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ABSTRACT

CDK9 is a protein in constant development in cancer therapy. Herein we present an overview of the
enzyme as a target for cancer therapy. We provide data on its characteristics and mechanism of action. In
recent years, CDK9 inhibitors that have been designed with molecular modeling have demonstrated good
antitumoral activity in vitro. Clinical studies of the drugs flavopiridol, dinaciclib, seliciclib, SNS-032 and
RGB-286638 used as CDK9 inhibitors are also reviewed, with their additional targets and their relative 1Cs,
values. Unfortunately, treatment with these drugs remains unsuccessful and involves many adverse
effects. We could conclude that there are many small molecules that bind to CDK9, but their lack of
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selectivity against other CDKs do not allow them to get to the clinical use. However, drug designers
currently have the tools needed to improve the selectivity of CDK9 inhibitors and to make successful

treatment available to patients.

Introduction

CDK9 was first isolated and designated PITALRE, for the char-
acteristic Pro-Ile-Thr-Ala-Leu-Arg-Glu motif by us.' Its chro-
mosomal mapping and phosphorilation sites were studied
before it was named CDK9.>* In HIV studies, PITALRE was
identified as the catalytic subunit of the positive transcription
elongation factor b (P-TEFb), a protein kinase that hyperphos-
phorylate the carboxyl-terminal domain (CTD) of the large
subunit of RNA polymerase II in vitro.”” Peng et al. are the
ones that described P-TEFb as a novel CDK/cyclin pair, calling
their subunits CDK9 and Cyclin T for the first time.® After
that, Cyclin T1, T2a, and T2b were identified. Each binds
CDK9 and possesses P-TEFb activity, although 80% of CDK9
binds Cyclin T1, 10% binds T2a, and 10% binds T2b.” A year
later, Cyclin K was also found to interact with CDK9 in vivo."?
Herein, we provide data of the characteristics and mechanism
of action of CDK9. Molecular modeling, in vitro and clinical
studies of the drugs used as CDK9 inhibitors are also reviewed.
Currently, the scientific community requires targeted cancer
drugs to get the successful treatment to patients and drug
designers have the tools needed to improve the selectivity of
CDK9 inhibitors.

Mechanism of action

CDKO is not a typical Cdc2-like kinase. It does not act in cell-
cycle regulation processes; rather, it acts in differentiation pro-
cesses.'" It is the catalytic subunit of P-TEFb that, in association
with Cyclin T, has the ability to phosphorilate the CTD sub-
strate of RNA polymerase II and reach the RNA transcription

elongation.''* Although there are other cyclin-dependent kin-
ases that are capable of phosphorilating the CTD, the only one
that activates gene expression in a catalyst manner is CDK9.
Therefore, Cyclin T/CDK? is a dedicated kinase functioning in
transcription, with CTD being the major functional target of
the complex in vivo."?

Although the mechanism underlying CDK?9 is complex and
not totally elucidated, it is schemed and explained in Figure 1.
The CTD of the RNA polymerase II comprises tandem repeats
of the 7 amino acid sequence YSPTSPS, domain that is essential
for the polymerase function in vivo."> The CTD should be
hyperphosphorylated to regulate elongation.'* The number of
phosphorilation sites exceeds 50, serine being the predominant
one."> There are 2 main phosphorylations carried out by
cyclin-dependent kinases (CDKs): the one of Ser5 (YSPT-
Ser5PS) by CDK7'®'7 and the one of Ser2 (YSer2PTSPS) by
CDK9."® Firstly, CDK7 phosphorilates Ser5, allowing for the
activation of RNA-Pol IL'"**° Next, the Ser5 phosphorilated
RNA-Pol II is able to stimulate transcription of the RNA, but
not its elongation.”>*' The productive elongation comes with
the phosphorylation of Ser2 by P-TEFb.'®**%¢ Therefore, P-
TEFb (CDK9/Cyclin T or CDK9/Cyclin K) is essential in order
to generate mature mRNAs in cells.

CDKO9 Isoforms

There are 2 isoforms of the CDK9 protein: the major 42 kDa
CDKO9 isoform, and the minor 55 kDa isoform. The 42kDa iso-
form (CDK9Y,,) is the one originally identified as PITALRE.!
The second form of CDK9 (CDK9s;5) is 13kDa larger than the
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Figure 1. Scheme of RNA-Pol Il sequence process: i) activation, ii) transcription and iii) elongation of RNA.

protein originally identified,”” with a 117 residue terminal
extension.?® Both isoforms were present in HeLa, NIH/3T3
human macrophages and mouse lung and liver tissues, but
with different abundance.”®** Although their phosphorylation
patterns, studied with 144 peptide substrates, are identical, they
possess different localization and expression patterns summa-
rized in Table 1.°**° These results suggest that the functions of
the 2 isoforms should be distinguished, although there is not a
concrete characterization of them in literature yet.

