
RESEARCH ARTICLE

A Lipidomics Approach in the
Characterization of Zika-Infected Mosquito
Cells: Potential Targets for Breaking the
Transmission Cycle
Carlos Fernando Odir Rodrigues Melo1, Diogo Noin de Oliveira1, Estela de Oliveira Lima1,

Tatiane Melina Guerreiro1, Cibele Zanardi Esteves1, Raissa Marques Beck2, Marina

Aiello Padilla2, Guilherme Paier Milanez3, Clarice Weis Arns2, José Luiz Proença-
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Abstract
Recent outbreaks of Zika virus in Oceania and Latin America, accompanied by unexpected

clinical complications, made this infection a global public health concern. This virus has tro-

pism to neural tissue, leading to microcephaly in newborns in a significant proportion of

infected mothers. The clinical relevance of this infection, the difficulty to perform accurate

diagnosis and the small amount of data in literature indicate the necessity of studies on

Zika infection in order to characterize new biomarkers of this infection and to establish new

targets for viral control in vertebrates and invertebrate vectors. Thus, this study aims at

establishing a lipidomics profile of infected mosquito cells compared to a control group to

define potential targets for viral control in mosquitoes. Thirteen lipids were elected as spe-

cific markers for Zika virus infection (Brazilian strain), which were identified as putatively

linked to the intracellular mechanism of viral replication and/or cell recognition. Our findings

bring biochemical information that may translate into useful targets for breaking the trans-

mission cycle.

Introduction

Zika virus (ZIKV) is an emerging arbovirus that is transmitted by mosquitoes of the genus
Aedes [1], and was first isolated in 1947 in eastern Africa, remaining restricted to the African
and Asian continents until 2007, where it was seldom observed in humans [2]. Typically, the
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infection of ZIKV in humans is either asymptomatic or associated with a self-limiting febrile
illness, in only 20% of infected people. However, recent outbreaks of ZIKV in South Pacific and
Latin America have evidenced the virus potential to cause severe neurological damage-associ-
ated complications such as Guillain-Barré syndrome [3] and microcephaly in newborns [4].

Similarly to dengue virus (DENV), ZIKV is an enveloped, single-stranded, positive RNA
virus whose 10.7-kb genome encodes three structural proteins (C, capsid; M, membrane; and
E, envelope) and seven nonstructural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b and NS5)
[2, 5]. E protein is a major ZIKV antigen, which coordinates the association between the virion
and the host’s viral receptors and membrane lipids [6, 7]. Recent studies have demonstrated
that viral and host lipids play an important role in the attachment process during viral infec-
tion. These lipids, adhered to the capsid surface, coordinate viral recognition allowing its entry
into the host cell [8–13].

Intracellular host cell membranes multiply and reorganize during infection in order to form
viral replication complexes (VRCs), leading to the accumulation of phosphatidylcholine (PC)
in VRCs, as demonstrated for Poliovirus and Hepatitis C [14]. Furthermore, VRC biogenesis
requires increasedmembrane fluidity in order to facilitate viral RNA transfer throughout pores
formed on the packing vesicles [14]. Strikingly, a recent lipidomics study has demonstrated
that intracellular membrane alterations induced by DENV are intimately associated with a set
of lipids uniquely found on DENV-infected mosquito cells, especially in association with VCR
membranes [15], highlighting the crucial role of such molecules in this process.

On the other hand, lipid droplets (LDs) have been recently pointed out as an important
component of the A. aegypti antiviral defenses [16], which also rely on the RNAi machinery
[17] and innate immune pathways Toll and JAK-STAT [18, 19] to contain viral replication.
LDs accumulate upon bacterial and viral infections in both adult mosquito midgut and cell
lines, in a process that seems to be associated with NF-k-B immune pathways activation with
participation of the insect gut microbiota [16].

While much progress has been achieved in the past decade towards understanding the mos-
quito’s transcriptional and metabolic responses to DENV infection,mosquito-ZIKV interac-
tions continue largely unknown. In addition to the limitations of both clinical and laboratory
diagnosis and the absence of a specific treatment for ZIKV infection [2, 20, 21], this poses a
major challenge for the development of control interventions.

