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PLEKHA7 defines an apical junctional complex with cytoskeletal associations and
miRNA-mediated growth implications
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ABSTRACT
E-cadherin-p120 catenin complexes are essential for adherens junction (AJ) formation and for the
maintenance of the normal epithelial phenotype. PLEKHA7 was originally identified as a member of this
complex that tethers microtubules to the AJs and supports their overall integrity. Recently, we revealed
that PLEKHA7 regulates cellular behavior via miRNAs by associating with the microprocessor complex at
the apical zonula adherens (ZA). We have also identified a new set of PLEKHA7 interacting partners at the
apical ZA, via proteomics. Our analysis shows that the main groups of proteins associating with PLEKHA7
are cytoskeletal-related and RNA-binding proteins. Here, we provide extended evidence for association of
PLEKHA7 with several of these proteins. We also show that PLEKHA7 loss activates the actin regulator
cofilin in a p120-dependent manner, providing an explanation for the effects of PLEKHA7 on the cortical
actin ring. Interestingly, PLEKHA7 regulates the levels and associates with PP1a, a phosphatase
responsible for cofilin activation. Finally, we clarify the mode of regulation of the oncogenic miR-19a by
PLEKHA7. Overall, our findings support a multi-layered role of PLEKHA7 in converging cytoskeletal
dynamics and miRNA-mediated growth regulation at the ZA, with potentially critical implications in cancer
that warrant further investigation.
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Introduction

The adherens junctions (AJs) are critical for the development
and maintenance of the epithelial phenotype. The core element
of the AJs is the protein family of cadherins,1,2 with E-cadherin
(Ecad) being the main cadherin member in epithelial tissues.
p120 catenin (p120) is an essential constituent of the AJs that
interacts and stabilizes Ecad at areas of cell-cell contact.2,3

Mature AJs form at apical regions of polarized epithelia, at the
zonula adherens (ZA).1 The ZA associates with a sub-mem-
brane acto-myosin circumferential ring, which stabilizes the
cellular architecture.4 It has been well demonstrated that p120
regulates the activity of RhoGTPases, and thus the organization
of the actomyosin cytoskeleton.5-10 p120 also interacts with the
microtubule network.11-13

Recently, a new member of the ZA was identified, called
PLEKHA7.13 PLEKHA7 was originally described as ZA stabi-
lizer and as an adaptor protein that links the AJs to the minus
ends of the microtubules.13 Although PLEKHA7 was identified
as a p120-binding partner, it localizes specifically at the apical
ZA, whereas p120 and Ecad localize also at the baso-lateral
areas of cell-cell contacts.14,15 We performed proteomics analy-
sis of the PLEKHA7 interactions and reported a novel function
of PLEKHA7 in regulating cell growth.15 Our proteomics con-
firmed that PLEKHA7 forms an Ecad-p120-based complex spe-
cifically at the apical ZA, which is distinct from a basolateral-
specific Ecad-p120 junctional complex.15 Notably, this analysis
revealed an extensive association of PLEKHA7 with

cytoskeletal components.15 In accordance, PLEKHA7 loss
resulted in compromised cortical actin ring and decreased junc-
tional impedance.15 Importantly, we identified a novel interac-
tion of PLEKHA7 with the microprocessor complex and its
core components DROSHA and DGCR8 at the ZA.15 Through
this association, PLEKHA7 regulates the levels of certain miR-
NAs at the processing level, such as miR-30b, to suppress
expression of pro-tumorigenic markers such as SNAI1, MYC,
CCND1, p-Src and anchorage-independent growth (AIG). The
findings revealed a novel function of the ZA in general and
PLEKHA7 in particular in regulating cellular behavior, and
connected two previously unrelated fields, cell adhesion and
RNAi biology.

In this report, we extend our prior findings regarding PLE-
KHA7 with an emphasis on: a) its apparently broad association
with the cytoskeleton; and b) its regulation of cell growth via
changes in miRNA levels.