CDK9s; is identical to CDK9,,, except for an additional 117
amino acid residues at the amino terminus.® The promoter
sequence has 2 transcription starts in CDK9. The segment that
transcribed CDK9,, mRNA is characterized by a GC-rich
sequence,”””! while CDK955 mRNA is transcribed by a TATA
box, that is approximately 500 bp upstream of the mRNA tran-
scription start-point.***! Liu et al. found that Ku70, a protein
involved in DNA repair, specifically associates with the
CDK9Yss, but not with the 42kDa. These results again suggest
that the functions of the 2 isoforms should be distinguished,
and that CDK9s5 may play a role in the repair of DNA.

Molecular modeling in CDK9

Medicinal chemistry approaches in drug research and develop-
ment have evolved alongside the progress observed in

Table 1. Differences in localization and expression patterns of CDK9 isoforms.?*2°

CDK9,, CDK9ss
Localization Nucleoplasm Nucleolus
Undifferentiated monocytes  High levels Not detected
Macrophage differentiation ~— High levels

Level increased Level decreased
Promoter
responsible to

activate signals

Primary lymphocytes

Promoter in Hela cells Strong —
Hepatocytes Predominant form after ~ Predominant form
cell cycle before cell cycle

molecular modeling drug discovery. The amount of in silico
studies significantly increased, stimulated by the detailed
knowledge of CDK9 at the molecular level and by the advances
in bioinformatics.

The computational study of the P-TEFb complex allows the
identification of several CDK9 inhibitors. Currently, the most
prominent method of blocking P-TEFb function is to directly
inhibit the ATP-binding site of CDK9 (Fig. 2). Flavopiridol (1
[Table 2]) is an anticancer drug in phase II clinical trials with a
broad specificity, as CDK inhibitor that binds the ATP site of
CDK9.%** However, this strategy is not the most specific for
drug discovery because the ATP binding pocket is reasonably
conserved in the whole CDK family, with more than 12 CDKs
involved. Moreover, the inhibitor has to compete with the mol-
ecules of ATP during binding, which are in high cellular
concentrations.

Alternative approaches have been designed in order to
increase the selectivity of CDK9 inhibitors (Fig. 2). One exam-
ple is done by 5,6-dichlorobenzimidazone-1-8-D-ribofurano-
side (DRB). It blocks the ATP binding site of CDK9 by halogen
bond formation, inducing conformational changes in the gly-
cine-rich loop of CDKO9. This change of conformation contrib-
utes to a high affinity interaction.’® The pan-CDK inhibitor
CR8 (2 [Table 2]) induces a downward movement of this loop
in CDK9.”” The importance of halogen atoms in the molecular
design of selective CDK9 inhibitors is reinforced by the discov-
ery of the indirubin-3'-monoxime derivative (3) showed in
Table 2.*® 5-Fluoro-N?,N*-diphenylpyrimidine-2,4-diamines (4
[Table 2]) binds the ATP binding site of CDK9 with a different
orientation from that of flavopiridol.>® However, the CDK9
inhibition by all these molecules (2-4) is lower than the one
done by flavopiridol (1).

The study of the interactions of a series of substituted 4-
(thiazol-5-yl)-2-(phenylamino)pyrimidines (5, Table 2) and of
CAN508, a 4-arylazo-3,5-diamino-1H-pyrazole inhibitor, with
the ATP binding site of CDK9 and CDK2 suggests that the
ATP binding site of CDK9 is more malleable than that of
CDK2 (Fig. 2), and can accommodate large and flexible
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Figure 2. CDK9 inhibitors blocking the ATP-binding site (CDK9 is in purple and Cyclin T1 in blue).

compounds.**** These studies provide another approach for
the selectivity of inhibitors toward CDK9 over CDK2.