The present study aims at verifying the alterations in the mosquito cell lipidome during
ZIKV infection using the MALDIMass Spectrometry Imaging (MALDI-MSI) approach in
order to identify and characterize important molecules associated with Aedes-ZIKV interac-
tions. Our findings indicate that, as with DENV infection [15], Aedes’ cells increase their gly-
cerophospholipid metabolism for some lipids, which may represent potential targets for
blocking viral replication in mosquitoes or for further developments in novel therapeutic
approaches in humans, since it is known that some factors required for viral infection are con-
served among Diptera and human hosts [22].

Methods

Cell culture

The Aedes albopictus C6/36 cell line (ATCC1 CRL-1660) was cultured in special Leibovitz L-
15 medium (Vitrocell1), with 1% of essential amino acids, pyruvate, penicillin, streptomycin,
and amphotericin (SigmalAldrich) and 10% of bovine fetal serum—BFS (Vitrocell1). These
cells were conditioned at 28°C with 5% of CO2 at the Animal Virology Laboratory of the Uni-
versity of Campinas.
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Zika virus isolate

Brazilian ZIVK strain (BeH823339, GenBank KU729217) was kindly provided by Professor
Edison Durigon (Biomedical Sciences Institute, University of São Paulo). This viral strain was
originally isolated by a team of the Evandro Chagas Institute, Pará State, Brazil from a Ceará’s
State (Brazil) patient in 2015. The virus was stored at -80°C in the Animal Virology Laboratory
of the University of Campinas until use. Before procedure, the viral titer in this stock was deter-
mined by PFU assay in Vero cells.

Infection of A. albopictus C6/36 cells with zika virus

For ZIKV infection, 1x105 cells of C6/36 cell line was added to each well of a 24-well plate, and
incubated for 24 hours at 28°C with 5% of CO2. Viral Infection was performed using a multi-
plicity of infection (MOI) of 10. The plate was then incubated under 5% of CO2 at room tem-
perature for five days. The choice of this timepoint was given because this was when cytopathic
effects began to arise in the cell culture [23, 24]. The same procedure was carried out for the
negative control samples, without ZIKV inoculation, resulting in 15 biological replicates for
each condition studied.

Viral detection by RT-qPCR

In order to confirmZIKV infection, the viral stock and the supernatant of ZIKV-infected C6/36
cells were assayed by real time RT-qPCR [25]. Briefly, the viral RNA was isolated by a commer-
cial kit following the manufacturer’s instruction (RNeasy Mini Kit, Qiagen, Hilden, Germany).
One step RT-PCR amplification of viral RNA (Taqman RNA to-CT, Applied Biosystems) was
performedwith following primers and probes: ZIKV-F: 5’- CCGCTGCCCAACACAAG-3’;
ZIKV-R: 5’- CCACTAACGTTCTTTTGCAGACAT -3’; ZIKV-P: 5’-/FAM/AGCCTACCTTG
ACAAGCAGTCAGACACTCAA/-3’. All reactions were assembled in a final volume of 12.5 μL
with 300 ng of RNA, 1 PrimeTimemix (Integrated DNA Technologies) containing both prim-
ers and probe, and 6.25 μL of TaqMan master mix (Applied Biosystems) by using the following
cycling algorithm: 48°C for 30 min, 95°C for 10 min, followed by 45 cycles of 95°C for 15 s and
60°C for 1 min.

MALDI-MSI analysis

Six days after infection, cells were placed on glass slides 24x60mm and covered with MALDI
matrix α-cyano-4-hydroxycinnamic acid (Sigma-Aldrich, St. Louis, MO) solution at 10 mg/mL
in 1:1 acetonitrile/methanol. Spectra were acquired using a MALDI LTQ-XL (Thermo Scien-
tific, San Jose, CA) at the mass range of 400 to 1200 m/z, in the negative ion mode for a total of
15 replicates per group. MS/MS data were acquired in the same instrument, using Helium as
the collision gas, with energies for collision-induceddissociation (CID) ranging from 20–80
(arbitrary units). Spectra were analyzed using XCalibur software (v. 2.4, Thermo Scientific, San
Jose, CA).

Structural elucidation

Lipids were identified based on the analysis of the MS/MS fragmentation profile of the ions
selected by statistical analyses. Structures were proposed using theoretical calculationsmodel-
ing for molecular fragmentation using Mass Frontier software (v. 6.0, Thermo Scientific, San
Jose, CA).
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Semi quantification by MSI

Chemical images of the markers were generated using the imaging feature of MALDI and pro-
cessed to grayscale using the ImageQuest software (Thermo Scientific, San Jose, CA). All sam-
ples, control and ZIKV, and each respective replicate (n = 15) had their chemical image
standardized and analyzed using ImageJ software (National Institutes of Health, USA—open
source). A non-dimensional value was assigned to each image based on pixel intensity, so that
the intensity/quantity ratio is established [26].

