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ABSTRACT
Pre-mRNA splicing in eukaryotes is performed by the spliceosome, a highly complex macromolecular
machine. SF3b is a multi-protein complex which recognizes the branch point adenosine of pre-mRNA as
part of a larger U2 snRNP or U11/U12 di-snRNP in the dynamic spliceosome machinery. Although a cryo-
EM map is available for human SF3b complex, the structure and relative spatial arrangement of all
components in the complex are not yet known. We have recognized folds of domains in various proteins
in the assembly and generated comparative models. Using an integrative approach involving structural
and other experimental data, guided by the available cryo-EM density map, we deciphered a pseudo-
atomic model of the closed form of SF3b which is found to be a “fuzzy complex” with highly flexible
components and multiplicity of folds. Further, the model provides structural information for 5 proteins
(SF3b10, SF3b155, SF3b145, SF3b130 and SF3b14b) and localization information for 4 proteins (SF3b10,
SF3b145, SF3b130 and SF3b14b) in the assembly for the first time. Integration of this model with the
available U11/U12 di-snRNP cryo-EM map enabled elucidation of an open form. This now provides new
insights on the mechanistic features involved in the transition between closed and open forms pivoted by
a hinge region in the SF3b155 protein that also harbors cancer causing mutations. Moreover, the open
form guided model of the 50 end of U12 snRNA, which includes the branch point duplex, shows that the
architecture of SF3b acts as a scaffold for U12 snRNA: pre-mRNA branch point duplex formation with
potential implications for branch point adenosine recognition fidelity.
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Introduction

Splicing in eukaryotes is a well orchestrated stepwise pro-
cess involving a large number of component molecules.1

This process constitutes the removal of non-coding sequen-
ces (introns) from pre-mRNAs and subsequent ligation of
the coding sequences (exons) to form a mature mRNA.2-4

Several cis (pre-mRNA) and trans (snRNPs, accessory pro-
teins) acting elements coordinate this process with high pre-
cision, to ensure fidelity. Higher eukaryotes contain a U2-
dependent (major) splicing pathway and a less abundant
U12-dependent (minor) pathway, which splices specific pre-
mRNA introns (U2-type and U12-type) differing in the
splice site and branch point consensus sequences. The U2-
dependent pathway involves U1, U2, U5 and U4/U6
snRNPs while the U12-dependent pathway comprises of
U11, U12, U5 and U4atac/U6atac snRNPs.5 Multiple inter-
mediary complexes (E, A, B, Bact, B� and C) which are char-
acterized by synergistic protein-protein, protein-RNA and
RNA-RNA interactions 2,3 are involved in these pathways.
The functional E form is absent in the U12-dependent
pathway, where U11 and U12 snRNPs are parts of a stable
di-snRNP complex prior to pre-mRNA binding.5-7 All the
snRNPs consist of a common set of 7 Sm proteins (B/B0,

D3, D2, D1, E, F and G) along with an snRNA and a num-
ber of particle-specific proteins.3,5

Splicing Factor SF3b complex is a fundamental component
of both the U2 snRNP and U11/U12 di-snRNP.8 It forms a
dynamic and integral part of 4 intermediary complexes (A, B,
B

�
and Bact). Previous studies have revealed various roles for

SF3b complex including i) recognition of branch point adeno-
sine 9 and promotion of stable interaction for U2 and U11/U12
di-snRNP to pre-mRNA,10 ii) prevention of premature splicing
10 and iii) interaction with snRNAs and pre-mRNA.11,12 The
complex is made of 7 proteins, namely, p14, SF3b49, SF3b145,
SF3b155, SF3b10, SF3b130 and SF3b14b.12-14 p14, an RRM-
domain containing protein, has been shown to recognize the
branch point adenosine (BPA) within the bulged branch point
duplex (BPD) structure formed between pre-mRNA and
branch point recognition sequence (BPRS) of U2/U12
snRNA.9,15 This enables SF3b to present a temporary steric bar-
rier to branch point sequence (BPS) prior to activation.10 In
addition, SF3b49 has been shown to interact with the stem-
loops at 50 end of U2 snRNA 11 and is also shown to be cross
linked around the BPS along with the other components such
as the SF3b145 and SF3b155.12 Further, SF3b49 and SF3b145
are known to participate in multiple protein-protein
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interactions during transition from A to C in the dynamic
splicing pathway.16

The dynamic nature and large size of snRNPs in the spliceo-
some machinery, have limited the attempts to obtain structural
information at the atomic level by X-ray crystallography and
NMR. Cryo-EM has emerged as an important technique to
characterize the architectures and structures of large macromo-
lecular assemblies. It has the advantage of using small amount
of samples and visualizing the complexes in the native cellular
conditions.18,19 A U1 snRNP structure was deciphered at a res-
olution of 10 A

�
using single particle cryo-Electron Micros-

copy.17 A cryo-EM map of the human SF3b complex was
achieved at a resolution of 9.7 A

�
in the year 200320 and a cryo-

EM map for the U11/U12 di-snRNP was published in the year
2005 at 13.4 A

�
resolution21 Low resolution cryo-EM maps often

do not have sufficient details to understand the mechanistic
and structural basis of biological functions of the protein com-
plexes. Hence, integrative methods, where the structures from
X-ray crystallography,22 NMR, comparative modeling,23 or de
novo protein structure prediction,24 combined with cryo-EM
and other experimental data are used to obtain pseudo-atomic
models of macromolecular assemblies.25,26

In the previous cryo-EM work on SF3b published in 2003,
only 3 of the 7 components of the SF3b complex could be local-
ized into the density map.20 Further, neither crystallographic
nor NMR structures of 2 of the components (SF3b49 and p14)
or related proteins, were available at that time. Structural details
of many SF3b proteins or protein domains have now become
available.27 SF3b155 protein was shown to be composed of sev-
eral N-terminal RWDETP and TPGH repeats (»450 amino
acids) and 22 HEAT repeats at its C-terminus.28 It forms a lad-
der-like structure folded in S-shape occupying 2 thirds of the
density map.29 Subsequently, NMR structures of the 2 RRM
domains of SF3b49 (PDB ID: 1X5U and 1X5T; Structural geno-
mics consortium) were also determined. For p14, both crystal
(PDB ID: 2F9D, 3LQV)9,30 and NMR structures (PDB ID:
2FHO) 31 became available along with the peptide component
of SF3b155. To date, this is the only inter-molecular interac-
tion, defined at atomic level, in the SF3b complex. Further
understanding of the detailed structural features of this com-
plex and mechanistic features is desirable as it is a target for
many antitumor drugs.32-35

