanning parameters (kVp, mAs) and basis materials. This correction scheme puts 

most of the computational stress on the calibration (training) process, while the distortion 

correction operation itself requires negligible computation. Thus, our method allows 

seamless integration into any existing imaging frameworks without imposing additional 

constraints. Since our ANN-based distortion correction is done on projection data, the 

resulting distortion corrected projections can be used with any reconstruction and material 

decomposition algorithms. Given that our technique does not require accurate knowledge of 

the spectral distortion model, the strenuous synchrotron measurements and calibration 

required with other techniques such as in [17] can be eliminated. Additionally, the joint 

bilateral filtration denoising algorithm further augmented our ability to deal with extremely 

noisy spectral CT data at dense energy sampling as in full-spectrum CT.

The results demonstrate the feasibility of using an ANN to correct for spectral distortion in 

spectral CT imaging. In both full-spectrum and 4 energy bins mode, the accuracy in 

estimating the iodine concentration was improved; however only full-spectrum mode lead to 

better detectability after correction due to both better contrast achieved by denser energy 

sampling and adequate noise reduction enabled by joint bilateral filtration. In general, the 

inherently lower noise level in the 4 bins mode leads to better detectability. However, even 

with distortion correction the accuracy in estimating iodine concentration using 4 energy bin 

data is still lower than using the full-spectrum data.
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The experiments validate the technique and applicability of the ANN trained on a 3D printed 

phantom to undo the distortion in another phantom with distinctly different geometry and in 

a mouse. Overall, the experimental data confirms that full-spectrum mode provides superior 

results to 4-energy mode when the distortion corrections is applied.

The limitations of our technique include some bias added by the distortion correction (see 

Fig. 10), causing the water attenuation spectrum to show a discontinuity at 34 keV and 

making it appear to contain a K-edge material (i.e. iodine). This could lead to inaccuracy in 

material concentration measurements. However, the magnitude of this bias (less ~ 2 mg/ml 

equivalent of iodine) is below the level of iodine concentration we could detect, making its 

contribution to iodine misclassification a rather small background in the iodine image. As a 

software correction method, our technique is also limited in that it cannot recover the 

photons lost in charge sharing events, which could only be addressed by acquisition 

hardware design modification [20, 21].

Although we have focused here only on iodine (the most commonly used material in CT 

contrast agents), in theory, the same technique could be used to image multiple K-edge 

materials by extending the training data set to include all the Kedge materials either by 

addition of the new materials in the same training phantom or by appending additional 

phantom scans containing the new materials. However, with multiple probes other 

limitations may arise including the proximity between their K-edges, position of the K-edges 

relative to source spectrum, and the very large variation of photon flux in different energy 

bins depending on the source spectrum making it a great challenge to choose a source 

spectrum that is optimized for multiple K-edge materials. We plan to explore the limits of 

our ANN-based distortion corrections with multiple contrast agents in future work.

This work explored and demonstrated the feasibility of full-spectrum CT with 1 keV energy 

sampling that has rarely been attempted before. However for such a case, photon starvation 

becomes a challenge. Our success in applying ANN-based distortion correction greatly 

benefited from joint BF-based denoising. We have also applied our distortion correction to 

the more practical case of 4 energy bins that has the benefit of lower noise level but at the 

cost of lower energy resolution, which limits the accuracy of the material decomposition. It 

is also worth noting that the 4-bin data used in our studies were synthesized from the full-

spectrum scan to provide a more direct comparison at equal dose. However, the 4-bin mode 

implemented in most photon counting detectors uses a discriminator circuit in the hardware 

[10], which would provide data with different noise correlation properties relative to our 

study [34, 35]. Further work can be done to improve on our technique, including 

optimization of the ANN architecture, number of energy bins, the chosen energy thresholds 

and the selection and amount of training data to control the bias in correcting for distortion 

in non K-edge materials. Future direction also includes finding the optimal number of 

energy bins to balance the trade-off between radiation dose, bias, and variance in the 

material decomposition, which are influenced by both image noise and contrast. In this 

study, we controlled the issue of pulse pile-up by limiting the tube voltage and photon flux 

using attenuators. In future work, we also plan to test our method in the presence of pulse 

pile-up with higher fluxes and broader spectra at higher kVp.
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In conclusion, we have outlined and demonstrated a complete framework for full-spectrum 

CT combining ANN-based distortion correction and denoising with joint BF, which led to 

improved material decomposition accuracy in K-edge imaging of iodine. By combining the 

two tools, we were able to address two main challenges facing PCXD-based spectral CT and 

to apply the framework to improve quantitative material decomposition accuracy. Given the 

computational efficiency with which the ANN can be applied to projection data, the 

proposed scheme will readily integrate into existing CT reconstruction pipelines.
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Fig. 1. 
Spectral CT data acquired for a physical 3D-printed phantom in full-spectrum and 4 bins 

mode using the same photon flux. (Top) System-calibrated and log-transformed sinograms. 