Statistical analysis

Partial least squares discriminant analysis (PLS-DA) was used as the method of choice to assess
association between groups; this supervisedmethod uses multivariate regression techniques to
extract, through linear combination of the original variables, the characteristics that may evi-
dence this association. Statistical significance of the obtainedmodel was assessed by using two
permutation tests: precision preview during modeling and separation distance; 2000 permuta-
tions were used in both tests. The selection of lipids that were characteristic for each sample
was carried out considering the impact that each metabolite had in the analysis through VIP
(Variable Importance in Projection) scores, which consists of the weighted average of the
squares of the PLS loadings, and takes into account the amount of explained variance on each
dimension used in the model. As a cutoff threshold, only the chemical markers with a VIP
score greater than 1.5 were analyzed. The heat map of the VIPs was built using the Pearson’s
distance measurement andWard’s clustering algorithm. All analyses involving PLS-DA and
VIP scores were carried out using the online softwareMetaboAnalyst 3.0 [27].

For comparative purposes of semi-quantitative data, either Student’s t-test or Mann-Whit-
ney’s U-test was used after applying Kolmogorov-Smirnov normal distribution test; a p-value
was significant if it presented values lower than 0.05. All those calculations were carried out
using the software GraphPad Prism (v.3.0, GraphPad Software, San Diego, CA).

Results

In order to analyze the main metabolites involved with ZIKV infection in the mosquito, we
performed a metabolomic analysis on Aedes albopictus C6/36 cells, either infected by the Bra-
zilian ZIKV strain, or uninfected.Our data suggest that a large amount of lipids is involved in
the responses to ZIKV infection. A PLS-DA statistical analysis of our mass spectrometry-
derived data evidenced a clear separation between the metabolite composition in ZIKV-
infected versus uninfectedC6/36 mosquito control cells, as demonstrated in Fig 1; statistical
validation of this PLS-DA model by permutation tests are provided on S1 Fig (prediction accu-
racy) and S2 Fig (prediction accuracy during training). Using VIP scores, 65 features were
identifiedwith a score value greater or equal to 1.5, as demonstrated in Fig 2; the ZIKV-
infected cells accounted for 37 characteristicmarkers whereas the uninfected control ones dis-
played 28 molecules. Out of these 65 features, 20 lipid markers were identify using tandem
mass spectrometry (MS/MS), divided in 13 species for the ZIKV-infected group (Table 1) and
7 for the control group (Table 2).

Of the 13 lipids species indentified for ZIKV-infected cells (Table 1), 12 participate directly
in the intracellular metabolism of glycerophospholipid in the host cells: 8 are acylglyceropho-
spholipids, divided into 6 acylglycerophosphoserines and 2 acylglycerophosphocholines; 3 spe-
cies are diacylglycerophospholipids, divided in two diacylglycerophosphocholines and 1
diacylglycerophosphoserine;1 is a diacylglycerol; and one is a sphingolipid. Hence, our data
suggest that the glycerophospholipid metabolism pathway activity is much increased in the
ZIKV-infection group, similarly to other viral infections [14, 15, 28].
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To corroborate the abovementioned evidence of ZIKV infection interference in the mos-
quito cells’ metabolism, a semi-quantitative analysis of characteristic lipids confirmed that
ZIKV-infected cells presented statistically significant higher levels (p<0.05) of all PLS-DA-
elected lipids previously elected as characteristicmarkers for ZIKV-infection based on the
quantitative comparison performedwith each marker betweenZIKV-infection and control
samples (Fig 3). We observedup to 2.15-fold higher concentration of metabolites such as ion

Fig 1. Scores plot between the first two principal components (PCs) selected. The explained variances are 33.5% for component

1 and 52.5% for component two.

doi:10.1371/journal.pone.0164377.g001
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at m/z 556 [PC(6:2(3E,5E)/14:2(11E,13E))] in ZIKV-infected cells when compared to non
infected controls.