Another example is the computational study of the
CDK9/cyclin T1 protein-protein interaction done by Rand-
jelovic et al.,*> where 2 peptide sequences were identified as
potential inhibitors to bind the surface of CDK9. In this
way, they directly interfere with the CDK9/Cyclin T1 com-
plex formation. Furthermore, the small molecule 2-amino-
8-hydroxyquinoline has been proposed as a potential inhibi-
tor of the CDK9/Cyclin T1 interaction.**

F07 and F07#13 are 2 small molecules that despite being
studied as anti-retroviral drugs, target the interface pocket
of CDK9/Cyclin T1. The in silico analysis of Duyne et al.
demonstrated a better binding by the drugs to the active
form of CDK9.*

Small Molecules as CDK9 Inhibitors

Research in small molecules is fundamental for the discovery of
a successful drug in targeted cancer treatment. Herein, we sum-
marize some of the small molecules that have been designed as
antitumor drugs with CDKO9 inhibition (Table 2).

TGO2 (6 [Table 2]) is one of the molecules with the best
value of CDK9 inhibition K; (3nM).*® However, it has not been
designed as a CDKO9 inhibitor specifically, as it also binds other
kinases, such as Janus Kinase 2 and Fms-like tyrosine kinase-
3. TGO2 is a macrocycle that holds a phenylamino pyrimidine
as CDKI-73 (7) and the 2,4,5-trisubstited pyrimidine derivative
(8) showed in Table 2. These molecules have shown appreciable
selectivity for CDK9 as CDK inhibitors, capable of activating
caspase 3, reducing the level of Mcl-1 anti-apoptotic protein,
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Table 2. CDK9 Inhibition K; values by small molecules 1-10.

Number Name Inhibition K; (nM)

1 Flavopiridol® 459

2 (R8**3 110

3 Indirubin-3-monoxime derivatives®® 400

4 5-Fluoro-N? N*-diphenylpyrimidine-2,4- 330
diamines®

5 4-(thiazol-5-yl)-2-(phenylamino) 7
pyrimidines**=°

6 T60248,49,S4 3

7 CDKI-73%® 4

8 2,4,5-trisubstited pyrimidine 14
derivatives*

9 LCD000067°" 44

10 Wogonin®? 190

and inducing cancer cell apoptosis in breast, colon and leuke-
mia cancer cells.***’

Other CDK inhibitors with the phenylamino pyrimidine in
their structure that bind the ATP binding site and present
CDKO9 potency and selectivity are LDC000067 (9 [Table 2])
and the substituted 4-(thiazol-5-yl)-2-(phenylamino) pyrimi-
dine (5 [Table 2). They have demonstrated potent anticancer
activity against different cell lines, such as cervix, lung, breast
and leukemia with down-regulation of Mcl-1.°>" These small
molecules holding a phenylamino pyrimidine could represent
promising leads for the development of specific CDK9
inhibitors.

Wogonin, one of the active flavones from the natural herb
Scutellaria balcalensis, should be highlighted as a CDK9 inhibi-
tor (10 [Table 2]). It presents similarities with the structure of
flavopiridol, and blocks the phosphorylation of the carboxy-
terminal domain of RNA polymerase II at Ser2, resulting in
apoptosis induction in leukemic T-cells in vitro.*

It should be considered that, although the search of the most
specific CDK9 inhibitor is depicted, the activity of these inhibi-
tors toward other kinases is not necessarily detrimental. The
final judgement on the anticancer potential of a molecule
should go through in vivo experimentation inescapably, where
the overall therapeutic efficacy can be evaluated.



Table 3. CDK9 Inhibitors in Clinical Trials.
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Clinical Trials
Name Additional Targets Phase Tumors™ ICs0 (NM)™
Flavopiridol CDK1, CDK2, CDK4, CDKe, Il AMLS; PPC*; CLL®® AML: 400%4; Ov202: 100%%; B-CLL: 100%°
CDK7, CDK9, GSK383>#
I RMM®*; NHL®®; CLLS>%; AML”%; U266: 10%”; RPMI-8226: 10%; JeKo-1: 708,
ALL”% ABLs”® Molt-4: 100%%; K562: 350%°
Dinaciclib CDK1, CDK2, CDK5, CDK9®35° Il ABC”"; NSLC%; AML3; ALL73; Breast: 8°°; Lung: 6-14°°; Leukemia: 6°%
I CLL™; RMM7® 558: 2%
Seliciclib CDK1, CDK2, CDK5, CDK7, I SAT’87® Mean: 74007
CDK9, CK1, GSK3A, DIRK1A,ERK 123
SNS-032 CDK1, CDK2, CDK4, CDK7, CDK9® I SATE: CLLE"; RMM®! Leukemia:139%
RGB-286638 CDK1, CDK2, CDK4, CDK5, CDK6, CDK7, CDK9883 I SAT® Myeloma: 100%*

*AML: Acute myelogenous leukemia; PPC: Primary peritoneal carcinoma; CLL: Chronic lymphocytic leukemia; RMM: Relapsed multiple myeloma; NHL: Non-Hodgkin's lym-
phoma; ALL: Acute lymphoblastic leukemia; ABLs: Acute byphenotypic leukemias; ABC: Advanced breast cancer; NSLC: Non-small cell lung cancer; SAT: Solid advanced

tumors.