It is more than a decade since the cryo-EM map of the
human SF3b complex was obtained and the lack of structural
information has left a substantial part of the density unex-
plained. With the remarkable expansion of the list of known
3D structures of proteins, we now have better opportunities to
recognize structures of these components. In addition, given
the fact that the number of protein folds is limited 36 and with
the development of sensitive fold recognition methods, reliable
fold assignments could be made for many of the components.37

In the current work, we provide a description of the struc-
ture of human SF3b complex and provide a mechanistic basis
of its function by increasing its structural coverage using state-
of-the-art integrative structure modeling techniques. The
modeling employed here has involved an extensive use of the
available X-ray and NMR structures, fold recognition and com-
parative modeling, as well as substantial conformational and
configurational sampling of the interacting protein

components. In addition, we have also devised novel methods
to integrate both experimental and evolutionary information
pertaining to protein folds and dynamics. Our modeling efforts
have enabled us to delineate the molecular architecture of the
human SF3b complex and obtain a pseudo-atomic model for
the entire complex with high structural coverage. Further, the
locations of the proteins within the SF3b density map, provided
by the pseudo-atomic model, have allowed us to carve out
appropriate SF3b density segments to model an open form of
the SF3b complex, using an existing U11/U12 cryo-EM map 21

and also fit the component structures into it. Finally, it has
enabled us to obtain the structural constraints for modeling of
the 50 end of U12 snRNA and its interaction with pre-mRNA
in the branch point duplex (BPD). We discuss the implications
for pre-mRNA branch point recognition fidelity, provided by
the architecture of SF3b, in the light of proposed pseudo-
atomic model. This work adds to the excellent developments
made in 2003 20 and 2005 21 and also deepens our understand-
ing of the structure-function relationship of various compo-
nents of the human SF3b complex.

In the last decade, electron microscopy studies on spliceosomal
complexes, at various stages of the splicing cycle, have provided a
glimpse of the overall morphological features of this complex mac-
romolecular machine.38-51 However, recent efforts to determine
high resolution cryo-EM density maps, utilizing advances in detec-
tor technology 52 coupled with powerful statistical image process-
ing algorithms 53,54 have yielded structures for the U4/U6.U5 tri-
snRNP complex from S. cerevisiae 55-57 as well as the U5.U2/U6
intron lariat spliceosome (ILS) complex from S.pombe.58-60 How-
ever, in the yeast U5.U2/U6 structure, the U2 snRNP region has an
overall resolution of 11 A

�
and lacks the density for the SF3b sub-

complex.58 The only structural data that is currently available for
SF3b, although a low resolution cryo-EM density map, is that of
human SF3b complex by Golas et. al.20,21 Though such cryo-EM
density maps are difficult to interpret, our attempts to derive a rea-
sonable model using multiple methods that involve protein fold
recognition, comparative modeling, cryo-EM density fitting as well
as an inclusion of currently available experimental datasets is
exhaustive. Ultimately, such an integrated approach has been use-
ful to derive a pseudo-atomic model, providing insights into the
functioning of SF3b in splicing. Further, SF3b has been found to be
a “fuzzy” complex, based on flexibility analysis using normal mode
technique and fold-function relationships derived for the individ-
ual proteins within the complex. Hence, it is anticipated that the
current pseudo-atomic model will provide the necessary impetus
and insights for the determination of high resolution structures of
the human spliceosomal complexes in the future.

Results

Integrative structure modeling of the human SF3b
complex

Human SF3b complex comprises of 7 interacting components,
of which only the p14, 2 RRM domains of SF3b49 and an N-
terminal SAP motif of SF3b145 have atomic level structural
information available (Table S1). We devised a hierarchical
modeling protocol to enhance the structural coverage of SF3b
complex. This involved an integrative approach that employs a
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multitude of computational methods summarized in Fig. S1.
Briefly, searches for the detection of appropriate templates for
comparative modeling of domains or full-length proteins of
SF3b14b, SF3b130, SF3b155, SF3b145 and SF3b10 have been
performed. This was further augmented with sensitive distant
homology detection and fold recognition tools in search data-
bases of known structure. The templates obtained for SF3b14b,
SF3b130, SF3b155 and SF3b145 were employed to model these
proteins. For those cases with only partial information from
homology and domain overlap (SF3b145), we used density and
other experimental data (see Materials and Methods) to guide
our fold assignments. As we were not able to identify a template
with good confidence to model the entire SF3b10 reliably, we
used a combined approach that employed de novo structure

prediction, SF3b cryo-EM density-guided filtering (Fig. 1A)
and scoring using residue-residue contacts, based on the co-
evolution principle, to obtain a model. The structural models
thus obtained for the SF3b components (Fig. 1B, Fig. S2,
Table S1 and see Materials and Methods), were used for further
cryo-EM density-based fitting.

Spatial locations of the SF3b components in the SF3b den-
sity map (EMD-1043) have been identified earlier using the
shape features of the respective folds for the proteins p14,
SF3b49 and SF3b155.20 In order to locate the other components
within the SF3b density, we performed a global search
(Fig. 1C), with a fine angular sampling, for the individual
domains of proteins SF3b130, SF3b145 and SF3b14b within the
SF3b density region that is currently unoccupied. This was

Figure 1. Integrative structural modeling of Human SF3b complex. (A) A 9.7 A
�
cryo-EM map of SF3b complex displayed at the density threshold level of 0.0158. (B) Struc-

tural information for individual components of SF3b complex used to obtain the pseudo atomic model. (C) Global search and fitting for the individual domains of proteins
SF3b130, SF3b145 and SF3b14b within the SF3b density region that is currently unoccupied. This was performed across different resolutions (9.7A

�
, 12A

�
, 15A

�
and 18A

�
)

(Fig. S3–S6 and Materials and Methods). (D) Protein-Protein interaction network for the SF3b complex obtained from experimental data. The weights of the edges denote
the number of unique experimental methods which showed physical interaction between individual components (Table S2). (E) Density segmentation and localization of
individual components into the initial cryo-EM map. This was obtained by integration of several computational methods including fitting techniques, shape features from
structural models and experimentally derived interactions among the components. (F) Atomic level representation of SF3b components after flexible fitting into the cryo-
EM map, color coded as in B and C.
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performed across different resolutions (9.7A
�
, 12A

�
, 15A

�
and

18A
�
). Analysis of the top 10 solutions of the SF3b density,

based on cross-correlation values and literature-derived SF3b
protein-protein interaction information, allowed us to unam-
biguously locate the proteins within the density map (Fig. S3–
S6). We did not perform this procedure for the SF3b10 as we
had used an unassigned density segment after sampling to
guide its structural modeling. Such a global search ensures that
the components are fitted across the un-segmented density
map and the best fit is obtained when shape features, derived
from structural models, guide local density fitting. Further, the
domain boundaries for fitting have been derived after perform-
ing flexibility analysis for individual proteins, (see the section
on Architecture of the human SF3b complex) to account for
the conformational changes as a result of complex formation. It
must be noted that the shape features of individual compo-
nents, based on the structural models, provide us with unique
information for localization. This can be seen in the differences
in distribution of cross-correlation scores (Fig. S7), as the
domains of each component are fitted at each position into a
discretized density map of 166 points (Fig. S7). Hence, the final
positions of the components in the density map have been
obtained by using neighborhood information from the interac-
tion network (Fig. 1D-1F and Table S2), the global search for

the components in the density map, local fitting scores
(Table S1 and S3) and volume exclusion.