Nevertheless, the quantitative comparison between the electedmarkers for control and
ZIKV-infected cells was not statistically significant, despite a slight increase in the amount of
electedmarkers in the control cells was observed (p<0.05, S3 Fig), suggesting that the same gly-
cerophospholipid metabolic pathway is active in both the control and the ZIKV-infected cells.
This may be explained by the fact that both ZIKV-infected and uninfected cells have essentially
the same metabolic profile, except for some specificmetabolic changes induced by the virus in
the cell line [14, 29]; the regular glycerophospholipid metabolism, however, remain at lower
levels when the cell is in homeostasis [30]. Fig 4 presents a comparison betweenZIKV-infected
and non-infected cells, where it is visually possible to assess the differences in lipid composition
of ZIKV-specific characterized biomarkers. The present study uses mosquito cells; however,

Fig 2. Clustering result for the 65 top features in the PLS-DA VIP scores, shown as a heat map (distance measured

by Euclidean and clustering algorithm using ward.D), with a color-coded thermometer (bottom) indicating the

relative concentrations of metabolites on each respective group.

doi:10.1371/journal.pone.0164377.g002
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the host factors identifiedmay be the same as for the human host, since this has been shown in
other studies on viral infections [22].

Discussion

Sphingolipids (SL)

Sphingofungin F, the ion at m/z 400 (Table 1), was the SL found as marker for ZIKV infection.
This compound was isolated for the first time during the fermentation of Paecilomyces variotii
(ATCC 74097), and it is a bioactive lipid that acts as the inhibitor of serine palmitoyltransferase
(SPT), an essential enzyme during the biosynthesis of SL (26). The SPT inhibitor was initially
investigated for its antifungal activity; however, later studies showed that these inhibitors sup-
press viral replication, as describedwith for myriocin-basedSPT inhibition in hepatitis C virus
(HCV) [29, 31], as well as for 4-hydroxyphenyl retinamide inhibitor in a study with DENV
[32]. Like ZIKV, these two viruses also belong to the Flaviviridae family. No previous report
has ever implicated this SL as an insect metabolite; it has only been associated to fungi metabo-
lism [1]. As observed in Fig 4, this molecule is present in both cultures, but the relative amount
in the ZIKV-infected group is 1.64-fold (p<0.0001) higher than in the control group. This may
be an indicative that the infected cells are responding to viral infection, in an attempt to impair
viral replication.

Phosphatidylserines (PS)

PS is the most abundant anionic lipid class in the plasma membrane of eukaryotes. It is essen-
tially produced in the inner side of the plasma membrane when the cell is in homeostasis;

Table 1. Lipid markers elected by PLS-DA VIP scores� 1.5 and elucidated by MS/MS for Aedes albopictus C6/36 infected cells (ZIKV group).

Class Ion (m/z) Molecule MS/MS

Sphingolipid 400 Sphingofungin F 311, 336, 356

Phosphatidylserine 516 PS(18:4(6Z,9Z,12Z,15Z)/0:0) 272, 289, 326, 345

518 PS(18:3(9Z,12Z,15Z)/0:0) 373, 387, 429, 474

520 PS(18:2(9Z,12Z)/0:0) 375, 429, 431, 476

540 PS(20:6(2Z,5Z,8Z,11Z,14Z,17Z)/0:0) 373, 395, 400, 491, 496, 522

542 PS(20:5(5Z,8Z,11Z,14Z,17Z)/0:0) 375, 402, 493, 498

544 PS(20:4(5Z,8Z,11Z,14Z)/0:0) 355, 399, 456, 500

Phosphatidylcholine 530 PC(19:3(10Z,13Z,16Z)/0:0) 472, 512

536 PC(19:0/0:0) 311, 404, 445, 447

556 PC(6:2(3E,5E)/14:2(11E,13E)) 373, 389, 400, 416, 512

558 PC(6:2(3E,5E)/14:1(13E)) 375, 402, 412, 418, 514

Dyacylglicerole 563 DG(16:1(9Z)/16:1(9Z)/0:0) 519, 537, 545

Phosphatidylethanolamine 632 PE(12:0/16:1(9Z)) 544, 562, 588

doi:10.1371/journal.pone.0164377.t001

Table 2. Lipid markers elect by PLD-DA VIP score� 1.5 and elucidated by MS/MS for Aedes albopictus C6/36 uninfected cells (Control group).