Results and discussion

PLEKHA7 is an apical junctional marker with broad
cytoskeletal interactions

Our cross-linked proteomics revealed enrichment specifically
of the apical PLEKHA7 junctional complex with several cyto-
skeletal proteins,15 including: a) actin binding proteins, such as
actin (ACTB), a-actinin (ACTN1), myosin light chain 6
(MYL6), actin-related protein 2/3 complex, subunit 5
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(ARPC5), IQ motif containing GTPase activating protein 1
(IQGAP1), Filamin a, a FLNA; b) microtubule-related proteins,
such as cytoskeleton associated protein 5 (CKAP5), Dynein,
Cytoplasmic 1, Heavy Chain 1 (DYNC1H1); and c) intermedi-
ate filament proteins, like Periplakin (PPL) and Filaggrin family
member 2 (FLG2). We already demonstrated the association of
PLEKHA7 with IQGAP1, both by immunofluorescence (IF)
and co-immunoprecipitation (co-IP).15 We have also con-
firmed that PLEKHA7 co-IPs with ACTN1. We show here that
PLEKHA7 also co-localizes with ACTN1 only apically at the
ZA in polarized Caco2 cells (Fig. 1A). In addition, MYL6 shows
strong apical junctional co-localization with PLEKHA7 by IF
(Fig. 1B). PLEKHA7 was initially described as a protein that
associates with the minus ends of microtubules through a direct

interaction with Nezha and KIFC3.13 Surprisingly, our proteo-
mics revealed the presence of CKAP5 in the PLEKHA7 com-
plex,15 a centrosome-organizing protein that also binds and
stabilizes the plus-ends of the microtubules.16,17 IF of polarized
Caco2 cells confirm that CKAP5 localizes at the apical ZA,
together with PLEKHA7 (Fig. 1C). A similar apical junctional
co-localization is also evident for Dynein (Fig. 1D), a protein
thought to associate directly with b-catenin and to tether
microtubules to the AJs.18 Interestingly, protein phosphatase
1a (PP1a; PPP1CA), a major phosphatase that regulates actin
dynamics,19-21 was also identified to be specifically associated
with the apical complex in our proteomics. PP1a regulates
actin dynamics by dephosphorylating cofilin.19-21 IF of polar-
ized Caco2 cells confirmed the apical junctional localization of

Figure 1. PLEKHA7 associates with several cytoskeletal regulators at the ZA. Caco2 cells were grown for 21 days to polarize and subjected to IF for PLEKHA7 and co-
stained for: (A) ACTN1; (B) MYL6; (C) CKAP5; (D) Dynein; and (E) PP1. In all cases, stained cells were imaged by confocal microscopy and image stacks were acquired, cover-
ing the entire polarized monolayer between the basal and the apical level. Representative x-y image stacks and merged composite x-z images are shown. Scale bars:
20 mM. (F) Western blot of the lysates from the immunoprecipitated fractions of PLEKHA7 (apical complex), total p120, and basolateral p120, isolated as previously
described,15 for the markers shown. IgG is the negative immunoprecipitation control.
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PP1a and its co-localization with PLEKHA7 (Fig. 1E). Western
blot of the isolated apical and basolateral immunoprecipitates,
obtained as previously described,15 confirmed the specific bind-
ing of PLEKHA7 with ACTN1, MYL6 and PP1a (Fig. 1F). The
data further support an extensive interaction of PLEKHA7 not
only with the microtubules, but also with the actin network at
the apical ZA.

PLEKHA7 maintains the integrity of the apical cortical
actin ring

We and others have shown that PLEKHA7 knockdown
results in decreased cell-cell junction impedance and com-
promised cortical actin ring.13,15 Concomitantly, PLEKHA7
overexpression strengthens the actin ring in Caco2 cells
(Fig. 2A). It also induces robust a-catenin localization to the
apical junctions (Fig. 2B), which is the main link of cadherin
complexes to cortical actin.22-24 While the mechanism of
a-catenin recruitment and/or stabilization is currently
unclear, PLEKHA7 seems to actively promote the association
of the actin ring at the ZA.