(Bottom) FBP reconstructions of the sinogram data. Note the noise in the sinograms and 

reconstructions in full-spectrum mode. The units of the calibration bars are in cm−1.
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Fig. 2. 
A flowchart showing (a) neural network training as a calibration process using a distorted 

tomographic projection scan of a calibration phantom and its synthesized, digital, ideal 

projection. (b) Application of the neural network to perform distortion correction before the 

projections are reconstructed, filtered, and decomposed into basis materials.
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Fig. 3. 
Phantoms used in training (first row) and testing (second row) of our neural network. The 

first column shows phantoms used in simulation containing iodine solution from 0 to 14 

mg/ml in water. The second and third columns show the digital models and their 

corresponding 3D printed physical phantoms used in our experiment for training and 

applying the neural network, respectively.
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Fig. 4. 
Spectral basis functions including the photoelectric effect (PE), Compton scattering (CS), 

and iodine. The PE and CS functions are scaled to sum to the attenuation of water.
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Fig. 5. 
Distortion modeling [1]. In (A) and (B) we plot the fitting model and the corresponding 

measured spectra for Cd-109 and Ba-133, respectively. Plot (C) shows the expected, 

undistorted 75-kVp polychromatic spectrum (red), as well as the same spectrum after 

applying the spectral distortion model (solid, blue line). A corresponding measured spectrum 

acquired with our PCXD at 75 kVp is also shown (blue circles). The 2D display in (D) 

represents the DRF, showing the low energy tailing effect (black arrow) and the K escape 

peak for CdTe for incident photons with an energy higher than 25 keV (white arrow).
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Fig. 6. 
Comparison of spectral images for full-spectrum (left) and 4 energy bins (right) before and 

after applying ANN distortion correction. With correction, the iodine K-edge is clearly 

visible at 34 keV for full-spectrum mode (red rectangle). The expected results are also 

shown.
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Fig. 7. 
The decomposed material images using Compton scattering (CS) and photoelectric (PE) 

physical basis functions (normalized to water) and iodine from uncorrected and distortion 

corrected spectral CT data. When uncorrected, the spectral distortion resulted in tremendous 

iodine contamination in the CS image. Once the distortion was corrected for, the 

misclassification was reduced, resulting in more uniform images of the vials containing 

water and the PLA material of the phantom container itself.
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Fig. 8. 
Reconstructed images for full-spectrum (left) and 4 bins (right) using FBP from 

experimental data of the 3D-printed training phantom before and after joint bilateral 

filtration (BF). The absolute residual images show no visible structure or bias from the 

filtration operation. For full-spectrum mode, 24 energy bins (from 27 keV to 50 keV) were 

used to provide the distortion correction.
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Fig. 9. 
Spectral CT images acquired by our PCXD in full-spectrum and 4 bins mode and 

reconstructed with FBP before and after applying the distortion correction. After the 

distortion correction, bilateral filtration was applied to further reduce noise. Without 

correction, the iodine K-edge was smeared out over multiple energy bins. Once distortion 

was corrected for, the K-edge was notably recovered at ~34 keV (red rectangles).
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Fig. 10. 
Measured attenuation in a vial containing 8 mg/ml of iodine and a vial containing water 

before (circles) and after (lines) application of ANN distortion correction for (a) full-

spectrum mode and (b) 4 bins mode. The K-edge enhancement from iodine at ~34 keV was 

notably recovered with the distortion correction. However, there is bias in the water 

attenuation spectrum at the K-edge of iodine after the correction.
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Fig. 11. 
Decomposed material images corresponding to full-spectrum and 4 bins mode produced 

from uncorrected and distortion corrected projections. Without distortion correction, the 

iodine is greatly underestimated and misclassified into the CS and PE maps. The results are 

improved with distortion correction.
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Fig. 12. 
Comparison of measured iodine concentrations in (a) full-spectrum and (b) 4 bins mode, 

with (blue) and without (red) distortion correction. The material decomposition was greatly 

improved with distortion correction resulting in more accurate iodine concentration 

estimation.
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Fig. 13. 
(a) Summary of spectral CT results in a mouse scan. 2D cross sectional slices across the 

heart of the mouse are shown corresponding to energy bins from 30 keV to 35 keV for full-

spectrum mode and all bins in 4 bins mode. The images were reconstructed using FBP from 

distorted projections, distortion corrected projections, and distortion corrected projections 

with bilateral filtration. The enhancement in the heart corresponds to the presence of iodine 

in the blood. The loss of K-edge contrast in the spectrally distorted images was recovered by 

the ANN distortion correction, as highlighted in the jump of enhancement between the 33 

and 34 keV energy bins (b). A high-resolution scan is shown in (c) to provide an anatomical 

reference. The reference slice across the heart of the mouse is averaged along the axial 

dimension to match the resolution of the lower resolution full-spectrum image.
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Fig. 14. 
Material decomposition of the mouse data for full-spectrum and 4 bins mode. The 

decomposition was improved with the ANN distortion correction, as shown in the relatively 

homogeneous CS and PE images. The iodine map appears to be more accurately identified 

at locations corresponding to the heart (red arrow). The composite images show the iodine 

map (green) superimposed on the CS and PE images (black and white) without and with 

distortion correction.
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Table 1

Resulting parameter values obtained from [17] and Equations 1 and 2 after fitting the expected and detected 

spectra for 109Cd and 133Ba.

Parameter Value

a1 0.5

a2 0.015 keV−1

a3 0.003 keV−1

a4 0.300 × 10−4 keV−2

a5 1.16 keV

a6 0.025
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