Human SF3b complex is known to undergo large structural
changes.21 In order to understand this better, we performed
normal mode analysis (NMA) on the density map to identify
the regions with high and low conformational flexibility (see
Material and Methods). Normal mode analysis on coarse grain
representation of cryo-EM maps have been used previously to
decipher functionally relevant conformational changes.61,62

NMA results suggested that regions corresponding to proteins
SF3b130 (mode 1), SF3b14b (mode 3) and p14 (mode 4) are
highly flexible (Fig. 2A). These results contributed toward the
localization of the components, as the regions showing flexibil-
ity in the low frequency modes are populated with individual
compact domains/structures in the pseudo-atomic model
(Fig. 2B) (see the section on Architecture of the human SF3b
complex).

Structural models (Fig. 1B) were localized into the cryo-EM
map using neighborhood information from the interaction net-
work (Fig. 1D), exhaustive map search procedures using the
shape features and considerations of flexibility (Fig. 2A). Subse-
quently, local fitting of all the proteins into the density map,
using refined density segmentation (Fig. 1E), was performed.
This was followed by a final round of flexible fitting. The result-

Figure 2. Flexibility and molecular architecture of Human SF3b complex. (A) Normal mode analysis of the density map and the associated conformational changes. The
arrows show the regions of maximum flexibility observed in the corresponding low frequency modes where the proteins SF3b130 (mode 1), SF3b14b (mode 3) and p14
(mode 4) are located. The variations in the colors represent the different degrees of displacements in that particular mode. (B) Pseudo-atomic model of SF3b complex
shown with the locations of its components. (C) Confidence assessment of atomic models by local correlation. The local cross-correlation was calculated for each voxel
between the simulated density and the experimental density map with a grid size of 5£5 £5 A

�
.
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ing pseudo-atomic model provides structural information for
2682 residues (64.5%) of the human SF3b complex (Fig. 1F).
Thus, for the first time, we report the relative spatial positions
and interactions of all the components of the human SF3b
complex (Fig. 2B and Video S1). The final pseudo-atomic
model has an overall coverage of 81.3% (Volume D 333.3£103

A
� 3) of the map at a density threshold of 0.0108. It is important
to note that the SF3b complex is dynamic and harbors consid-
erable amount of intrinsically disordered regions (Fig. S8).27,63

Generation of a reasonable structural model for the complex
with high agreement to the cryo-EM data (cross-correlation
scores ranging from 0.61–0.88 for the components) (Fig. 2C)
required an effective protocol involving diverse and powerful
computational approaches.

Architecture of the human SF3b complex

From the pseudo-atomic model derived in this study, we pro-
vide structural information for 5 proteins (SF3b10, SF3b155,
SF3b145, SF3b130 and SF3b14b) and localization information
for 4 proteins (SF3b10, SF3b145, SF3b130 and SF3b14b) for the
first time. For the remaining proteins in the SF3b complex, this
information is already available from earlier work.20 Learning
on the 5 proteins obtained using our integrative structure
modeling protocol (Fig. 2B and Fig. S9–S11, S13–S14, S19–S20)
is described below in further detail.

SF3b14b – a triquetra knotted structure

The SF3b14b structure has been modeled based on the NMR
structure of a yeast homolog of Rds3p, which shares nearly
56% sequence identity (Table S1). A triquetra knotted-like
structure containing 3 zinc clusters at each of the 3 vertices, as
in Rds3p,64 is conserved in the SF3b14b (Fig. S11). This model
has been localized to a peripheral region of the density in the
cryo-EM map (Fig. 2B and Fig. S6, S11). We find that such a fit-
ting resulted in the least deviation of mass expected from the
density region (11.4 kDa) and the theoretical mass of the mod-
eled protein (12.4 kDa). The yeast homolog of SF3b14b, Rds3p,
is known to lack nucleic acid binding capacity.64 However, a
point mutation in the Rds3p protein weakens Rse1p (yeast
homolog of SF3b130) association with yeast U2 SF3b,65 show-
ing that it is likely to mediate protein-protein interactions, as
was also proposed earlier.64 A similar role can be envisaged for
SF3b14b as its location is proximal to SF3b130.

SF3b130 – a highly flexible structure with 3 7-bladed WD40
b propellers and a C–terminal helical domain

The structure of SF3b130 has beenmodeled using aDNADamage-
binding protein 1 (Table S1 and see Materials and Methods) as
template. To understand the conformational variability of the
SF3b130 that leads to differences in the shape features of the local-
ized density and the modeled structure, a comparative structural
analysis was performed. This analysis involved comparisons of 31
structures of the DNA Damage-binding protein 1, often in com-
plex with several proteins (Table S4). Further, clustering of these
template structures, using an RMSD cutoff of 5 A

�
, resulted in 5

clusters showing high conformational variability with a maximum

variation of about 21.4 A
�
among 2 inter-cluster proteins (Fig. S12,

Video S2).We thenmodeled the SF3b130 sequence on these struc-
tures and performed principal component analysis (PCA) and nor-
mal mode analysis. The results suggested that one of the 7-bladed
b-propeller WD40 domains undergoes large-scale motions cou-
pled with the conformational changes in the rest of the structure
(Fig. S12). Therefore, the combination of structural and normal
mode analysis on the density map (mode 1) renders support to the
localization of this protein (Fig. 2B) in the cryo-EM density map.
Additionally, it has allowed us to confidently perform the fitting
based on the conformation observed in the density, without over
fitting to cryo-EM data (Fig. 2B and Fig. S13). Structures with large
deviations, when compared to the density maps, are not uncom-
mon and result from differences in the functional states of the
entire complex.66,67 Since the template for SF3b130 interacts with
nucleic acids as well as proteins,68 it can be expected that SF3b130
might play a similar role in the SF3b complex, when it is a part of
U2 snRNP or U11/U12 di-snRNP.