Actin dynamics play a key role in junction forma-
tion23,25,26 and regulate cellular signaling.27,28 Through its
ability to sever actin filaments and produce monomeric G-
actin, cofilin is a major regulator of actin dynamics.29 It has
been demonstrated that p120 promotes AIG via cofilin acti-
vation.30 We reported that basolateral p120 mediates the
AIG induced by PLEKHA7 depletion.15 Here, we show that
PLEKHA7 knockdown results in cofilin activation, as indi-
cated by decreased phosphorylation of cofilin at the inhibi-
tory S3 (Fig. 2C). Importantly, S3 cofilin phosphorylation is
restored to its normal levels in the PLEKHA7-depleted cells,
when p120 is simultaneously knocked down. This indicates
that cofilin activation upon PLEKHA7 depletion is indeed
p120-dependent (Fig. 2C). Importantly, PP1a is a major ser-
ine phosphatase that dephosphorylates cofilin at S320,21 and
PP1a co-precipitated and co-localized with PLEKHA7 at the
ZA. It is likely that the select recruitment of PP1a at the ZA
regulates overall cofilin activation and actin filament sever-
ing, thus promoting an epithelial phenotype. Additionally,
PLEKHA7 knockdown results in increased PP1a levels
(Fig. 2D), suggesting that the decreased cofilin phosphoryla-
tion and increased actin severing upon PLEKHA7 depletion

Figure 2. PLEKHA7 stabilizes the actin cytoskeleton at the ZA. Caco2 cells were transiently transfected with a PLEKHA7-GFP construct and stained by IF for PLEKHA7 and
(A) Actin (phalloidin) or (B) a-catenin. Scale bars: 20 mM. Enlarged image parts are shown to the right. (C) Control, PLEKHA7 knockdown (shPLEKHA7), and PLEKHA7-p120
(shPLEKHA7, shp120) double knockdown Caco2 cells were analyzed by western blot for the markers shown. Actin is the loading control. (D) Control (NT) or PLEKHA7
knockdown (shPLEKHA7#8 and #10) Caco2 cells were analyzed by protein gel blot for PP1a expression. Actin is the loading control.
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may be mediated, at least in part, by PP1a. Collectively, the
data further strengthen the notion that PLEKHA7 is essential
for the integrity of the cortical actin ring.

PLEKHA7 associates with several RNA-binding proteins at
the ZA

In our recent work, we revealed association of PLEKHA7 with
the two core components of the microprocessor complex,
DROSHA and DGCR8 at the ZA.15 However, our cross-linked
proteomics also revealed association of junctional complexes
with several other accessory members of the microprocessor
and of other RNA complexes.31-34 Most of them were identified
to specifically co-precipitate with the apical complex, such as
DDX1, DDX4, DDX17, RALY, HNRNPA2B1, HNRNPA1L2,
HNRNPA3, whereas EWS and FUS were found in both the api-
cal and basolateral complexes. We previously confirmed bind-
ing of HNRNPA2B1 specifically with the apical complex and of
EWS with both complexes.15 Here, we show the co-localization
of HNRNPA2B1 with PLEKHA7 at the apical ZA, in polarized
Caco2 and MDCK cells (Fig. 3A-B). We also confirm the junc-
tional localization of EWS (Fig. 3C). Interestingly, it has been
shown that CKAP5, an apical-specific PLEKHA7 partner15

(Fig. 1C), associates with HNRNPA2B135 and mediates RNA
granule trafficking via the microtubules.35 Although we
reported that localization of DROSHA and DGCR8 at the junc-
tions is microtubule-independent,15 this observation could pro-
vide a mechanism for the transport of particular pri-miRNAs
to the junctions. In addition, several of the RNA-binding pro-
teins specifically identified with the apical complex at the ZA

are known to play roles in pri-miRNA transport and micropro-
cessor function.32,34,36,37 Overall, the interaction of PLEKHA7
with RNA-binding proteins seems to be extensive and implies
for multiple levels of regulation of the junctional
microprocessor.

PLEKHA7 loss induces increased expression of miR-19a at
the transcriptional level

PLEKHA7 regulates the levels of a select set of 29 miRNAs in
Caco2 cells; some are downregulated and some upregulated
upon PLEKHA7 loss.15 Notably, those decreased were known
anti-tumorigenic miRNAs, whereas those upregulated were
pro-tumorigenic, corroborating the net signaling and pheno-
typic effects of PLEKHA7 loss toward a pro-tumorigenic phe-
notype. We have provided a mechanism that explains how
PLEKHA7 loss results in down-regulation of certain anti-
tumorigenic miRNAs, such as miR-30b. In particular, we
reported that PLEKHA7 promotes miRNA processing at the
ZA via its association with the microprocessor complex.15 How-
ever, this could not directly explain why some miRNAs are
upregulated upon PLEKHA7 knockdown, such as miR-19a.15

miR-19a is expressed as part of the miR-17-92 polycistronic
miRNA, which is considered pro-tumorigenic by multiple stud-
ies and alternatively referred to as Oncomir-1.38-40 To examine
which level at the miR-19a biogenesis was affected by PLE-
KHA7 loss, we performed a qPCR analysis using probes that
detect the pri-miR-17-18a-19a region within the pri-miR-17-92
primary transcript, which contains the miR-19a.32 The analysis
showed that PLEKHA7 knockdown results in almost the same