Class Ion (m/z) Molecule MS/MS

Phosphatidic Acid 409 PA(16:0/0:0) 263, 365, 391

Phosphoethanolamine 757 PE(18:2(9Z,12Z)/19:0) 713, 730, 739

773 PE(20:0/18:1(9Z)) 627, 645, 728, 755

779 PE(16:0/22:6(54Z,7Z,10Z,12E,16Z,19Z)(14OH)) 502, 546, 589, 735

Phosphatidylserine 881 PS(22:4(7Z,10Z,13Z,16Z)/21:0) 736, 836, 863,

903 PS(22:0/22:0) 714, 758, 858, 884

Triacylglycerol 925 TG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/20:4(5Z,8Z,11Z,14Z)) 881, 899, 907

doi:10.1371/journal.pone.0164377.t002
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Fig 3. Semi-quantitative analysis of characteristic lipids showed that ZIKV-infected cells. The bars representing confidence

interval of 95% (**** p<0.0001)

doi:10.1371/journal.pone.0164377.g003
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however, this asymmetry is lost during injury, malignancy, or the apoptosis [33, 34]. Under
apoptotic conditions, cells reverse PS to the outer side of the membrane. PS signalize to phago-
cytes that cell is under apoptosis [35]. The exact processes, by which the cell externalizes these
lipids, or how this process is initiated, are not fully understood [36]. Cell cultures were analyzed

Fig 4. Chemical images from MALDI-MSI showing the comparison between infected and uninfected cells.

It is visually possible to assess the difference in lipid composition of ZIKV-specific characterized biomarkers.

doi:10.1371/journal.pone.0164377.g004
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7 days after seeding, which marks the beginning of the culture decay process. Hence, the two
PS lipids elected as markers for the control group, m/z 881 [PS(22:4(7Z,10Z,13Z,16Z)/21:0)]
and m/z 903 [PS(22:0/22:0)] may be due to the apoptotic process that may have been initiated
in the cell culture, which lead to a higher dead cells ratio, as cell cultures are self-limiting in
growth. Additionally, since both cultures were analyzed at the same time point, the ZIKV-
infected group was likely in the same phase of the control one, which may explain the lack of
statistical significance in the quantitative analysis of markers between these two groups.

The level of all 6 PS characterized for the ZIKV-infected culture, m/z 516 [PS(18:4
(6Z,9Z,12Z,15Z)/0:0)],m/z 518 [PS(18:3(9Z,12Z,15Z)/0:0)],m/z 520 [PS(18:2(9Z,12Z)/0:0)],
m/z 540 [PS(20:6(2Z,5Z,8Z,11Z,14Z,17Z)/0:0)], m/z 542 [PS(20:5(5Z,8Z,11Z,14Z,17Z)/0:0)]
and m/z 544 [PS(20:4(5Z,8Z,11Z,14Z)/0:0)],was statistically significant in the semi-quantita-
tive analysis when compared to the control uninfected culture, as shown in Fig 3. PS seems to
play a crucial role during virus infection [8, 11, 34]. The viral infection, in turn, induces asym-
metry in plasma membrane composition, similar to the abovementioned apoptotic process,
facilitating phagocyte recognition of infected cells [37–40]. In addition, viral envelope phos-
phatidylserine are essential for viral replication, mediating biding to target cells or phagocytosis
of viral particles, such as demonstrated for West Nile, Dengue and Ebola viruses [8, 11]. Several
recognitionmechanisms of apoptotic cells by phagocytes were describedduring the infection
of several viruses, such as those that recognizeCD300a, TIM and TAM receptors, observed in
DENV infection [8, 9]. In addition, the availability of PS in the outer side of circulating
infected-cells signals through TAM receptors to tighten cell junctions, modulating blood-brain
barrier integrity and preventing virus transit across brain microvascular endothelial cells dur-
ing viral infection [41].

Phosphatidylethanolamines (PE)

PE, as well as PS, is an anionic lipid that is normally found in the inner side of plasma mem-
branes [33, 34], and are synthesized via the decarboxylation reaction of PS [42, 43]. It is the sec-
ond most abundant lipid class in plasma membranes, after phosphatidylcholines (PC) [15]. PE
is externalized upon any cellular biochemical imbalance [33, 34], probably by the same mecha-
nism of PS, indicating that apoptosis is underway [44]. As for PS, the three PE elected as mark-
ers for the control group (m/z 757 [PE(18:2(9Z,12Z)/19:0)],m/z 773 [PE(20:0/18:1(9Z))] and
m/z 779 [PE(16:0/22:6(54Z,7Z,10Z,12E,16Z,19Z)(14OH))]) did not present significant differ-
ences in content when compared to the ZIKV-infected group (data not shown). Since PS and
PE play the same role during apoptosis signaling [44], the same premises presented above may
explain the lack of significance in this comparison.