SF3b155 – a highly curved HEAT repeat protein

SF3b155 is the longest protein (1304 amino acids) among the SF3b
components and interacts with other proteins in the assembly
(Fig. 1D and Table S1). We have modeled only the C-terminal
HEAT repeat region (469–1204 amino acids) of this protein,28 as
much of the N-terminal region is predicted to be intrinsically disor-
dered (Fig. S15). Previously, localization of this protein in the SF3b
cryo-EMmapwas achieved based on the observation of a repeating
structure.20 Initially, we noted that the curvature of the SF3b155
model is different from the curvature of its density in the cryo-EM
map. Hence, we performed a fragment-based fitting protocol to
localize the HEAT repeats of this protein into the cryo-EM map
followed by flexible fitting (see Materials and Methods and
Fig. S14). Further, we observed that many templates corresponding
to proteins with HEAT repeats have wide range of curvatures for
their HEAT repeat region (Fig. S15 and Table S5). Normal mode
analysis on these templates showed that they have varying degrees
of flexibility with movements among the segments of the HEAT
repeats (Fig. S16).

The observation ofmovements in theHEAT repeats of SF3b155
templates prompted us to perform a hybrid fragment-based com-
parative modeling, (Fig. S17) to explore if we could capture the S-
like curvature of SF3b155, which was proposed earlier on the basis
of the shape of cryo-EM density.29 This involved generation of
multiple SF3b155 models of various curvatures, by combining the
short-length alignments with diverse template structures
(Table S5) and multi-template comparative modeling (see Materi-
als and Methods and Fig. S17). This provided us with a decoy of
about 1000 structures and on comparing the SF3b155 density cur-
vature with that of the models generated the S-shaped curvature
(in terms of dihedral angles) was not observed in the models,
although the models showed a wide range of curvatures (Fig. S17).
Large scale changes in curvature are not uncommon for HEAT
repeat structures, as has been shown in a number of molecular
dynamics studies.69,70 Thus, it is likely that the partly disordered
SF3b155 region (HEAT repeats) and its interactions with all other
SF3b proteins (Fig. 1D) constrains the HEAT repeat structure,
thereby, forcing it to take such a peculiar curvature.71,72 Bias in the
fitting of the SF3b155 model to the cryo-EM data is low due to the
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reasons mentioned above. Hence, our approach of fragment-based
fitting and refinement by flexible fitting, has allowed us to assign
the HEAT repeats in the density with reasonable confidence and
obtain insights into the SF3b155 structure (Fig. S14).

SF3b145 – a stem loop binding protein containing an
RNase H-like fold

SF3b145 contains a SAP domain at its N-terminus (sequence
region 24–68) as shown by an available NMR structure (PDB ID:
2DO5 - to be published) for this region. Further, this protein con-
tains intrinsically disordered regions interspersed with folded
regions, as arrived at from disorder predictions (Fig. S18). The
SF3b145 region (361–556 amino acids) is relatively less disordered
and it has been modeled using the template 30hExo (30-50 exoribo-
nuclease) (PDB ID: 4L8R Chain B), which has an RNase H-like
fold (see Materials andMethods). The SF3b145 model fits well to a
density region (cross-correlation - 0.61) (Fig. S3, S19) and this posi-
tion in the cryo-EM map is in agreement with an earlier experi-
mental observation of its interaction with SF3b49 (Fig. 1D).73

Earlier, it has been reported that SF3b145 can bind to stem-loop
IIa of U2 snRNA.74 Hence, we modeled the SF3b145-stem loop
RNA complex using the 30hExo template, which has been solved in
a stem-loop RNA bound form (see Material and Methods). It has
been shown that the Glu181 to Lys mutation in Cus1 (yeast homo-
log of SF3b145) suppresses mutations in stem-loop IIa of yeast U2
snRNA.75 The equivalent position of this mutation in SF3b145 is
Lys487. It has been proposed earlier that Lys487, being in ana-heli-
cal region of SF3b145 (from secondary structure predictions),
could interact with the stem-loop RNA.75 Remarkably, we observe
the same interaction in the SF3b145-stem-loop RNA complex
model (Fig. S19). We have also observed a positively charged sur-
face around the stem-loop binding region in the SF3b145 model
(Fig. S19). Further, 30hExo (template of SF3b145) is believed to
bind to the stem-loop RNA by recognizing its shape rather than
sequence.76 Hence, it can be speculated that the structure of
SF3b145 helps it to bind to both stem-loop IIa of U2 snRNA and
U12 snRNA, without the requirement of RNA sequence specificity.

SF3b10 – structural similarity to RNA-binding domain of
VP35 protein

SF3b10 is the smallest component of the SF3b complex (86
amino acids). We have used a density-guided de novo structure
prediction strategy to model its structure. This was required to
help localize its position in the cryo-EM map without depend-
ing on the shape information from its structure. Our integrative
structure modeling protocol resulted in density regions with no
structural information in the cryo-EM map. We chose a density
region between SF3b155 and SF3b130 as the location for this
protein (Fig. S20), based on the neighborhood information
from the SF3b protein-protein interaction network (Fig. 1D).
We also observed that this part of the density map formed a
separate region upon density segmentation (Fig. 1E). Conse-
quently, from our modeling exercise, which involved using
shape information from this density region, we applied our
robust scoring scheme (see Materials and Methods) to select
the top-scoring model from a decoy of 100,000 models
(Fig. S20).

We further searched in the PDB 77,78 using DALI,79 to explore if
the fold of the top-scoring model resembled any existing structure.
It showed structural similarity to a DnaD domain-like protein
(PDB ID: 2I5U Chain A),80 with an RMSD of 3.1A

�
(Dali Z-score

4.2). Based on the inter-residue contact analysis of the structurally
aligned PDB structure and the model, many inter-helix contacts
were found to be conserved at structurally equivalent positions
(Fig. S21). We also found structural similarity to an RNA-binding
domain of the VP35 protein from Reston ebolavirus 81 (PDB ID:
3KS8 Chain A) with an RMSD of 3.0 A

�
(Dali Z-score 4.2). This

structure has been solved in dsRNA-bound form. It was observed
that the RNA interacting residues Gln263 and Lys271 of VP35 are
structurally equivalent to Arg63 and Lys71 of the SF3b10 model
(Fig. S21). Additional analysis of the electrostatic surface potential
of the SF3b10 model showed the existence of a positively charged
surface around the residues Arg63 and Lys71 (Fig. S21). Hence,
this region could form the RNA-binding surface of SF3b when it
integrates into U2 snRNP or U11/U12 di-snRNP. Interestingly, it
has also been reported that residues at positions 33 to 85 are impor-
tant for the functioning of Rcp10p (yeast homolog of SF3b10).82

Hence, our structural models show that the human SF3b com-
plex comprises of a multiplicity of folds (Table S1 and Fig. S2),
including previously known RRM-binding proteins (p14 and
SF3b49). This information is crucial in understanding the func-
tional and mechanistic roles of individual components. Our model
also serves to provide structural insights and suggests amechanistic
hypothesis for the available experimental information on the func-
tioning of SF3b.