Figure 3. PLEKHA7 associates with accessory RNA-binding proteins at the ZA. (A-B) Polarized Caco2 and MDCK cells were subjected to IF for PLEKHA7 and HNRNPA2B1.
(C) Non-polarized Caco2 cells, stained by IF for PLEKHA7 and EWS. Scale bars: 20 mM

CELL CYCLE 501



upregulation of the pri-miR-17-18a-19a as of the mature miR-
19a (Fig. 4A), indicating that upregulation of miR-19a occurs at
the transcriptional level. It has been shown that Myc promotes
expression of miR-19a.41 Myc expression is induced upon PLE-
KHA7 knockdown, in a miR-30b-dependent manner.15 There-
fore, it is likely that upregulation of miR-19a expression is an
indirect effect of PLEKHA7 depletion, suggesting that PLE-
KHA7 affects miRNA expression at multiple levels. Interest-
ingly, miR-19a knockdown using an anti-miR in PLEKHA7-
depleted cells reversed the increased levels of a series of pro-
tumorigenic markers that are induced upon PLEKHA7 knock-
down,15 such as SNAI1, total Src, pY228-p120 or p130CAS
(Fig. 4B). This argues that miR-19a regulation has functional
effects, although its regulation by PLEKHA7 is probably indi-
rect. Interestingly, a recent report has indicated the involvement
of miR-19a in colon tumorigenesis,42 which is consistent with
our findings in the colonic Caco2 cells. Together, the data fur-
ther support the anti-tumorigenic role of PLEKHA7, via regula-
tion of miRNA expression at multiple levels.

Conclusions

PLEKHA7 is becoming a protein of increasing interest due to
its multi-layered effects in cellular architecture and cell growth.
The multiple associations of PLEKHA7 with actin-binding

proteins and its critical role in the maintenance of the cortical
actin ring warrant further investigation of the details of this
mechanism. The emerging involvement of PLEKHA7 in glau-
coma43,44 and hypertension,45,46 both conditions that stem
from compromised epithelial or endothelial monolayer tension
and integrity, could be explained on the basis of its effects on
the actin ring. It is likely that several of the cytoskeletal PLE-
KHA7 partners identified at the apical ZA play important roles
in these conditions. In addition, association of PLEKHA7 with
the microprocessor and with several accessory RNA-binding
proteins further supports the function of PLEKHA7 in regulat-
ing miRNA levels, which is critical for suppression of pro-
tumorigenic signaling (Fig. 4).15 We and others have shown
loss of PLEKHA7 in tumor tissues,15,47 which together with the
well-established roles of miRNAs in tumorigenesis48,49 implies
for a regulatory role of this protein in tumor progression. The
accessory RNA-binding proteins that we identified, together
with the associated cytoskeletal components in the same apical
complex, may be key to the selectivity of PLEKHA7 action
toward a particular subset of cellular miRNAs. Thus, investiga-
tion of the cross talk between the adhesive, cytoskeletal, and
signaling functions of PLEKHA7 may be important in fully
delineating its role in cell growth. Taken together, these find-
ings suggest that the ZA is not only a structural component but
also a regulatory hub in epithelial cells, orchestrating a

Figure 4. PLEKHA7 loss results in upregulation of growth-related markers via miR-19a (A) qRT-PCR analysis of Caco2 control (NT) or PLEKHA7 knockdown (shPLEKHA7)
cells for pri-miR-17-18a-19a and mature miR-19a (mean § s.d. from n D 3 independent experiments; �P < 0.0001, Student’s two-tailed t-test). (B) Western blot of NT and
shPLEKHA7 Caco2 cells transfected with the either control or anti-miR-19a constructs and blotted for the markers shown; Actin is the loading control.
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convergence of cellular architecture with epithelial behavior, via
PLEKHA7.