PE, as well as PS, is a substrate for TAM [13] and CD300a [8] receptors, involved in viral
internalization into the cell. The species elected as marker for the ZIKV-infected group, m/z
632 [PE(12:0/16:1(9Z))], presented statistically significant differences in the semi-quantitative
analysis (Fig 3), probably due to a cellular response mechanism that uses this particular PE as
an alert signal for phagocytes upon viral infection [44]. Another potential explanation is that
this PE is a component of the viral envelope during its replication (Fig 4).

Phosphatidylcholines (PC)

PC is the most abundant plasma membrane phospholipid, and its distribution, as opposed to
PE and PS, is on the outer side of the membrane [45]. PC was only elected as marker for the
ZIKV-infected group, which presented greater amount of this compound when compared to
the -uninfected one (Table 1). This is in agreement with similar findings reported for DENV-
infected cell cultures [14, 15]. The 4 PC elected as markers for ZIKV infection (m/z 530 [PC

Lipidomics of Zika-Infected Mosquito Cells

PLOS ONE | DOI:10.1371/journal.pone.0164377 October 10, 2016 10 / 15



(19:3(10Z,13Z,16Z)/0:0)],m/z 536 [PC(19:0/0:0)],m/z 556 [PC(6:2(3E,5E)/14:2(11E,13E))]
and m/z 558 [PC(6:2(3E,5E)/14:1(13E))]) also presented statistically significant quantitative
differences (Fig 3), evidencing that there is a greater amount of these lipids in the ZIKV-
infected group, compared to the control one. Two out of the PC elected as markers of ZIKV
have already been previously associated to cell response against infectious agents. The ion at m/
z 530, which corresponds to PC(19:3(10Z,13Z,16Z)/0:0)has already been found on the meta-
bolome of bile acids in patients with altered microbiota and pyloric sphincter [46]. Ion m/z
536, corresponding to PC(19:0/0:0) was reported in a lipidomics study that analyzed inflamma-
torymediators as potential biomarkers for bacteremia [47]; however, in this study made with
blood plasma, this species was implicated as a marker of uninfected, bacteremia-free patients,
as opposed to what was found in our in vitro study. Such differencemay be due to either the
pathogen used in the study or the study type (in vivo vs. in vitro); in either case, both lipids are
associated with a cell response to an infectious agent, whosemechanism is yet to be elucidated
[46, 47].

Furthermore, another study has demonstrated that infections caused by positive RNA
viruses, such as ZIKV, promote an increase or accumulation of PC—which is utilized in the
formation of viral replication complex (VRC), and also for the replication of the virus in the
VRC [14]–a potential explanation for why those are the markers displaying the greatest
amounts in ZIKV-infected cells when compared to the -uninfected ones (1.74-fold for ion 530
m/z, 1.96-fold for ion 536 m/z, 2.15-fold for ion 556 m/z and 1.94-fold for ion 558 m/z).

Other lipid classes

Three other lipids were identified as markers: two for the control group, a phosphatidic acid at
m/z 409, PA(16:0/0:0), and a triacylglycerol at m/z 925, TG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/
20:4(5Z,8Z,11Z,14Z)); and one for the ZIKV group, a diacylglycerol at m/z 925, DG(16:1(9Z)/
16:1(9Z)/0:0). The latter may be explained due to the increasedmetabolic activity of ZIKV-
infected cells, since DG is part of PE and PC synthesis, as well as Kennedy Pathways [28, 48].
Once again, the other two electedmarkers for the control group did not present significant dif-
ferences in the semiquantificationwhen compared to the ZIKV group, indicating that these spe-
cies may be common in both cell cultures.

Our findings suggest that PS, PE, SL and PC specific-lipids are putative biomarkers of ZIKV
infection in C6/36 mosquito cells. These results are in line with previous lipidomics studies of
virus-infectedcells. Previous contributions, especially those that studied the same cell line
(C36/6 mosquito cells) infected with DENV, have observed increased profiles of lipids such as
phosphaditylcholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS)
compared to the control cells [15], which are exactly the same view in our study. Furthermore,
other recent study also demonstrated higher level of lipid classes of PC, PE, PS and phosphati-
dylglycerols (PG) during infection of brome mosaic virus (BMV) in YPH500 yeast [14], indi-
cating that these lipids are intimately involved with viral infection/replication in different cell
types and organisms. Hence, our results provide valuable information on metabolites that may
be used as therapeutic targets for further studies.
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