Opening of the SF3b complex in the context of U11/U12 di-
snRNP

SF3b forms an active and crucial component of the U2 snRNP and
the U11/U12 di-snRNP in the U2-dependent and U12-dependent
pathways respectively, in metazoans. The U11/U12 di-snRNP
cryo-EM map, determined by Golas et al.,21 showed that the inte-
gration of human SF3b complex into the larger di-snRNP, involves
a large structural rearrangement resulting in a relatively more open
conformation. In the previous work, localization information at
the protein level was restricted to only the RRM-domain contain-
ing proteins of U11/U12 di-snRNP.21

Knowledge of the molecular architecture of the closed SF3b
complex has enabled us to successfully model the components of
the SF3b into the U11/U12 di-snRNP density map (Fig. 3). We
used iterative segmentation of the SF3b density map (closed form)
to obtain a set of parsimonious density fragments (13 fragments;
Fig. S22). These fragments were then localized and fitted into the
U11/U12 di-snRNP map (13.4 A

�
at FSC0.5) based on the relative

positions of the components, as in the closed SF3b complex
(Fig. 3A). This enabled us to assess the local cross-correlation
(Fig. 3B) across the densities between the fragmented SF3b and
U11/U12 di-snRNP. Further, it encouraged us to fit the structural
models for all the 7 components of the SF3b (Fig. 3C and Fig. S23).
This model provided us with structural details for the open form of
SF3b complex (Video S3).

Comparison of the open and closed forms (Video S4) of the
SF3b density revealed large structural changes (cross-correlation:
0.46). This structural rearrangement is caused primarily by a large
segment of the density comprising mainly of the protein SF3b155.
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The localization and relative orientation of this segment in the
U11/U12 di-snRNP appears to demarcate the open from the closed
form (Fig. 4).We have also identified a flap, primarily comprised of
SF3b155 HEAT repeats and SF3b10 (see Materials and methods).
We find that the curvature of a large segment of the HEAT repeat
around SF3b10 enables it to make extensive contacts with this pro-
tein. We speculate that this interaction network maintains the
integrity of the flap and stabilizes it (Fig. S24). Indeed, this corrobo-
rates with earlier reports that show the yeast homolog of SF3b10,
Rcp10p interacts with Hsh155p (yeast homolog of SF3b155) and
depletion of Rcp10p affects the stability of yeast SF3b complex.82

Further, modeling of the closed and open forms of SF3b pseudo-
atomic model has allowed us to determine the scale of the flap
motion, in terms of the conformational changes in SF3b155 HEAT
repeat structure. The flap undergoes roughly 54A

�
shift (Centroids

of the planes in closed and open conformation of the SF3b155
HEAT repeat structure), which involves movement of the plane of
the flap by 658 (Fig. 4A; Video S5 and S6). This movement is
caused by a hinge motion at the linker region (Fig. 4B) in between
the HEAT repeats 6 and 7 of SF3b155. This motion exposes p14
and increases the volume thereby, facilitating the accommodation
of snRNA and other proteins in the interior of the U11/U12 di-
snRNP complex.

Earlier studies have identified multiple cancer causing muta-
tions on SF3b155.32,34,83 A mapping of these mutations on the
pseudo-atomic model showed that they cluster around 2 regions in
the SF3b structure (Fig. S25 and Video S7). These mutations have
the potential to affect assembly of either U2 or U11/U12 di-

snRNPs. Few of the mutation sites are concentrated near the linker
region of SF3b155 and hence can affect the flap opening. This is
consistent with the previously proposed bivalve shell opening
mechanism.21 The opening of the SF3b complex exposes both sides
of the flap to other trans-acting factors, including RNA, thus
enabling U2 snRNP remodeling.33 This also brings into focus, the
RNA binding capacity of U2 or U11/U12 di-snRNP.11

U12 snRNA and branch point duplex binding to SF3b open
form

It is well known that the closed form of SF3b is generally stable
and does not contain RNAmolecules. SF3b integration into U11/
U12 di-snRNP involves a complex sequence of rearrangements.21

Knowledge of the open form structure of SF3b in the context of
U11/U12 di-snRNP sheds light on the interpretation of a wealth
of biochemical data involving RNA binding. p14 is exposed in the
open form and interacts with the branch point adenosine (BPA)
of the branch point sequence (BPS) in pre-mRNA. This sequence
forms a duplex structure with the branch point recognition
sequence (BPRS) of U2 snRNA or the U12 snRNA. Hence, we
modeled the branch point duplex (BPD) containing U12 snRNA
and pre-mRNA, including the BPA, using an available crystal
structure of BPD (PDB ID: 1I9X) 84 and prior knowledge of U12
snRNA: pre-mRNA base pairing.85 The information on the rec-
ognition of BPA by p14 was collated from multiple sources 9,30

and the p14-BPD complex structure was modeled using a
restrained docking procedure (see Materials and Methods).

Figure 3. Modeling of SF3b components in the context of U11/U12 di-snRNP. (A) Segmented densities derived from SF3b complex (closed form) fitted into the 13.4 A
�

U11/U12 di-snRNP cryo-EM map (Fig. S22 and Supplementary Materials and Methods). The various colors represent the 7 SF3b components. (B) Confidence assessment
of segmented SF3b densities by local cross-correlation. The local cross-correlation was calculated for each voxel between the fitted density of SF3b (9.7 A

�
) and the experi-

mental density map of U11/U12 di-snRNP (13.4 A
�
) with a grid size of 5£5 £5 A

�
. (C) Atomic level representation of SF3b components after fitting into the U11/U12 cryo-

EM map (Fig. S23 and Video S3).
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Further, we found that the p14-BPD docked complex structures
fitted snugly into the groove above p14 density surface, when fit-
ted in the U11/U12 di-snRNP cryo-EM map. The 50 end of pre-
mRNA also traced a path similar to the one proposed along the
longitudinal groove.21 Additionally, we have learnt from cross
linking experiments 12 that the 50 end of the pre-mRNA interacts
with SF3b49 (orange) and SF3b145 (green) along the length of
pre-mRNA and the duplex is formed by only a few nucleotides
along the 30 direction (Fig. 5). This information also substantiates
the directionality of the pre-mRNA obtained from the current
model (Fig. 5A).