Materials and methods

Cell culture

In all comparisons, cells were used strictly at the same con-
fluences. All cell lines were obtained from ATCC, used at low
passage (<20), and tested negative for mycoplasma contamina-
tion. Caco2 colon epithelial cells were cultured in MEM (Cell-
gro) supplemented with 10% FBS (Invitrogen), 1 mM sodium
pyruvate (Invitrogen) and 1x non-essential amino-acid supple-
ment (Mediatech). MDCK canine kidney epithelial cells were
cultured in DMEM supplemented with heat-inactivated 10%
FBS.

Constructs, shRNAs, and anti-miRs

Cells were transfected using Lipofectamine 2000 (Invitrogen)
or Lipofectamine RNAiMAX (Invitrogen) for anti-miR trans-
fection, according to the manufacturer’s protocols. The PLE-
KHA7-GFP construct was a gift of the M. Takeichi Lab
(RIKEN, Japan).13 Lentiviral shRNAs were derived from the
pLKO.1-based TRC1 (Sigma - RNAi consortium) shRNA
library (pLKO.1-puro Non-Target shRNA Control: SHC016;
PLEKHA7 #8: TRCN0000146289; PLEKHA7 #10:
TRCN0000127584. Lentiviruses were produced in HEK 293FT
cells and used to infect cells according to standard protocols.
Retroviruses were prepared in Phoenix-Ampho cells, as
described previously.50 mirVana (Life technologies, cat#
4464084) anti-miRs used: anti-hsa-miR-19a, ID MH10649;
negative control #1 (cat# 4464076).

Antibodies

PLEKHA7 (Sigma, HPA038610); p120 (15D2, F1aSH51); p-p120:
Y228 (BD Transduction Labs, P21420); a-catenin (BD Trans-
duction Labs, 610193); Cad11 (Zymed, 32-1700 and 71-7600);
Src (Cell Signaling, 2123, clone 32G6), p-Src: Y416 (Cell Signal-
ing, 2101); GFP (Invitrogen, A11120 - clone 3E6); Actin (Sigma,
A2066); p130CAS (BD Transduction Labs, p27820); SNAI1
(Cell Signaling, L70G2); CCND1 (Cell Signaling, 2922); MYC
(Zymed 13-2500 - clone 9E10); cofilin (Cell Signaling, 3312); p-
cofilin (S3, Cell Signaling, 3313 - clone 77G2); EWS (Santa Cruz,
sc-48404); HNRNPA2B1 (Sigma, R4653 - clone DP3B3);
ACTN1 (Santa Cruz, sc-15335); Dynein (Novus Biologicals,
H00064446-M01); PP1a (Invitrogen, 438100 - clone 10C6.3);
CKAP5 (Novus Biologicals, NB500-182); MYL6 (LifeSpan, LS-
C102726); GAPDH (Cell Signaling, 2118, clone 14C10). Anti-
bodies were used at 1:250-1:2000 dilutions for western blot and
at 1:50-1:500 for IF. Secondary antibodies used: HRP-anti-mouse
(Jackson ImmunoResearch, 715-035-150); HRP-anti-rabbit
(Jackson ImmunoResearch, 711-035-152); HRP-anti-goat (Jack-
son ImmunoResearch, 705-035-003); Alexa 488 anti-mouse
(Invitrogen, A-11029); Alexa 488 anti-rabbit (Invitrogen,
A11034); Alexa 594 anti-mouse (Invitrogen, A-11005); Alexa
594 anti-rabbit (Invitrogen, A-11037); Alexa 594 anti-goat (Invi-
trogen, A-11058). HRP-conjugated secondaries were used for

protein gel blot at 1:2000 dilution. Alexa-conjugated secondaries
were used for IF at 1:500 dilution. Alexa 594 Phalloidin (Invitro-
gen, A12381) was used to detect actin filaments in IF experi-
ments at 1:100 dilution.