**Half maximal inhibitory concentration of each drug against the cell lines indicated and expressed in nM.

Clinical Trials of CDK9 Inhibitors

Randomized controlled trials are considered the most reliable
methodology for acquiring adequate data to understand the
benefits and risks of new drugs and how they are optimally uti-
lized.”> Five CDK9 inhibitors that have been tested in clinical
trials in the last years are reviewed in this paper, with additional
data about the specific tumoral pathologies involved in each
trial, their additional targets and their relative ICs, values listed
in Table 3.

Flavopiridol is the drug most often evaluated in clinical trials
as a CDKO9 inhibitor. A randomized phase II study of 2 sched-
ules of flavopiridol given with cytosine arabinoside and mitox-
antrone to patients with acute myelogenous leukemia (AML)
garnered 58% complete response, although 8% of the patients
left the study because of the adverse effects and 13% of them
died.”® The complete response to the treatment in the other 2
phase II trials was approximately 2%. One of the studies
observed combination with cisplatin in primary peritoneal car-
cinoma (PPC),”” while the other was only of flavopiridol in
patients with leukemia.”® In this last study, all patients suffered
adverse effects, with 87% high risk. It should be mentioned that
26% of the patients stopped the treatment with flavopiridol due
to an adverse event.’®

There is no complete response in 7 of the 12 flavopiridol
clinical trials in Phase I studied.”®> Many adverse effects and
events were described in the trials, such as thrombocytope-
nia,”>%%%>%* embolism,” neutropenia®>®*®> and fatigue.”°"*
Therefore, more than the half of the Phase I studies did not sat-
isfy the patients. In addition, there are only 3 studies with com-
plete response under 10%,°°°® and one where 3 of the 9
patients had complete remission, but 8 presented anemia.*’
The study where the percentage is higher is the one which
observed the association to cytosine arabinoside and mitoxan-
trone mentioned before (40%), although 51% of the patients
suffered tumor lysis syndrome.”

Dinaciclib is the other CDK9 inhibitor that has been fea-
tured in Phase I and II clinical trials throughout the last years.
In three Phase II studies where it was involved, there was not a
complete response to the treatment and 75-95% of the patients
suffered adverse effects.”'””> Moreover, Phase I studies of the

drug revealed several adverse effects and no complete response
in any case.”*””

Yet another CDK9 inhibitor involved in Phase I studies is
seliciclib. Although the clinical trials do not reveal many
adverse effects, they also do not expose any complete
response by the patients treated.”*”” A Phase I study enroll-
ing SNS-032, a CDK 2, 7 and 9 inhibitor, was terminated
during dose-escalation. 100% of the patients suffered clinical
adverse effects.”® Other Phase I and pharmacologic study of
the drug demonstrated that there is no response to antitu-
mor activity in the patients, with 75% having adverse
effects.’’ RGB-286638, a novel multitargeted CDK inhibitor,
including CDKO9, revealed no complete response to the treat-
ment and 23% adverse effects described by the patients in its
first human trial.**

It should be mentioned that these aforementioned 5 inhibi-
tors used in clinical trials (flavopiridol, dinaciclib, seliciclib,
SNS-032, RGB-286638) are not selective to CDK9. They also
inhibit other CDKs and other enzymes (Table 3). Therefore,
unsuccessful treatment with these drugs involving many
adverse effects could be due to its lack of selectivity.

Conclusion

CDKO is a target in constant development in cancer therapy.
CDKO inhibitors have demonstrated good antitumoral activity
in vitro. Although there are many small molecules that bind
CDKO, the lack of selectivity against other CDKs and enzymes
does not allow their clinical use. However, drug designers have
the tools required to improve the selectivity of CDK9 inhibi-
tors. Moreover, the scientific community requires targeted can-
cer drugs to offer patients successful treatment.
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