Agreement with biochemical data encouraged us to model
the U12 snRNA and examine the role of SF3b components in
BPD formation. Earlier, cross-linking and mutational experi-
ments have shown that SF3b49 and SF3b145 interact with
stem-loop I (SLI) and stem-loop IIa (SLIIa) of U2 snRNA,
respectively.11,75,86 The 50 end of U2 and U12 snRNAs folds
into similar secondary structures, due to the presence of intra-
molecular stem-loops SLI, SLIIa and SLIIb.87 Thus, we modeled
the U12 snRNA and its interactions with the SF3b49 and the
SF3b145 proteins, using fragments of RNA, from known
homologous protein-RNA complexes (see Materials and

Methods). The spatial positioning of SF3b49, SF3b145 and
p14-BPD complex in the U11/U12 cryo-EM map guided the
RNA modeling (Fig. S26) which was difficult due to the uncer-
tainties in the demarcation of RNA and protein regions in the
density map. Our model is purely guided by the architectural
organization of the SF3b open form, resulting in a model of the
SF3b open form-RNA complex structure. The structure of the
RNA until stem-loop IIa of U12 snRNA, including BPD with
the pre-mRNA, could be successfully modeled. This model pro-
vided structural insights into protein-RNA interactions (Fig. 5
and Fig. S27). Furthermore, the availability of this model has
also allowed us to localize the potential Sm complex positions
of U12 snRNP into the U11/U12 di-snRNP density. This locali-
zation was again based on a global fitting process and the use of
biochemical data on Sm complex-RNA interactions, which
showed that the Sm site is present downstream of the stem-
loop IIa of U12 snRNA (Fig. S28).87,88

Discussion

Our integrative structure modeling efforts has shed light on the
detailed molecular architecture of the human SF3b complex.

Figure 4. Open and closed forms of SF3b complex. (A) The open and closed forms of SF3b complex differ remarkably from each other. The main distinction is observed in
the SF3b155 protein (rainbow-colored) which forms the flap. The flap opening (»658 rotation) is dictated by the 12 residue linker (-LMGCAILPHLRS-) segment (black loop)
in between HEAT repeats 6 and 7 which acts as a hinge (674–680; -LMGCAIL-) enabling substantial conformational change (Flap is translated by 12.8 A

�
). The closed and

open forms were aligned (Video S4) to maximize the overlap (Cross correlation: 0.46) and (B) translated by 200 A
�
along X-axis to show the difference in flap conforma-

tions. The circular discs define the plane of the flap in the open and closed forms of SF3b (Video S5 and S6).
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This work has also enhanced the structural coverage of the
U11/U12 complex and helps us to understand the flap opening
mechanism of SF3b 21 to accommodate RNA and other trans-
acting factors. Our model is built from an integration of a vast
amount of existing experimental data coupled with state-of-
the-art structural modeling and cryo-EM density fitting meth-
ods. It has allowed us to establish a substantial amount of struc-
ture-function relationships of the SF3b complex, including
branch point adenosine recognition of pre-mRNA, U12 snRNA
binding and localization of several other proteins. Our model
also allowed us to interpret several pieces of experimental data.

SF3b – a fuzzy complex

SF3b contains proteins with highly flexible folded regions along
with intrinsically disordered regions (IDR) (Table S1 and
Fig. S2, S8), hence it is a “fuzzy” complex.89 Such fuzziness in
multi-protein complexes has also been attributed to the accom-
modation of a diverse array of heterogeneous folds, as is the
case in the SF3b.90 As a consequence, though we were able to
assign much of the cryo-EM density to folded regions, there are
additional density regions which lacked any structural data to
begin with. In this work, we speculated that the region of den-
sity located between the proteins SF3b49, SF3b145 and

SF3b155 corresponds to the IDR of these SF3b components.
Thus, our analysis shows that majority of the intrinsically dis-
ordered regions of SF3b components are concentrated to one
side of the SF3b cryo-EM map (Fig. 6).

We performed an ensemble structural modeling of the
SF3b49 IDR (211–424 amino acids), as it has a continuous dis-
ordered region and is predicted to interact with other proteins
(Fig. S29). This involved generating 500,000 sterically plausible
decoys by performing extensive conformational sampling in a
probabilistic Ramachandran angle phase space (see Materials
and Methods). SF3b49 IDR is proline-rich (83 out of 213 resi-
dues) and polyproline II (PPII) helices are known to possess
molecular recognition features (MoRFs) 91 and nucleic acid
binding properties.92 Hence, we calculated the conformational
propensities for these generated conformers in the PPII region
of the Ramachandran map. Some of the residues (85 out of 213
residues) have high propensity for PPII conformation with a
significant proportion being proline, (38 out of 85 residues)
indicating the importance of this IDR region in either protein
or nucleic acid binding (Fig. S30). Further, we used a density
region C-terminus to the SF3b49 RRM-domains to identify
spatial orientation of the model which matched the shape of
the identified density. Interestingly the top hits obtained based
on cross-correlation values (0.76–0.79) enclosed the density

Figure 5. Model for RNA binding. (A) The pre-mRNA binds to the SF3b complex in the context of U11/U12 complex. The pre-mRNA (red tube) traces a path on the surface
of the U11/U12 di-snRNP to form a duplex with U11/U12 di-snRNA near the base, where the branch point adenosine is recognized by the (B) exposed p14 (open form of
SF3b). (C) The U12 snRNA occupies substantial mass and fills the density of U11/U12 cryo-EM map. Here the U12 snRNA is stabilized by interactions with SF3b145 and
SF3b49. The 50 end of this RNA also forms the part of the branch point duplex. The models of the RNA duplex and stem loops were derived from existing crystal struc-
tures. (D) The 50 end of U12 snRNA (red) and pre-mRNA (yellow) is shown. The black colored regions in RNA correspond to the spacers in the earlier deletion analysis.87

The spheres correspond to the centroids of the nucleotides 4 and 16 of U12 snRNA. The dotted lines show the spacing between the nucleotides with a distance of 54.3 A
�

and a close agreement with earlier biochemical studies.85 The boxes show the exposed U12 snRNA regions where it interacts with 50 splice site and branch point adeno-
sine of pre-mRNA. The pre-mRNA (yellow strand) that interacts with U12 snRNA and forms a duplex (boxed region) is modeled on a U2 snRNA: pre-mRNA crystal structure
duplex, the rest of the strand is modeled to show a speculative path.
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volume quite well despite being intrinsically unstructured
(Fig. S30).

Further, it is interesting to note that the yeast homolog of
SF3b49, Hsh49p does not contain a proline-rich region
(Fig. S29) and it is likely that SF3b49 has evolved a proline rich
region to help it to recruit many binding partners possibly via a
“fly-casting” mechanism or through motif-based interactions,
as generally seen in proteins containing IDRs.93 Similarly,
SF3b145 also contains a higher proportion of IDRs when com-
pared to the yeast homolog Cus1p (Fig. S18). In a recent study,
both these proteins were shown to be involved in interactions
with multiple proteins in the human spliceosome.16 Also, the
SF3b complex in the human (30.5%) has more intrinsically dis-
ordered content than in the yeast homolog (15.54%), implying
more fuzziness for the human SF3b (Fig. S3). We believe that
this fuzziness of the human SF3b has direct consequences in
the recruitment of several new factors. This also explains the
difference in the number of essential factors involved in yeast
and human splicing machinery.