Immunofluorescence

Caco2 and MDCK cells were grown on transwell inserts
(Costar 3413) for 7 or 21 days respectively, until they polarized,
or on sterile glass coverslips until they reach full confluence.
Cells were washed once with PBS and then fixed with either: i)
100% methanol (Fisher) for 7 min; or ii) 4% formaldehyde
(EMS) for 20 min, followed by 0.02% Triton-X 100 permeabili-
zation for 10 min; or iii) 10% TCA (Sigma) for 15 min on ice,
particularly for MYL6 and PP1a stainings, and permeabilized
as above. Cells were blocked with either 3% non-fat milk (Car-
nation) in PBS, or Protein-Block reagent (Dako, X090930-2)
for 30 min and stained with primary antibodies diluted either
in milk or Antibody Diluent (Dako, S302281-2) for 1 h. Cells
were then washed 3x with PBS, stained with the fluorescent-
labeled secondary antibodies for 1 h, washed 3x with PBS, co-
stained with DAPI (Sigma) to visualize the nuclei, mounted
(Aqua Poly/Mount, Polysciences), and imaged using a Zeiss
LSM 510 META laser confocal microscope, under a 63x objec-
tive, with an additional 1.6x zoom. z-stacks were acquired in
0.5 mM intervals. Images were processed using the Zen soft-
ware (Zeiss).

Immunoblotting

Whole cell extracts were obtained using RIPA buffer (Tris, pH
7.4, 50 mM NaCl, 150 mM, NP-40, 1%, Deoxycholic Acid,
0.5%, SDS, 0.1%) supplemented with protease (cocktail III,
RPI) and phosphatase inhibitors (Pierce). Lysates were homog-
enized through a 29g needle and cleared by full speed centrifu-
gation for 5min. Protein extracts were mixed with LSB and
separated by SDS-PAGE, transferred to nitrocellulose mem-
branes (Bio-Rad), blotted according to standard protocols,
detected by luminescence using ECL (GE Healthcare) and
imaged using X-ray films (Pierce).

Immunoprecipitations (IPs)

Cross-linked IPs were performed as previously described.15

Caco2 cells were grown on 10cm plates with transwell inserts
(Costar 3419) for 21 days to polarize. Cells were then washed
2x with PBS and proteins were cross-linked, using 0.75 mM of
the reversible cross-linker DSP (Lomant’s Reagent; Pierce) for
30 min at RT, which was then neutralized using 20 mM Tris
pH 7.5 for 15 min. Cells were finally lysed using RIPA (see rec-
ipe above) containing 2x concentration of proteinase (protease
inhibitor cocktail III, RPI) and phosphatase inhibitors (Pierce)
and 1mM EDTA. Four 10 cm transwells (~3£106 cells) were
used per IP. In parallel, 4 mg of antibody or IgG control (rabbit,
Jackson ImmunoResearch, 011-000-003) were incubated with
40 ml Protein G Dynabeads (Invitrogen) O/N and cross-linked
to the beads using 5 mM BS3 (Pierce) according to the manu-
facturer’s protocol. Cross-linked lysates were finally incubated
with the beads-conjugated antibodies O/N. Following
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incubation, beads were washed 3x with lysis buffer and proteins
were extracted using 50 mM of DTT (Sigma) in lysis buffer.
Eluates were mixed with LSB and separated by SDS-PAGE.

Total RNA isolation and qRT-PCR

Cells were lysed using Trizol (Invitrogen) and subjected to the
Trizol Plus Total Transcriptome Isolation protocol of the Pure-
Link RNA mini kit (Ambion - Life Technologies) specified to
isolate both mRNAs and miRNAs. Final RNA concentrations
were determined using a NanoDrop spectrophotometer. RNA
was converted to cDNA using the High Capacity cDNA
Reverse Transcriptase Kit (Applied Biosystems). qPCR reac-
tions were performed using the Taqman FAST Universal PCR
master mix (Applied Biosystems), in a 7900 HT or ViiATM 7
Thermocycler (Applied Biosystems). Data were analyzed using
RQ Manager (Applied Biosystems). U6 was used as a control
for miRNA expression normalization and GAPDH, b-actin for
pri-miRNA normalization. TaqMan assays used for miRNAs
(Applied Biosystems, cat# 4427975): hsa-miR-19a, 000395; U6,
001973. TaqMan assays for: pri-miR-17-18a-19a (Applied Bio-
systems, cat# 4427012): Hs03295901_pri. TaqMan assays for
mRNAs (Applied Biosystems, cat# 4331182): GAPDH,
Hs99999905_m1; b-actin, Hs99999903_m1. Averages and stan-
dard deviations (s.d.) were calculated and presented as error
bars, from three independent experiments. The Student’s two-
tailed t-test was employed for P value calculations since all
comparisons were between two groups, control and experimen-
tal condition.
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