The mapping of IDR to one side of the complex can
serve as a potential guide for future crystallization trials
focusing on individual sub-complexes or protocols, with the
possible use of in situ limited proteolysis strategy, as seen
in a U1 snRNP structure determination.94 Besides, the strat-
egy of large scale conformational sampling and density-
guided filtering can also be used to obtain predictive atomic
resolution descriptions of the intrinsically disordered
regions for other spliceosomal proteins.95 Therefore, the
compositional bias provided by the highly disordered and
partly disordered regions (SF3b155 HEAT repeats) and
highly flexible components provides the necessary fuzziness

to human SF3b. This seems to facilitate both for its integra-
tion into U11/U12 di-snRNP 21 and also in the rewiring of
the protein-protein interaction networks in the
spliceosome.16

SF3b open form – a scaffold for 50end of U12 snRNA

SF3b exists in an open form in the U11/U12 di-snRNP which
binds to pre-mRNA stably; hence it comes in contact with both
U12 snRNA and pre-mRNA. From our model of the SF3b
open form-RNA complex, we provide a structural view point to
some of the observations made in earlier biochemical studies.
Previously, a combination of deletion analysis and RNA cross-
linking studies have reported that the U12 snRNA interacts
with both the 50 splice site and branch point sequence, within
an estimated distance of about 40 to 50 A

�
between nucleotides

4 and 16 of U12 snRNA.7,85 We measured the distance between
these nucleotides in our U12 snRNA structure model. Remark-
ably, it has a close agreement (»54.3 A

�
) with the earlier obser-

vation (Fig. 5D). This prompts us to speculate that the SF3b
open form acts as a “scaffold” for the 50 end of U12 snRNA,
which is topologically consistent with the biochemical data.85

Furthermore, it is important to note that the U12 snRNA: pre-
mRNA structure was modeled purely guided by the structural
constraints provided by the spatial positioning of proteins
SF3b49, SF3b145 as well as p14 (interaction with branch point
duplex). Therefore, these proteins, especially SF3b49 and
SF3b145, can possibly act as RNA chaperones 96,97 for the U12
snRNA to take up the right tertiary structure, analogous to that
observed in the case of ribosomal proteins for rRNA.98-100

Earlier, extensive mutational and deletion analysis of the SLI
(14–17 nucleotides) and single stranded linker region (24–31
nucleotides) of U12 snRNA have shown that they affect splic-
ing. So these regions have been implicated to be spacer ele-
ments or distance constraints in the functional form of U12
snRNA, such as during its interaction with pre-mRNA.87 We
note a similar role for these nucleotides from our RNA model,
as they seem to connect the branch point duplex to SLI and
SLII regions of U12 snRNA (Fig. 5D). Loss of splicing activity
was also reported upon deletion of the stem loop IIa of U12
snRNA.87 From our SF3b open form-RNA model, we observe
that this is primarily due to the loss of U12 snRNA interaction
with SF3b145, thus causing some changes in the U12 snRNA
structure (Fig. 5B). Further, the stem loops of the U12 snRNA
might help in binding of SF3b proteins such as SF3b145.101

The three RNA-binding proteins p14, SF3b49 and SF3b145 face
the inner layer of SF3b155 HEAT repeats in the SF3b complex.
Hence, it is likely that the binding of the U12 snRNA, coupled with
the phosphorylation of the partly disordered protein SF3b155,28

acts as a trigger for the SF3b to undergo such a huge conforma-
tional change during its integration into the U11/U12 complex.
Moreover, as seen in some of the HEAT repeat containing homo-
logues of SF3b155 (Table S5, Figs. S15 and S16) and from the reper-
toire of curvatures observed in our hybrid fragment-based
comparative modeling (Fig. S17), this protein has the ability to act
as a “molecular sling shot” in the SF3b complex, utilizing its stored
elastic potential energy as a wound spring during the transforma-
tion of SF3b from closed to the open state.69,72

Figure 6. Intrinsically disordered region in the SF3b cryo-EM map. The blue col-
ored density region and the arrow shows the mapping of the intrinsically disor-
dered region to one side of the SF3b cryo-EM density map. As SF3b components
harbor intrinsically disordered regions, this density region has been obtained after
fitting most of the structured regions into the density map.
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SF3b open form – potential implications for branch point
adenosine recognition fidelity

In metazoans, the spliceosome machinery faces an overwhelming
task to achieve fidelity given the degeneracy of splice sites, branch
point sequence and varying length of introns.102,103 Therefore, in
the light of our SF3b open form - RNA complex model we provide
insights into the branch point adenosine recognition fidelity, facili-
tated by its structural organization. As the SF3b open form likely
acts as a structural scaffold for 50 end of U12 snRNA, we believe
that it helps in presenting the branch point recognition sequence
(BPRS) of U12 snRNA to pre-mRNA branch point sequence
(BPS). In addition, from our model and the U11/U12 di-snRNP
cryo-EM map, we observe a cleft above p14 and near SF3b49,
which can potentially help the U12 snRNA to form RNA-RNA
interactions, both with the branch point and 50 splice site (Fig. 5D).
Besides, the thermodynamic stability of this interaction 104 is vital
for proper splicing ofU12-type pre-mRNAs in the absence of a pol-
ypyrimidine (Py) tract and increased distance between the degener-
ate 30 splice sites from the branch point.105 Therefore, it can be
speculated that the proteins SF3b49, SF3b145 as well as p14 act as
“molecular rulers” to improve the fidelity of branch point adeno-
sine selection both by stabilizing and proof-reading the U12
snRNA: pre-mRNA interaction (Fig. 7).We compared the centroid
positions of these proteins in both the SF3b closed form and SF3b
open form-RNA complex and observed changes both in terms of
orientation and distances (Fig. 7). These changes can be attributed
to the malleability provided by the mapped IDR region in the SF3b
cryo-EM density (Fig. 6) and also from a higher degree of fluctua-
tion in the vicinity of p14 (mode 4), from normal mode analysis of
the densitymap (Fig. 2A).

SF3b proteins interact with the 50 part of U2 snRNA and
also help in recruiting U2 snRNP to the highly degenerate
BPS.11,74 The role of SF3b in the remodeling of U2 snRNP and
the presentation of BPRS has been well studied using the anti-
tumor drugs E7107.33 More specifically, Spliceostatin A (SSA),

by binding to SF3b, was shown to inhibit the transition of the
pre-spliceosome to B complex 106 and reduces the fidelity of
BPA recognition.107 We believe that the architectural design of
SF3b has a crucial role to play in improving the fidelity of BPA
recognition even in the U2 splicing pathway (Fig. S27), analo-
gous to its role in the U11/U12 di-snRNP. SSA is also known to
bind to SF3b130 and SF3b155 34 and based on our SF3b
pseudo-atomic model (Fig. 2B), we conjecture that these inter-
actions might lock the SF3b130-SF3b155 interaction (Fig. S27),
thereby disabling the proper exposure of SF3b proteins
(SF3b49, SF3b145 and p14) for interaction with U2 snRNA
and pre-mRNA. As BPS in U2-type introns is known to be
degenerate,108 any small perturbation in the SF3b integration
into U2 snRNP might cause non-specific base pairing of U2
snRNA with pre-mRNA by preventing proper exposure of
BPRS.107 We believe that this locking mechanism causes the
non-specific base-pairing.

It is also interesting to note that the ortholog of p14 is absent in
yeast (S. cerevisiae) as well as in the parasitic organism G. lambia
which has very few introns.43,109 Given the fact that yeast has a
strong consensus sequence around the branch point adenosine
when compared to that of metazoan introns, there is a special
requirement for specific factors (p14) to maintain specificity for
degenerate BPA recognition in metazoans. Moreover, p14 alone
has been shown to lack specificity to bind the branch-point duplex
(BPD).110 This information enables us to conjecture that the
snRNA-binding proteins SF3b49, SF3b145 and their geometrical
arrangement relative to p14 has a vital role in p14 recognizing
BPA. This spatial arrangement of the proteins (Fig. 7) might also
enable the spliceosome to achieve the right catalytic orientation for
splicing, 85,111 as observed in the recent near atomic structure of the
yeast spliceosome where much of the catalytic center is shaped by
protein components.59 Finally, this arrangement might also aid in
the attack of BPA at the 50 splice site in a diffusion limited regime
by limiting pre-mRNA motions in the local vicinity of the spliceo-
somal proteins.112 Our model shows that SF3b components are

Figure 7. Molecular rulers of U12 snRNA-pre-mRNA interaction in closed and open forms. The three spatially juxtaposed proteins SF3b49, SF3b145 and p14 in SF3b com-
plex are shown. The closed and open forms of these proteins were aligned with respect to the SF3b145 position. On comparing the distance between the centroid posi-
tions for these proteins in SF3b closed and open forms we observe that for SF3b49-SF3b145 it reduced from 74.8 A

�
to 70.5 A

�
, p14-SF3b49 it increased from 62.4 A

�
to

73.1 A
�
and for SF3b145-p14 it reduced from 61.9 A

�
to 50.3 A

�
. This shows significant differences in the arrangement of these proteins on U12 snRNA binding also stabiliz-

ing its interaction with pre-mRNA.
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imperative for spliceosome to achieve branch point adenosine rec-
ognition fidelity.

In conclusion, using an integrative approach, primarily guided
by the cryo-EM map, we have deciphered the molecular architec-
ture of the human SF3bmachinery in the closed and open forms as
well as its contribution for the branch point adenosine recognition.
To our knowledge, this is the first such work in the field of splicing
where the structure of a “fuzzy” complex such as the SF3b has been
obtained using an integrative structure modeling approach. We
have tested the limits of many modeling techniques and show con-
vincingly that such a strategy can guide structural modeling of
other dynamic snRNPs involved in the spliceosome machinery.
Our work also shows the difficulties in obtaining structural infor-
mation for the spliceosome. Clearly, existing structural data guided
by evolutionary principles and experimental restraints can help in
discerning the structural organization of this highly dynamic and
malleable machine.113 Our work has the potential to initiate and
design single molecule experiments on SF3b.1 This would not only
provide credence to our views on structural insights into the assem-
bly of the U2 snRNP orU11/U12 di-snRNP, especially with respect
to integration of the SF3b into these complexes, but also establish
structure-function relationships of this complexmachine.

Materials and methods

We have used a diverse array of computational methods for our
integrative structure modeling procedure. Detailed procedures
are provided in the Materials and Methods section. Here, we
summarize the entire methodology. All the components of the
SF3b complex lacking X-ray or NMR structures were modeled
and fitted into the cryo-EM density map along with the pro-
teins of known structure. For the proteins with no known struc-
ture, we employed diverse relationship detection methods
ranging from simple sequence search to sophisticated fold rec-
ognition methods. Once a convincing template was identified,
we used comparative modeling to model the structure
(Table S1). In the absence of related proteins of known struc-
ture, de novo modeling using Rosetta approach,114,115 followed
by rigorous assessment of the model was performed. To obtain
neighborhood information for the components a consensus
interaction network was computed by collating experimental
interaction data from multiple resources deposited in the BIO-
GRID 116 (Table S2). To locate the individual domains of
SF3b130, SF3b145 and SF3b14b within a region of the SF3b
cryo-EM density (EMD-1043) that is unoccupied, a global
search was performed with a fine angular sampling of 3�, using
the colores program in the SITUS package (see Materials and
Methods). The neighborhood information from the Protein-
Protein Interaction (PPI) data and normal mode analysis of the
density map as well as components was utilized for obtaining
the final localization information for all the components. Segger
tool 117,118 of UCSF Chimera 119,120 was used for both density
discretization as well as interactive density segmentation of the
SF3b cryo-EM density at a threshold of 0.0158. Further, local
fitting of the component proteins was performed into their cor-
responding map segments based on the localization informa-
tion with a 6-dimensional search and an angular step of 3�

using the colores program in SITUS package.121,122 The fits
were further optimized by incorporating other sources of

experimental information (Table S3) or domain orientation
information from homologues of known structure with the
help of Fit in Map module of UCSF Chimera (Table S5). This
was followed by a round of flexible fitting using MDFF 123,124

and refinement into the density for SF3b155, SF3130, SF3b49,
SF3b145 and SF3b10. To avoid over fitting of the highly flexible
SF3b components (SF3b155 and SF3b130) into the density,
additional domain restraints were incorporated into the default
MDFF protocol.

For modeling the SF3b open form in the context of U11/U12
di-snRNP, we used EMD-1096. After iterative and parsimoni-
ous segmentation of SF3b closed map, we performed fitting of
the individual fragments into the larger U11/U12 density to
obtain the open form of SF3b complex, using the Fit in Map
module of UCSF Chimera. This was followed by assessments
and atomic level fitting of the individual components into the
density. The open and closed forms were compared with each
other after density alignments and atomic level fitting of
SF3b155. The flap of SF3b complex was characterized by fitting
a plane to Ca atoms in the large segment of SF3b155 spanning
the region 675–1204 in both the closed and open forms using
UCSF Chimera. The inter-planar angles and the centroids were
also computed for the planes defining the open and closed
forms. Modeling of RNA interactions to SF3b components was
performed for the open form in the context of U11/U12 di-
snRNP using a combination of approaches including existing
structural data on protein-RNA complexes and available exper-
imental data.11,12,21
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